

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 111

A Reusability Assessment of UCP-Based Effort

Estimation Framework using Object-Oriented

Approach

Zhamri Che Ani1, Shuib Basri2 and Aliza Sarlan2
1School of Computing, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia.

2Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak, Malaysia.

zhamri@uum.edu.my

Abstract—Software effort estimation has become one of the

most important concerns of software industries and Use Case

Points (UCP) is seen as one of the most popular estimation

models for object-oriented software development. Since year

2005, more than 10 UCP-based effort estimation techniques

have been proposed either to give more options or to enhance

the capability of UCP. However, there is no guidance for

software practitioners to develop a quality UCP-based effort

estimation applications. Therefore, we have proposed a new

design framework for UCP-based technique to promote

reusability in developing software applications. This paper will

experiment and provide evidence showing that the framework

achieved a good quality design using Quality Model for Object-

oriented Design (QMOOD). The results showed that the

framework has met five quality attributes and good to be reused

as a guideline at the early stages of software development.

Index Terms—Estimation; Reusability; Software Effort Use

Case Points; QMOOD.

I. INTRODUCTION

Software effort estimation is a process to gain a general

understanding of the effort required to develop a software

system or software product. There are many models that have

been proposed as basis of estimating effort, schedule and cost

of a software project [1, 2]. These models, which include the

Parametric Review of Information for Costing and

Evaluation—Software (PRICE-S), Software Evaluation and

Estimation of Resources—Software Estimating Model

(SEER-SEM), Putnam Software LIfecycle Management

(SLIM), Constructive Cost Model (COCOMO), Use Case

Points (UCP), ObjectMetrix, and many more. However, some

estimation methods are not designed to work well with

object-oriented technology that introduces inheritance and

actively encourages reuse strategies.

UCP has gained popularity among researchers and

software practitioners because of the simplicity of use in

estimating software effort. However, due to the evolution of

object-oriented paradigm and the rapid changes in software

technology, effort estimation is seen to be more flexible to

adapt new environments. Since then, many techniques have

been proposed to increase the capability of the basic UCP.

Based on previous studies, there are 14 UCP-based estimation

techniques have been proposed and most probably there are

many more techniques to come in future. The techniques are

Use Case Points (UCP) [3], Adapted Use Case Points

(AUCP) [4], Industrial use of Use Case Points (IUCP) [5],

UCPm [6], Use Case Size Points (USP) [7], Fuzzy Use Case

Size Points (FUCP) [7], Transactions [8], Paths [8], Extended

Use Case Points (EUCP) [9], Extended Use Case Points (e-

UCP) [10], Simplified Use Case Points (SUCP) [11],

Interactive Use Case Points (iUCP) [12], Revised Use Case

Point (Re-UCP) [13] and Advancement of UCP (AUCP) [14].

Based on the evolution of UCP as mentioned above, it

shows that UCP-based techniques are still relevant in today’s

software effort estimation and there is a need of systematic

tool supports to ensure the credibility of the models in

producing accurate results. Currently, most of the techniques

were tested using MS Excel. The main problem of using MS

Excel is it does not support the reusability of the object model.

Therefore, it is impossible to extend the development as a

proper application in line with the growth of those new

techniques.

So far, there is no guidance for software practitioners to

develop a quality UCP-based effort estimation applications.

Therefore, we have proposed a new UCP-based framework to

promote reusability in developing UCP-based software

applications. Reusability needs to be considered before

developing good software application because a reusable

software is more stable in terms of reduced change density

when compared to a non-reusable application [15]. Without

reusability, software applications are very hard to maintain or

extent [16, 17, 18, 19].

To ensure the proposed framework is good enough in terms

of reusability, this paper will experiment and provide

evidence showing that the framework has achieved a good

quality design using Quality Model for Object-oriented

Design (QMOOD). QMOOD was selected because it is the

most complete, comprehensive, and supported suite, and has

been validated against numerous real-world projects [20].

The remainder of the paper is structured as follows. Section

II provides some basic concept of UCP-based framework.

Section III describes the research methodology. Result and

discussion are discussed in Section IV. Section V includes

conclusion and suggestion for future work.

II. THE UCP-BASED FRAMEWORK

A new UCP-based framework for designing software effort

estimation has been developed using UML notation [21]. The

framework captures the important aspects of the UCP-based

techniques to visualize and experiment the possible designs

later. Overall, there are 19 classes and 12 of them are the key

classes. In order to easily maintain the framework, generally,

the framework is divided into three main areas: project size,

Journal of Telecommunication, Electronic and Computer Engineering

112 e-ISSN: 2289-8131 Vol. 9 No. 3-5

project complexity and risk factors. Project size consists of

six classes. Five of the classes are compulsory while another

one is the extendible class. Project complexity includes four

compulsory classes as well as four extendible classes.

Meanwhile, risk factor only has one compulsory and two

extendible classes. The details of the proposed framework are

illustrated in Figure 1.

Figure 1: A framework for designing UCP-based effort estimation

As we can see in Figure 1, the main components of the

framework are classes and the relationships such as

association and generalization. The classes describe the

concept from the domain knowledge where all software

engineers may understand and agree on them. Classes can be

described at various levels. In the early stages of design, the

framework captures more logical aspects of the problem. In

the later stages, the framework also captures design decisions

and implementation details. In this study, classes are drawn

as rectangles.

Relationships among classes are drawn as paths connecting

class rectangles. Generalization shows the relationship

between a more general description and a more specific

variety of the general thing which is used for inheritance. In

this case, eleven classes are inherited from their parent

classes. This means that this framework can be reused by new

UCP-based techniques of software effort estimation. For

instance, AUCP UAW class is extended from Unadjusted

Actor Weight class. Associations carry information about

relationship among objects in a domain knowledge. All main

classes which are captured from nine steps of UCP are

associated with association relationship. This means that

without these classes the effort estimation cannot be done.

III. RESEARCH METHODOLOGY

A number of metrics tools exist such as C and C++ Code

Counter (CCCC), Chidamber & Kemerer Java Metrics

(CKJM), Dependency Finder, Sonar, SourceMonitor, JHawk,

IBM Rational Logiscope and McCabe QA [22]. However,

none of the tools capable of analyzing the quality of the Java

source codes based on QMOOD. Therefore, in order to ensure

the proposed UCP-based framework has a good quality and

can be easily reused at the early stages of product

development, we have developed a new supporting tool to

analyze the product metrics. The tool was developed using

Java programming language based on the theoretical formula

of Quality Model for Object-oriented Design (QMOOD)

[23]. Figure 2 illustrates the process of analyzing the quality

metrics.

Figure 2: Process for assessing quality of UCP-based framework

In this study, basically we have divided the process into two

phases. Phase 1 is about how to obtain the metrics whereas

phase 2 is more on how to analyze the metrics and produce

the quality results.

In phase 1, Metrics-1.3.6 [24], an Eclipse IDE’s plug-in

was used to measure the framework. Since it is an eclipse

plug-in, the UCP-based framework which has 1030 line of

source codes with 5 packages and 23 classes, was required to

be imported into eclipse IDE. In our case, eclipse IDE version

4.2 (Juno) was used to compile the source codes and the codes

must be compiled successfully before can be analyzed by

Metrics-1.3.6. Then the obtained metrics was exported to

XML file. XML file was used as a medium because it is

independence and easier to be transferred into other

platforms.

In phase 2, Java programming language was used to

develop an automation tool support for analyzing the

obtained metrics and producing the quality results. The tool

will extract metrics from XML file using DOM parser and

then analyze using QMOOD computation formula. QMOOD

is a comprehensive quality model that establishes a clearly

defined and empirically validated model to assess six quality

attributes namely reusability, flexibility, understandability,

functionality, extendibility and effectiveness, based on the

framework of quality models defined in [25, 26]. It identifies

11 design properties for the object-oriented paradigm. The

detail definition of design properties is described in Table 1.

QMOOD consists of six equations that establish

relationship between six quality attributes and 11 design

properties. The mathematical formulas are explained in Table

2.

QMOOD has been referred by many researchers [27, 28,

29, 30, 31]. However, due to some limitations of Metrics-

1.3.6, the technique of metrics generation was adopted from

Chawla and Chhabra [32]. The customization can be made to

meet particular quality requirements [33]. The step of

replacing metrics is described in Table 3.

Table 1

Design Properties Definitions [23]

Design Property Definition

Design Size
A measure of the number of classes used in the

design.

A Reusability Assessment of UCP-Based Effort Estimation Framework using Object-Oriented Approach

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 113

Design Property Definition

Hierarchies

Hierarchies are used to present different
generalization-specialization concepts in a design.

It is a count of the number of non-inherited classes

that have children in a design.

Abstraction

A measure of the generalization-specialization

aspect of the design. Classes in a design which

have one or more descendants exhibits this
property of abstraction.

Encapsulation

Defined as the enclosing of data and behavior

within a single construct. In object-oriented
designs, the property specifically refers to

designing classes that prevent access to attribute

declarations by designing them to be private, thus
protecting the internal representation of the

objects.

Coupling

Defines the interdependency of an object on other
objects in a design. It is a measure of the number

of other objects that would have to be accessed by

an object for that object to function correctly.

Cohesion

Assesses the relatedness of methods and attributes

in a class. Strong overlap in the method

parameters and attribute types is an indication of
strong cohesion.

Composition

Measures the 'part-of', 'has', 'consists-of' or 'part-

whole' relationships, which are aggregation
relationships in an object-oriented design.

Inheritance

A measure of the 'is-a' relationship between

classes. This relationship is related to the level of
nesting of classes in an inheritance hierarchy.

Polymorphism

The ability to substitute objects whose interfaces
match for one another at run-time. It is a measure

of services that are dynamically determined at run-

time in an object.

Messaging

A count of the number of public methods that are

available as services to other classes. This is a

measure of the services that a class provides.

Complexity

A measure of the degree of difficulty in

understanding and comprehending the internal
and external structure of classes and their

relationships.

Table 2
Computation Formulas for Quality Attributes [23]

Quality Attributes Index Computation Equation

Reusability
-0.25 * Coupling + 0.25 * Cohesion + 0.5 *

Messaging + 0.5 * Design Size

Flexibility
0.25 * Encapsulation - 0.25 * Coupling + 0.5
* Composition + 0.5 * Polymorphism

Understandability

-0.33 * Abstraction + 0.33 * Encapsulation -

0.33 * Coupling + 0.33 * Cohesion - 0.33 *

Polymorphism - 0.33 * Complexity - 0.33 *
Design Size

Functionality

0.12 * Cohesion + 0.22 * Polymorphism +

0.22 * Messaging + 0.22 * Design Size + 0.22
* Hierarchies

Extendibility
0.5 * Abstraction - 0.5 * Coupling + 0.5 *
Inheritance + 0.5 * Polymorphism

Effectiveness

0.2 * Abstraction + 0.2 * Encapsulation + 0.2

* Composition + 0.2 * Inheritance + 0.2 *
Polymorphism

IV. RESULT AND DISCUSSION

After successfully compiling the source codes, the new

supporting tool as mentioned before was used to analyze the

statistics. Table 4 presents the descriptive statistics of metrics

computed by the tool. In this study, the Z-value was

calculated by applying the following formula: Z-value =

(Max-Avg)/(Std-Dev).

Based on the statistics obtained in Table 4 and after

applying the formula mentioned in Table 2, Figure 3 shows

the quality attributes of UCP-based framework.

Table 3

QMOOD Design Metrics & Substitute Metrics [32]

Design

Property
(QMOOD)

Design Metrics

(QMOOD)

Equivalent Metric

Computed by
Metrics-1.3.6

Construct

Coupling
Direct Class

Coupling (DCC)

Efferent Coupling

(EC)
Package

Cohesion

Cohesion
Among Methods

of Classes

(CAM)

* Lack of

Cohesion of
Methods (LCOM)

Class

Messaging
Class Interface

Size (CIS)

Number of

Methods (NOM)
Class

Design Size
Design Size in
Classes (DSC)

Number of Classes
(NOC)

Package

Encapsulation
Data Access

Metric (DAM)
1

Composition

Measure of

Aggregation

(MOA)

Number of

Attributes (NOF)
Class

Polymorphism

Number of

Polymorphic

Methods (NOP)

Number of

Overridden

Methods (NORM)

Class

Abstraction

Average Number

of Ancestors
(ANA)

Abstractness
(RMA)

Package

Complexity
Number of

Methods (NOM)

Weighted Methods

per Class (WMC)
Class

Hierarchies

Number of

Hierarchies

(NOH)

Depth of

Inheritance Tree

(DIT)

Class

Inheritance

Measure of

Functional

Abstraction
(MFA)

* [∑ NORM /

NOM * 100]
Class

Table 4

Descriptive Statistics of UCP-Based Framework

Metrics Max Avg
Std-

Dev
Sum

Z-value

(normalized)

CE 4 0.8 1.6 - 2.0
*Cohesion

(1/LCOM)
0.667 0.029 0.136 - 4.69

NOM 18 4.826 4.575 111 2.88
NOC 8 4.6 2.47 23 1.41

*Encapsulation

=1
- - - - #

NOF 13 2.522 3.999 58 2.62

NORM 1 0.087 0.282 2 3.24

RMA 0.333 0.117 0.145 - 1.49
WMC 18 5.31 4.6 118 2.8

DIT 2 1.478 0.5 - 1.04
*Inheritance

=6.61
- - - - #

Figure 3: Quality attributes of UCP-based framework

The result shows that the UCP-based framework has

achieved a good quality design. Out of six quality attributes

Journal of Telecommunication, Electronic and Computer Engineering

114 e-ISSN: 2289-8131 Vol. 9 No. 3-5

defined in Table 2, only one attribute has negative value.

Understandability which is not plotted in the chart, is the only

quality attribute that has a negative value, -1.73. However,

due to the small negative value which is less than -2, this

means less efforts are needed to maintain the UCP-based

software projects [23]. Meaning that the framework is not too

hard to learn and understand.

On the positive side, the most interesting finding is that the

new UCP-based framework is easily to be reused. This

finding gives a major impact to the overall quality of the

software products. Overall, the quality value of UCP-based

framework is 10.52. Since this is the first attempt to assess

the framework, the achieved values still need to be verified

with several replication studies in order to set the high-quality

standard of reusability for this framework.

V. CONCLUSION AND FUTURE WORK

This study presents an evaluation of UCP-based framework

to assess the reusability of the design. The framework was

analyzed using QMOOD to find out what are the levels of

reusability quality attribute to be achieved. The results show

that the framework has met five quality attributes and

reusability is the highest. This means that the framework is

good enough to be reused as a guideline especially at the early

stages of the UCP-based software development. In other

words, those who are planning to develop new UCP-based

software products, these results can be used as a benchmark

to improve the quality of their designs. However, we believe

that several replication studies need to be done to verify these

results in order to set the high-quality standard of reusability

for this framework. For future research, we also plan to

further investigate on this topic by using other object-oriented

design metrics and make comprehensive comparison against

these results.

REFERENCES

[1] B. Boehm, C. Abts, and S. Chulani, “Software development cost

estimation approaches: A survey,” Annals of Software Engineering,

vol. 10, pp. 177–205, 2000.
[2] B. Boehm, “Software engineering economics,” Software Engineering,

IEEE Transactions, vol. 10, pp. 4–21, 1984.

[3] G. Karner, “Resource estimation for objectory projects,” Objective

Systems SF AB, vol. 17, 1993.

[4] P.Mohagheghi, B.Anda, and R.Conradi, “Effort estimation of use cases

for incremental large-scale software development,” in Proceedings of
the 27th IEEE International Conference on Software Engineering,

2005, pp. 303–311.

[5] E. Carroll, “Estimating software based on use case points,” in
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, San

Diego, CA, USA, 2005, pp. 257–265.
[6] S.Diev, “Use cases modeling and software estimation: Applying use

case points,” ACM SIGSOFT Software Engineering Notes, vol. 31, no.

6, pp. 1–4, 2006.
[7] M. R. Braz, and S. R. Vergilio, “Software effort estimation based on

use cases,” in Proceedings of the 30th IEEE Annual International

Computer Software and Applications Conference (COMPSAC’06),
vol. 1. 2006, pp. 221–228.

[8] G. Robiolo, C. Badano, and R. Orosco, “Transactions and paths: two

use case based metrics which improve the early effort estimation,” in
Proceedings of the 3rd IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM), 2009, pp. 422–425.

[9] W. Fan, Y. Xiaohu, Z. Xiaochun, and C. Lu, “Extended use case points
method for software cost estimation,” in International Proceedings of

the Conference on Computational Intelligence and Software

Engineering. IEEE, 2009, pp. 1–5.
[10] K. Periyasamy, and A. Ghode, “Cost estimation using extended use

case point (e-ucp) model,” in Proceedings of the International

Conference on Computational Intelligence and Software Engineering.

IEEE, 2009, pp. 1–5.
[11] M. Ochodek, J. Nawrocki, and K. Kwarciak, “Simplifying effort

estimation based on use case points,” Information and Software

Technology, vol. 53, no. 3, pp. 200–213, 2011.
[12] N. Nunes, L. Constantine, and R. Kazman, “iucp: Estimating

interactive-software project size with enhanced use-case points,” IEEE

Software, vol. 28, no. 4, pp. 64–73, 2011.
[13] M. M. Kirmani, and A. Wahid, “Revised use case point (re-ucp) model

for software effort estimation,” International Journal of Advanced

Computer Science and Applications, vol. 6, no. 3, pp. 65–71, 2015.
[14] A. Srivastava, S. Singh, and S. Q. Abbas, “Advancement of ucp with

end user development factor: Aucp,” International Journal of Software

Engineering & Applications (IJSEA), vol. 6, no. 2, pp. 1–10, 2015.
[15] A. Gupta, J. Li, R. Conradi, H. Rønneberg, and E. Landre, “Change

profiles of a reused class framework vs. two of its applications,”

Information and Software Technology, vol. 52, no. 1, pp. 110–125,
2010.

[16] M. Grand, Java enterprise design patterns. Wiley, 2002. 
[17] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:

Towns, Buildings, Construction. Oxford University Press, USA, 1977,

vol. 2. 
[18] P. Kuchana, Software Architecture Design Patterns in Java. CRC

Press, 2004. 

[19] C. Lasater, Design patterns. Jones & Bartlett Learning, 2006. 
[20] M. El-Wakil, A. El-Bastawisi, M. Boshra, and A. Fahmy, “Object-

oriented design quality models a survey and comparison,” in

Proceedings of the 2nd International Conference on Informatics and

Systems (INFOS 2004), 2004. 
[21] H. Gomaa, Software Modeling and Design: UML, Use Cases, Patterns,

and Software Architectures. Cambridge University Press, 2011. 
[22] M. K. Chawla and I. Chhabra, “A quantitative framework for integrated

software quality measurement in multi-versions systems,” in

Proceedings of the International Conference on Internet of Things and

Applications (IOTA). IEEE, 2016, pp. 310–315. 
[23] J. Bansiya and C. Davis, “A hierarchical model for object-oriented

design quality assessment,” IEEE Transactions on Software

Engineering, vol. 28, no. 1, pp. 4–17, 2002. 
[24] “Metrics 1.3.6,” January 2016. Available at http://metrics.

sourceforge.net/ 
[25] R. G. Dromey, “A model for software product quality,” IEEE

Transactions on Software Engineering, vol. 21, no. 2, pp. 146–162,

1995.

[26] R. Dromey, “Cornering the chimera,” IEEE Software, vol. 13, no. 1,

pp. 33–43, 1996. 
[27] D. Arora, P. Khanna, A. Tripathi, S. Sharma, and S. Shukla, “Software

quality estimation through object oriented design metrics,”

International Journal Computer Science and Network Security, vol. 11,

no. 4, pp. 100–104, 2011.
[28] V. Yadav, and R. Singh, “Predicting design quality of object-oriented

software using uml diagrams,” in Proceedings of the 3rd IEEE

International Advance Computing Conference (IACC), 2013, pp.

1462–1467.

[29] G. Samarthyam, G. Suryanarayana, T. Sharma, and S. Gupta, “Midas:

a design quality assessment method for industrial software,” in
Proceedings of the 2013 International Conference on Software

Engineering. IEEE Press, 2013, pp. 911–920.  
[30] M. K. Chawla, and I. Chhabra, “Implementation of an object-oriented

model to analyze relative progression of source code versions with

respect to software quality,” International Journal of Computer

Applications, vol. 107, no. 10, 2014.  
[31] P. K. Goyal, and G. Joshi, “Qmood metric sets to assess quality of Java

program,” in Proceedings of the IEEE International Conference on
Issues and Challenges in Intelligent Computing Techniques (ICICT),

2014, pp. 520–533.
[32] M. K. Chawla, and I. Chhabra, “Capturing Object-oriented software

metrics to attain quality attributes – A case study,” International

Journal of Scientific and Engineering Research, vol. 4, pp. 359–363,

2013. 
[33] S. Barney, K. Petersen, and M. Svahnberg, A. Aurum and H. Barney,

“Software quality trade-offs: A systematic map,” Information and
Software Technology, vol. 54, no. 7, pp. 651–662, 2012.

