

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 147

Slicing for Java Program: A Preliminary Study

Siti Aminah Selamat and Amir Ngah
School of Informatics and Applied Mathematics,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

ami.selamat@gmail.com

Abstract—Program slicing is a technique that proposed to

help in understanding the program code. After several decades,

the technique has been derived into several other techniques and

proposed to be applied in many fields such as debugging,

program comprehension, software measurement, testing and

maintenance. The application of program slicing sometimes

specifies for certain programming language such as C and Java.

This paper will discuss existing program slicing techniques that

were proposed focusing on the Java programming language.

Index Terms— Dependency Representation; Java; Program

Analysis; Program Slicing.

I. INTRODUCTION

Program slicing is a task of breaking down a large program

into smaller components called Slice. The slice consists of

lines of code that performs the behavior in the program. The

first technique was proposed by Weiser [1], [2] known as the

static backward slicing. After that, many papers were

proposed to cater to the need of analyzing code in debugging,

program comprehension, testing, and maintenance.

This paper focuses on the existing slicing technique

proposed for Java program. Java is a programming language

that has been widely used and has become a leading

programming language [3]. Program slicing is a technique

that can be used to aid debugging, program comprehension,

testing, fault localization, maintenance, and security. Using

program slicing, the debugging process can be simplified by

reducing the program into related lines of codes only.

Program slicing can also be used in the maintenance process

to help the software evolve and up dated. In addition, program

slicing can be applied in testing newly developed programs

or modified programs to make sure there is no bug or any line

of code that can trigger the production of bugs.

Section II briefly discusses the concept of program slicing

along with the most popular techniques, which are Static

slicing, Backward and Forward slicing, and Dynamic slicing.

Section III explains the program slicing proposed for the Java

program. Section IV discusses the program representation for

the Java program and the application of program slicing is

discussed in Section V.

II. PROGRAM SLICING

The program slicing algorithm was previously only

proposed for a sequential program [5],[6]. However, the

technique was modified in order to slice the object oriented

program. The object oriented programs that often used in the

research of program slicing techniques are C++ and Java

programming language.

The most popular technique in program slicing is static

slicing, which was first introduced by Weiser [2] and

dynamic slicing, which was proposed by Korel and Laski [7].

The program is sliced based on data dependency and control

dependency in the program. If one statement execution

affects the data of the slicing criterion, then the statement is

included in the slice, similar to control dependency, if the

execution of one statement can affect the execution of the

slicing criterion, that statement is included in the slice.

A. Static Slicing

Static slicing considers all possible executions of the

slicing criterion [8], and includes all the statements in the

program that might affect the value at some point of interest

into the slice. Danicic, Harman, and Sivagurunathan [9]

proposed a parallel algorithm for the static slicing technique.

Parallel algorithm can be used in several ways, such as to

construct slices with multiple slicing criteria and to perform

simultaneous slicing previously proposed by using the

Program Dependence Graph (PDG) approach [9]. Static

slicing for concurrent programs using the new program

representation approach was proposed by Zhao, Cheng, and

Ushijima [10]. The new program representation is called

System Dependence Net (SDN), which extends the previous

program representation. The net consists of a group of

procedure dependence nets with each representing the main

procedure. There are few research papers that have proposed

combination of two existing slicing techniques. Static slicing

is one of the techniques that has quite a few combinations

with other techniques, for example forward slicing, backward

slicing, and dynamic slicing. These proposed combination

techniques will be discussed in the following sub-sections.

B. Backward and Forward Slicing

Slicing can be traversed forward or backward starting from

the statement where the slicing criterion is located. This

traversal is also used in the intermediate representation graph.

Forward slicing includes all the statements that will be

affected by the slicing criterion and the backward slicing

includes all the statements that will affect the slicing criterion.

Binkley [11] states that the slicing criterion proposed by

Weiser is sliced in a backward manner and therefore the

Weiser technique is known as the backward static slicing

[12]. The forward slicing technique was proposed by

Bergeretti and Carre [13] that was later proposed to be

combined with static slicing [14]–[16].

C. Dynamic slicing

Dynamic slicing includes the slice with the statement in the

program that is affected during the execution of the program

using the input. This results in smaller slices. The dynamic

slice can be divided into two categories: executable slice and

non-executable slice [17]. The executable dynamic slice

includes the statement needed for the execution, and the non-

Journal of Telecommunication, Electronic and Computer Engineering

148 e-ISSN: 2289-8131 Vol. 9 No. 3-5

executable slice only includes the statement that might affect

the variable of interest and it cannot be executed.

III. PROGRAM SLICING FOR JAVA

There are many program slicing techniques that have been

proposed for Java program. One of the most popular

techniques is static slicing. In 1996, static slicing was

proposed for Java program [18]. Since Java program is an

object oriented program, the object oriented features such as

inheritance, polymorphism, and dynamic binding need to be

taken into account during the slicing process. Kovács,

Magyar, and Gyimóthy [18] introduced the new

representation for the polymorphic call that helps to reduce

additional vertices during the polymorphic handling. The tool

for slicing sequential Java program was proposed 11 years

later to slice Java program in the Soot framework [5]. Java is

also a concurrent programming that runs concurrently instead

of sequentially, thus, the approach to slice a concurrent Java

program using static slicing was proposed [19]. In order to

slice the program, concurrent control flow graph (CCFG) and

concurrent program dependence graph (CPDG) were

presented to represent the concurrent program. Zhao and Li

[20] also had the same basic idea to represent dependency in

the concurrent Java program, but the approach proposed by

Zhao and Li used the class dependence graph and method

dependence graph in order to construct the concurrent

program dependence graph (CPDG). Ranganath and Hatcliff

[21] proposed the slicing concurrent Java program using the

slicing tool Indus and Kaveri which is a program slicing

plugin for eclipse.

Dynamic slicing is another technique that has also gained

much attention in the slicing field. The slicing technique to

slice a distributed Java program was proposed by [22]. The

representation for the distributed program is constructed as

follows. The edges of the dependency representation graph

are marked when the dependency arises and unmarked when

the dependency ceases. By using this approach, the dynamic

slicing is performed on the program and this technique is

called distributed dynamic slicing [22]. Bytecode is a

compiled Java program. Wang and Roychoudhury [23]

proposed dynamic slicing to slice the Java program. Instead

of a program statement, the Java program is sliced using the

compact bytecode traces that provide flexibility in tracing/not

tracing certain bytecodes. The dynamic slicing is used to

traverse the compacted bytecode traces to capture the control

and data dependence in the Java program. Wang and

Roychoudhury [23] also extended their research in dynamic

slicing to perform relevant slicing. Another research on

dynamic slicing is presented in [24], which proposed a slicing

process that does not require accessing the source code during

slicing. The idea is to produce an instrumented virtual

machine for Java program. The technique is capable of

handling an advanced aspect of the Java environment such as

exception handling, multithreaded execution, and execution

of native machine code linked with the Java classes.

Raphnash and Bidyadhar [14] proposed forward static

program slicing for a Java program that can be used to

eliminate redundancy and repeated codes in a Java program.

Szegedi, Gergely, and Berzedez [25] proposed the paper that

verifies the concept of union slice on Java program,

comparing the result with a corresponding static slice which

shows that the union slice is precise enough.

Meanwhile in 2013, another slicing technique is proposed

for slicing a Java program called hierarchical slicing. The

technique decomposes a Java program into different

components; packages, classes, methods, and statements that

are affected when the program is modified. This technique is

used to test the modified Java program by using these

components to derive the new test suite for testing. The

technique is used to reduce the test cases in regression testing

[26] and to measure cohesion [27] in the Java program.

IV. PROGRAM REPRESENTATION FOR JAVA PROGRAM

Many of the slicing techniques use the dependency graph

to slice the program. The dependency graph consists of nodes

or vertices and visualizes the dependency in the program

using the edge. The most popular program intermediate

representations are Program Dependence Graph (PDG) and

System Dependence Graph (SDG). SDG for Java was

proposed by [28] and known as the Java System Dependence

Graph (JSysDG). The plus point for JSysDG is that it

produces a more accurate graph by enabling static analysis to

be performed on the graph. JSysDG is also able to represent

classes, methods and packages, abstract methods/classes and

interface, individual object and single inheritance from the

class hierarchy.

Another SDG for Java intermediate representation ia the

Java System Dependence Graph (JSDG) [29]. The paper

proposed an intermediate representation of SDG for an object

oriented program and an aspect oriented program. The SDG

was then used as an input to compute the slice of the Java

program with respect to the slicing criterion.

Researcher [30] proposed a static analyzer for Java

bytecode called JavaPDG. The static analyzer JavaPDG can

be used to produce various types of dependence

representation such as a system dependence graph, procedure

dependence graph, control flow dependence graph, and call

graph. JavaPDG is also capable of performing both intra- and

inter-procedural analysis. The analyzer has a graphical

viewer to browse and analyze the various graphs and a

convenient JSON based serialization format.

V. PROGRAM SLICING APPLICATION

A. Debugging

Finding and removing bugs that cause the program to

produce incorrect and unexpected results is called debugging.

Bugs in software programs refer to errors. Some bugs can be

easily found, but there are also bugs that act dormant, are

difficult to be found, and only arise in the near future when

the system hits the limits. In more serious cases, the bug can

cause the system to freeze or crash. This problem might lead

to scrambled or loss data. Software program consists of

hundreds or thousands of lines of codes. Hence, performing

debugging manually on thousands of line of codes will

consume a lot of time, money, and human resources. This

might increase the cost of maintaining or developing the

software. To prevent the problem from happening,

researchers have proposed a number of solutions. One of the

proposed solutions is by performing slicing on the large

software program to break the program into smaller

components, so that the debugging will take a shorter time.

Weiser in [31] stated that a programmer mentally uses slices

during debugging and has debugging as the main application

of program slicing [32].

Eranki and Moudgalya [33] proposed program slicing not

Slicing for Java Program: A Preliminary Study

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 149

only to help students to understand the Java program, but also

to elevate the debugging skill in a programming course. From

the testing run, the analysis shows that program slicing indeed

helps to increase the understanding and debugging skill in

programming.

B. Program Comprehension

Software program needs to be understood before the

program code can be modified or manipulated. The person in

charge of code manipulation needs to understand how the

original program works and the existing constraints in the

program. After that, the desired modifications are identified

and applied in the program. Failure to understand the code or

program behavior can lead to data loss during the

manipulation process.

Lillack, Johannes, and Eisenecker [34] proposed program

slicing for understanding a software generator. Software

generator is used to deploy software systems. Since the

deployed software has to be maintained, the software

generator used to deploy the system also needs to be

maintained to follow the current technology [34]. However,

the code used in a software generator is difficult to understand

for it to be maintained and improved in order to replace the

old technology with a new one, therefore, program slicing is

proposed as a technique to understand the software generator.

One of the latest approaches to help program

comprehension using program slicing was proposed by [35]

who used a slicing tree to slice the program. Another research

[33] used program slicing to help novice learners to have a

better understanding while learning the programming course.

A total of 160 non-computer science students who have a

basic computer literacy is selected as samples to test the

effectiveness of program slicing in helping students to

understand the program code. The students are divided into

two workshop groups, A and B. Each workshop consists of

post-test and individual assignment for each tutorial with the

duration of three hours. Both workshop groups watched Java

oral tutorial, but only the experimental group used the slicing

technique to solve the assignment. Another group with a total

of 80 students were picked randomly to form two classroom

groups with 40 students each. The classroom groups were

divided into a control group and an experimental group. The

control group had a one-hour Java lecture followed by a one-

hour Java practice lab session, while the experimental group

had a one-hour Java lecture followed by a one-hour Java

practice lab using program slicing. The results of the tests

show that the performance of the students in the workshop’s

experimental group is 85% compared to the control group

with 63%; as for the classroom experimental group, the result

is 75% compared to 60% for the classroom control group.

This shows that program slicing can assist the students in

understanding and learning the program codes.

C. Testing

Before software can be deployed, it needs to be tested to

check if the software meets the requirement and is bug free.

Software maintenance activity such as adding new

functionality, fixing software defects or adapting the system

to changes in its environment might cause a bug that can

make the system behave in an undesirable way [36]. Thus, the

program is tested to eliminate any possible threats in the

system. Testing is an important activity in software

engineering,

Chebaro, Kosmatov, Giorgetti, and Julliand [37] proposed

the application of program slicing to enhance the verification

technique that combines the static and dynamic analyses. The

static analysis is used to report a possible runtime error in

which some of the reports might be a false alarm and the

dynamic analysis is used to accept or reject the alarm using

test generation. A previous work by [38] used value analysis

to report alarm of possible runtime error and structural test

generation to confirm or reject the alarm. This method,

however, has a drawback, which can time out before all the

reported alarms are confirmed (accepted or rejected). In order

to overcome the drawback, [39] improved the technique by

applying program slicing to reduce the source code before test

generation and further improved the technique by developing

a theory on alarm dependencies and used it to determine a

better synergy of the techniques [37].

Regression testing is necessary when a new component is

added to the system or when a modification done to the

existing component affects another part of the system [26].

Since regression testing is an expensive activity, Panda and

Mohapatra [26] proposed the application of hierarchical

slicing to reduce the test while at the same time reducing the

time and cost of retesting.

D. Fault Localization

Spectrum-based fault localization technique mainly utilizes

testing coverage information to calculate the suspiciousness

of each program element to find the faulty element. However,

this technique does not fully consider the dependencies

between program elements. Thus, the capacity for efficient

fault localization is limited. Wen [40] proposed the

implementation of program slicing into a fault localization

technique called program slicing spectrum-based software

fault localization (PSS-SFL). The technique consists of two

steps; the first is to analyze the dependencies between

program elements and delete the elements that have no

dependencies with faulty elements to improve the precision

of locating the fault, and the second is to build the program

slice spectrum model to define the suspiciousness metric

results. This technique is also more efficiently than the

previous technique [41] whereby the latter can locate the fault

in a multi-faults program efficiently.

Another technique proposed for fault localization is the

forward slicing spectrum. The approach was proposed by

Surendran and Samuel [42]. The proposed approach is

expected to resolve some issues in standalone fault

localization techniques such as program slicing and program

spectrum based method. Examples of the problem solved

include the issue related to the size of the program code,

difficulties faced during the retrieval of the system feature

and function, etc. [42]. In a program which contains several

modules, forward slicing spectrum provides a way to

determine the relevant information and an overview of the

dependency between the program modules. Thus, any part of

the program that is affected by the modification and

integration of the new component is easily traceable.

E. Maintenance

One of the applications of program slicing is on

maintenance activity. Maintenance is an expensive process in

terms of cost, time, and human resources. This might be

because of the many processes involved during maintenance

such as program understanding, re-engineering, and testing.

Firstly, the software maintainer needs to understand the code

before the change can be made to the system. Re-engineering

Journal of Telecommunication, Electronic and Computer Engineering

150 e-ISSN: 2289-8131 Vol. 9 No. 3-5

activity then follows to make changes to the system, and

lastly the system needs to be analyzed if the changes made to

the system will affect any other part of the system. Gallagher

and Lyle [4] proposed the decomposition program slicing to

aid the maintenance process. The program is decomposed

into components of the behavior of the program. Thus,

maintenance can be performed on the smaller components of

the program.

After the program has been maintained and changed, the

program needs to be analyzed in order to understand the

potential risk that might arise from the changes made to the

system. This activity is called change impact analysis.

Software change impact analysis is defined as a process to

discover any possible effect to a particular system from a

software change [43]. Acharya and Robinson [36] proposed

an implementation of static slicing for assisting the change

impact analysis for an industrial software system. They found

that when implementing static slicing to the small program,

the technique is able to produce an impact analysis result

quickly and efficiently. However, when the technique is

applied on a large system, it suffers from performance and

accuracy issues in producing the impact analysis result. To

overcome the problem, Acharya and Robinson proposed Imp,

which is a static change analysis framework for a large

evolving software system that contains over a million lines of

codes. They also claimed to be the first to identify and address

the challenges faced in designing the static impact analyzer

which is the time and accuracy tradeoff.

Another technique for change impact analysis was

proposed by [44] called the HSMImpact. HSMImpact

implements the hierarchical slicing technique originally

proposed by Li et al. [45]. Sun et al. [44] found that the

previous change impact analysis technique for Java program

focuses more on the method level without considering other

granularity levels. Thus, Sun et al. proposed a new change

impact analysis technique that has different granularity levels

starting from the package level to the statement level.

HSMImpact consists of three (3) steps which are the

definition of hierarchical change sets at different granularity

levels, promotion of change impact analysis based on the

hierarchical slicing model, and computation of hierarchical

impact set (HIS) from the package level to the statement

level. Sun et al. also performed preliminary studies to

demonstrate the effectiveness of HSMImpact.

Software evolves after changes have been made to the

system and the evolution of the software can be tracked back

by mining the software history. However, previous mining

processes were manual and time consuming. Therefore, [46]

proposed history slicing to aid the tracking process. The

software program will be sliced based on the slicing

criterion’s set of line of codes and the slice will consist of all

equivalent lines of codes in all the past revisions of the

software project in which the line of code of interest was

modified. The technique proposed also automated which

reduce the amount of relevant information of the slicing

criterion and the time it would take for computation.

Program slicing is also applied to estimate the maintenance

effort before the maintenance is started. This process is

important since the maintenance process has typically been a

complex and costly process. By using forward decomposition

static slice as proposed by [47], the variable in all the files in

the system is recorded and each version of the system has its

own dictionary. The system dictionaries are compared

between the two versions and the changes recorded are

modeled at the behavioral level. The change in the system is

recorded and used to predict the next maintenance effort.

Alomari et al. [47] uses the GNU Linux Kernel with over nine

hundred (900) versions with 17 years of history as a case

study. Since Linux is an open-source system, the maintenance

effort estimation used for closed-source system cannot be

applied directly because the maintenance effort data are not

present which prevents the validation process. The model

proposed for open-source maintenance estimation effort by

Alomari et al. consists of five (5) phases. Firstly, the measures

that are theoretically related to and can indirectly represent

the maintenance effort are identified; then, the maintenance

data is extracted. The third phase is to validate the correlation

between the dependent and independent variables. The fourth

phase is building the effort-prediction approach by using a

multiple linear regression analysis and the last phase is to

predict the maintenance effort based on the model built in

phase four (4).

F. Security

The advanced technology allows the application and

website to be accessed using the mobile application. Mobile

devices such as smartphones and tablets are more convenient

to be carried around instead of laptops and this indeed helps

to ease everyday tasks such as making a transaction.

However, this technology has a drawback in terms of

security. The application that is downloaded and installed in

the mobile device is used by attackers to spread malicious

software (malware) that has the potential of damaging a

mobile device ecosystem [48]. Thus, [48] proposed the Static

Android Analysis Framework (SAAF) which is a technique

to detect malicious apps in an automated way. The SAAF

analyzes Smali code which is a disassembled version of DEX

(Dalvik Executable). Dalvik is an Android’s Java Virtual

Machine Implementation that has been discontinued and

replaced by Android Runtime (ART) that also used the .dex

format file. The technique is used to analyze more than

140,000 applications and only has one failure during the

evaluation phase.

VI. CONCLUSION

Program slicing is one of the analysis techniques that has

currently received much attention. Many slicing techniques

have been proposed to simplify software activity such as

debugging, program comprehension, testing, maintenance,

and software measurement. Program slicing has also been

proposed for Java programming language and used widely in

many current applications. This paper has listed a few

existing slicing techniques and some of the proposed

techniques are for slicing a Java program. Even though many

program slicing has been proposed for a Java program, the

implementation of slicing in the real world can still be

numbered. The tools for slicing real world programs are

limited and constrained. Thus, the tools that can be used in a

real world program need to be developed to implement the

slicing technique to assist software process activities.

ACKNOWLEDGMENT

This research is sponsored by the Ministry of Education,

Malaysia Government under Research Acculturation

Collaborative Grant (RACE), Vot No. 56032.

Slicing for Java Program: A Preliminary Study

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 151

REFERENCES

[1] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol. SE-10,

no. 4, pp. 352–357, 1984.

[2] M. Weiser, “Program slicing,” in Proc. 5th Int. Conf. Softw. Eng., 1981,
pp. 439–449.

[3] G. L. Taboada, S. Ramos, R. R. Expósito, J. Touriño, and R. Doallo,

“Java in the high performance computing arena: research, practice and
experience,” Sci. Comput. Program., vol. 78, no. 5, pp. 425–444, 2013.

[4] K. B. Gallagher and J. R. Lyle, “Using program slicing in software

maintenance,” IEEE Trans. Softw. Eng. (TSE ’91), vol. 17, no. 8, pp.
751–761, 1991.

[5] Devaraj, “A static slicing tool for sequential java programs”, M.S.

thesis, Fac. of Eng., Indian Inst. of Sci., Bangalore, 2007.
[6] J. Krinke, “Advanced slicing of sequential and concurrent programs,”

in IEEE Int. Conf. Softw. Maintenance, ICSM, 2004, pp. 464–468.

[7] Korel and J. Laski, “Dynamic program slicing,” Inf. Process. Lett., vol.
29, no. 3, pp. 155–163, 1988.

[8] Korel and J. Rilling, “Dynamic program slicing methods,” Inf. Softw.

Technol., vol. 40, no. 11–12, pp. 647–659, 1998.
[9] S. Danicic, M. Harman, and Y. Sivagurunathan, “A parallel algorithm

for static program slicing,” Inf. Process. Lett., vol. 56, no. 6, pp. 307–

313, 1995.
[10] J. Zhao, J. Cheng, and K. Ushijima, “Static slicing of concurrent object-

oriented programs,” in Proceedings of 20th International Computer

Software and Applications Conference, 1996, pp. 312–320.
[11] Binkley and K. B. Gallagher, “Program slicing,” Adv. in Computes, vol.

43, pp. 1-52, 1996.

[12] Ngah and Selamat, S. A. “A brief survey of program slicing,” Sci. Int.,
vol. 26, no. 4, pp. 1467-1470, 2014.

[13] J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow

analysis of while-programs,” ACM Trans. Program. Lang. Syst., vol.
7, no. 1, pp. 37–61, 1985.

[14] R. Raphnash and E. Bidyadhar, “Forward static program slicing”, B. of

Tech. thesis, Comp. Sci. and Eng. Dept., National Inst. of Technology
Rourkela, India, 2010.

[15] H. W. Alomari, M. L. Collard, and J. I. Maletic, “A very efficient and

scalable forward static slicing approach,” in Proceedings - Working
Conference on Reverse Engineering, WCRE, 2012, pp. 425–434.

[16] H. W. Alomari, M. L. Collard, J. I. Maletic, N. Alhindawi, and O.

Meqdadi, “srcSlice: very efficient and scalable forward static slicing,”
J. Softw. Evol. Process, vol. 26, no. 11, pp. 931–961, 2014.

[17] B. Korel and J. Rilling, “Dynamic program slicing methods,” Inf.

Softw. Technol., vol. 40, no. 11, pp. 647–659, 1998.
[18] G. Kovács, F. Magyar, and T. Gyimóthy, “Static slicing of java

programs,” Technical Report TR-96-108, József Attila University,

Hungary, December, 1996.
[19] Z. Q. Chen and B. W. Xu, “Slicing concurrent Java programs,” Acm

Sigplan Not., vol. 36, no. 4, pp. 41–47, 2001.

[20] J. Zhao and B. Li, “Dependence-based representation for concurrent
Java programs and its application to slicing,” in Proc. Int. Symp. Futur.

Softw. Technol., 2004, pp. 105- 112.
[21] V. P. Ranganath and J. Hatcliff, “Slicing concurrent java programs

using Indus and Kaveri,” Int. J. Softw. Tools Technol. Transf., vol. 9,

no. 5–6, pp. 489–504, 2007.
[22] P. Mohapatra, R. Kumar, R. Mall, D. S. Kumar, and M. Bhasin,

“Distributed dynamic slicing of Java programs,” J. Syst. Softw., vol. 79,

no. 12, pp. 1661–1678, 2006.
[23] T. Wang and A. Roychoudhury, “Dynamic slicing on Java bytecode

traces,” ACM Trans. Program. Lang. Syst., vol. 30, no. 2, pp. 1–49,

2008.
[24] Szegedi and T. Gyimóthy, “Dynamic slicing of java bytecode

programs,” in Proc. - Fifth IEEE Int. Work. Source Code Anal. Manip.

SCAM 2005, 2005, pp. 35–44.
[25] Szegedi, T. Gergely, Á. Beszédes, T. Gyimóthy, and G. Tóth,

“Verifying the concept of union slices on java programs,” in Proc. Eur.

Conf. Softw. Maint. Reengineering, CSMR, 2007, pp. 233–242.
[26] S. Panda and D. P. Mohapatra, “Application of hierarchical slicing to

regression test selection of Java programs,” in Workshop on Advanced

Model Based Software Engineering (WAMBSE) of 6th India Software
Engineering Conference (ISEC) 2013, vol. 11, no. 2, pp. 3–20, 2013.

[27] S. Panda and D. P. Mohapatra, “ACCo: a novel approach to measure

cohesion using hierarchical slicing of Java programs,” Innov. Syst.
Softw. Eng., vol. 11, no. 4, pp. 243–260, 2015.

[28] N. Walkinshaw, M. Roper, and M. Wood, “The Java system

dependence graph,” in Proc. - 3rd IEEE Int. Work. Source Code Anal.
Manip. SCAM 2003, vol. 0, pp. 55–64, 2003.

[29] S. K. Behera, “Slicing of object-oriented and aspect-oriented

programs,” M.S thesis, Comp. Sci. and Eng. Dept., National Inst. of
Technology Rourkela, India, 2014.

[30] Shu, B. Sun, T. A. D. Henderson, and A. Podgurski, “JavaPDG: a new

platform for program dependence analysis,” in Proc. - IEEE 6th Int.
Conf. Softw. Testing, Verif. Validation, ICST 2013, 2013, pp. 408–415.

[31] M. Weiser, “Programmers use slices when debugging,” Commun.

ACM, vol. 25, no. 7, pp. 446–452, 1982.
[32] Tip, “A survey of program slicing techniques,” J. Program. Lang., vol.

5399, no. 3, pp. 1–65, 1995.

[33] K. L. N. Eranki and K. M. Moudgalya, “Program slicing technique: a
novel approach to improve programming skills in novice learners,” in

Proceedings of the 17th Annual Conference on Information

Technology Education, 2016, pp. 160–165.

[34] M. Lillack, M. Johannes, and U. W. Eisenecker, “Program slicing to

understand software generators,” in Proceedings of the 5th

International Workshop on Feature-Oriented Software Development,
2013, pp. 41–48.

[35] E. Hosnieh and H. Haga, “A novel approach to program comprehension

process using slicing techniques,” J. Comput., vol. 11, no. 5, pp. 353–
365, 2016.

[36] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in

Proceeding of the 33rd international conference on Software

engineering - ICSE ’11, 2011, pp. 746-755.
[37] O. Chebaro and N. Kosmatov, “Program slicing enhances a verification

technique combining static and dynamic analysis,” in Proceedings of

the 27th Anuual ACM Symposium on Applied Computing (SAC '12),
2012, pp. 1284–1291.

[38] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand, “Combining

static analysis and test generation for c program debugging,” in

International Conference on Tests and Proofs, 2010, pp. 94–100.

[39] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand, “The SANTE

tool: value analysis, program slicing and test generation for c program
debugging,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 6706 LNCS, pp. 78–83, 2011.
[40] W. Wen, “Software fault localization based on program slicing

spectrum,” in 34th Int. Conf. Softw. Eng.(ICSE '12), 2012, pp. 1511–

1514.
[41] W. Wen, B. Li, X. Sun, and J. Li, “Program slicing spectrum-based

software fault localization*,” in Proceedings of the International

Conference on Software Engineering and Knowledge Engineering
(SEKE ’11), 2011, pp. 213–218.

[42] Surendran and P. Samuel, “Fault localization using forward slicing

spectrum,” in Proceedings of the 2013 Research in Adaptive and
Convergent Systems. ACM, 2013, pp. 397–398.

[43] S. A. Bohner, “Extending software change impact analysis into COTS

components,” in Proceedings. 27th Annual NASA Goddard/ IEEE
Software Engineering Workshop (SEW'02), 2002, pp. 175–182.

[44] X. Sun, B. Li, C. Tao, and S. Zhang, “HSM-based change impact

analysis of object-oriented java programs,” Chinese J. Electron., vol.
20, no. 2, pp. 247–251, 2011.

[45] Li, X. Fan, J. Pang, and J. Zhao, “Model for slicing java programs

hierarchically,” J. Comput. Sci. Tech.(Jcst), vol. 19, no. 6, pp. 848–858,
2004.

[46] F. Servant and J. A. Jones, “History slicing,” in 26th IEEE/ACM Int.

Conf. Autom. Softw. Eng. (ASE 2011), pp. 452–455, 2011.
[47] W. Alomari, M. L. Collard, and J. I. Maletic, “A slice-based estimation

approach for maintenance effort,” in Proceedings - 30th International

Conference on Software Maintenance and Evolution, ICSME 2014,
2014, pp. 81–90.

[48] Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing droids:

program slicing for smali code,” in 28th Annu. ACM Symp. Appl.
Comput.(SAC ’13), 2013, pp. 1844–1851.

