

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 89

Programming Similarity Checking System

Ahmad Shukri Mohd Noor, Farizah Yunus, Hoo Jian Liang and Nur F. Mat Zin

School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,

21030 Kuala Nerus, Terengganu, Malaysia.

ashukri@umt.edu.my

Abstract—Nowadays, with the rapid use of Internet, the

student becomes easy to copy information with just click over

the website. The opportunity to make a copy of someone else’s

ideas or code without any citation of the original owner is known

as plagiarism. Phenomena of plagiarism has become a serious

issue among students where students are commit to copy

information in class, whether it is plain text or source code.

However, the plagiarism can be accidentally, especially for the

source code. In a programming class, students study similar

material of textbook and attended to the same class. Thus, it is

hard to detect and determine the plagiarisms that occur among

students. Therefore, plagiarism detection play an important

roles in detecting any copy of information including source code.

In this paper, the Programming Similarity Checking System has

been proposed which is a source code plagiarism detection

system in helping Information Technology’s (IT) lecturer for

identifying plagiarism between student’s programming.

Students are allowed to upload file online and lecturers are able

to check the plagiarism results among students. As a result,

plagiarism among student can be minimized by using proposed

Programming Similarity Checking System.

Index Terms—Copy Information; Plagiarism Detection;

Similarity Checking System; Source Code.

I. INTRODUCTION

Plagiarism is a global problem that occurs in many different

area of our life including at universities. The widespread use

of computers and the rapid development of technologies such

as Internet have made it easier to plagiarize the work of

others. Most cases of plagiarism are found in academia,

where documents are typically essays or reports. However,

plagiarism can be found in virtually any field, including

scientific papers, art designs, and source code. Plagiarism can

be classified into several categories such as documents,

source code, algorithm and others. But, this article focuses on

the problem of determining the similarity of the source codes.

Source code is any human-readable computer language. A

source code programming can be written in different

programming languages, such as Java, C, C++, PHP and etc.

Software and its accompanying source code, is typically falls

within one of two licensing paradigms: open source and close

source. If the software is open source, the source code is free

to use, distribute, modify and study. But, if the software is

close source, which mean that source code is kept secret, or

is privately owned and restricted.

Plagiarism in source code can be defined as to take or

copying the whole or the parts of source code written by other

people and this plagiarism is difficult to detect [1].

Involvement of students in source code plagiarism often

happened in programming class that contribute with various

reasons such as assignment submission, programming

phobia, inadequate access to computer programming and

time constraint due to time management failure. As a

consequence, it has become a common practice among

student to reuse the source code because it is difficult and

impossible to detect plagiarism manually.

Therefore, this paper proposed developing a Programming

Similarity Checking System based on web-based by applying

JSP application architecture. So that, students are allowed to

upload the file via online system and lecturers are able to

check the similarity results of source code among students. It

is designed to detect and thus discourage the students to copy

exercise programs in programming education. On the other

words, this system is an automatic system in helping

Information Technology’s (IT) lecturer determining

similarity between students’ source codes.

The rest of this paper is organized as follows: section II

discusses the related works of plagiarism detection system,

section III and IV discusses the system design and system

implementation respectively and section V discuss on

conclusion and future works.

II. RELATED WORKS

Detection of plagiarism can be either manual or software-

assisted. Manual detection requires substantial effort and

excellent memory, and is impractical in cases where too many

documents must be compared, or original documents are not

available for comparison. Software-assisted detection allows

vast collections of documents to be compared to each other,

making successful detection much more likely. Meanwhile,

source code plagiarism detection only focuses on the

plagiarism of source codes. A distinctive aspect of source-

code plagiarism is that there are no essay mills. Since most

programming assignments expect students to write programs

with very specific requirements, it is very difficult to find

existing programs that already meet them.

According to Roy and Cordy [2], the algorithms can be

classified as based on either:

i. Strings – look for exact textual matches of segments,

for instance five-word runs.

ii. Tokens – as with strings, but using a lexer to convert

the program into tokens first. This discards

whitespace, comments, and identifier names, making

the system more robust to simple text replacements.

iii. Parse Trees – build and compare parse trees. For

instance, tree comparison can normalize conditional

statements, and detect equivalent constructs as similar

to each other.

iv. Program Dependency Graphs (PDGs) – captures the

actual flow of control in a program, and allows much

higher-level equivalences to be located, at a greater

expense in complexity and calculation time.

v. Metrics – metrics capture 'scores' of code segments

according to certain criteria; for instance, “the number

Journal of Telecommunication, Electronic and Computer Engineering

90 e-ISSN: 2289-8131 Vol. 9 No. 3-5

of loops and conditionals”, or “the number of different

variables used”. Metrics are simple to calculate and

can be compared quickly, but can also lead to false

positives: two fragments with the same scores on a set

of metrics may do entirely different things.

vi. Hybrid approaches – for instance, parse trees + suffix

trees can combine the detection capability of parse

trees with the speed afforded by suffix trees, a type of

string-matching data structure.

Most of the researchers have been proposed various

plagiarism approaches for detecting source code written in C,

C++ or JAVA language [3]. Each approaches focuses on

certain characteristics of code plagiarism. One of the

approaches that suitable for detecting plagiarism in

programming course is the structure-based method [4], which

mostly use tokenization and string matching algorithm to

measure similarity [5]. Besides, the type of token formation

reduces the dependency on a particular language [6]. Some of

existing plagiarism detectors that employ structured-based are

MOSS [7], YAP3 [8], JPLAG [9], PDE4Java [10] and MOSS-TAP

[11].
Measure of Software Similarity (Moss) is an automatic

system for determining the similarity of programs [7]. The

algorithm behind moss is a significant improvement over

other cheating detection algorithms. But Moss is not a system

for completely automatically detecting plagiarism. It is still

up to a human to go and look at the parts of the code that Moss

highlights and make a decision about whether there is

plagiarism or not. Currently, MOSS can analyze code written

in eight different programming languages, including C, C++,

Java, etc and two platforms which are UNIX and Windows

Moss is being provided in the hope that it will benefit the

educational community. Moss is fast, easy to use, and free.

The author in [8] proposed a plagiarism detector of Yet

Another Plague (YAP) series. YAP is a tool that currently has

3 implementations, where each implementation using a

fingerprinting methodology with different algorithms. The

implementations have a tokenizing and a similarity checking

phase. The last version of YAP is YAP3 that uses the

Running-Karp-Rabin Greedy-String-Tiling (RKR-GST)

algorithm.

P. Lutz introduced JPlag [9] which is a system that finds

similarities among multiple sets of source code files. JPlag

works by converting each program into a stream of canonical

tokens and then trying to cover one such token string by

substrings taken from the other (string tiling). It currently

support Java, C#, C, C++, Scheme, and natural language text.

But, it does not compare to the internet. It is designed to find

similarities among the student solutions, which is usually

sufficient for computer programs. JPlag is free but users are

required to create an account. Besides, JPlag has a powerful

graphical interface for presenting its results.

A. Jadalla proposed the Plagiarism Detection Engine for

Java (PDE4Java) [10] which detects code-plagiarism by

applying data mining techniques. The engine consists of three

main phases; Java tokenization, similarity measurement and

clustering. PDE4Java has one extra feature, which is adaptive

reporting of the clusters of suspicious plagiarized programs.

The MOSS Tool for Addressing Plagiarism at Scale

(MOSS-TAPS) [11] which is introduced by D. Sheahen

proposed repackages and organizes submissions for

plagiarism detection for courses that repeat a coding design

assignment from semester to semester. The basic MOSS

script is guaranteed to work in UNIX, but not necessarily on

other platforms. MOSS-TAPS provides persistent

configuration, supports a mixture of software languages and

file organizations, and is implemented in pure Java for cross-

platform compatibility.

Even though all the above works proposed plagiarism

detectors, but there are still have a drawbacks in order to meet

the requirement of users. Thus, this paper proposed the

Programming Similarity Checking System based on web-

based by applying JSP application architecture to allow

students to upload the file via online system and lecturers are

able to check the similarity results of source code among

students easily.

III. SYSTEM DESIGN

Programming Similarity System implements prototyping

as a software development process to help anticipate changes

that may be required in the development process. Prototyping

is chosen because prototyping will faster to provide a system

interaction to user. Therefore, it will help software developer

to quickly refine real requirements needed by the user. In

addition, confusing or difficult functions can be identified and

errors can be detected much earlier.

Figure 1 shows the process model for prototype

development. Prototyping methodology has 4 main stages.

The first stage is establishing prototype objectives. In this

stage, elicitation and gathering technique has been used for

gathering information or requirement. Besides, the project

team needs to meet stakeholder for fully understanding about

this project. Second stage is defining prototype functionality.

During this stage, it involves requirement analysis and system

design. System analyst needs to identify functional and non-

functional system requirement before started the project.

Moreover, system analyst also needs to identify the

relationship that exists between the entity types, and

transform it from conceptual database design to logical

database design and physical database design. Next is to

develop a prototype. At this stage, a prototype will be

developed by deciding what to put into and what to leave out

of the prototype system for reducing prototyping costs and

accelerate the delivery schedule. The stage of development

will be repeated if the development of a prototype is not

successful. The last stage is to evaluate prototype. In this

stage system developer needs to test a complete system by

using the module and subsystem testing, and perform unit

testing. At the end, system developer will deliver a complete

system that fulfills user and system requirements.

A. System Architecture

In order to achieve the system robustness, flexibility and

resistance to potential change, this system applied three-tier

architecture. This architecture consists of three layers, which

are the user interface layer, the application logic layer and the

database layer. The three-tier architecture aims to solve a

problem of repeated design and development. Besides, this

architecture also aim to make the application development

work more easily and efficiently. The first tier which is

interface layer is run on the end-user’s computer; the

Graphical User Interface (GUI) of browser is using

HTML/HTML 5, CSS, JavaScript, Ajax, and JSP. This tier

offers the user a friendly and convenient entry to

communicate with the system. The second tier is the

application logic layer which performs the controlling

functionalities and manipulating the underlying logic

Programming Similarity Checking System

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 91

connection of information flows. Finally, the data modeling

job is conducted by the database layer, which can store, index,

manage and model information needed for this application.

Database layer is run on the database server; the

communication with the database is through Java Database

Connectivity (JDBC), whereas Database Management

System (DBMS) which stores the data required by the middle

tier.

Start

Establish prototype
objectives

Define prototype
functionality

Develop
prototype

Complete the
development

Evaluate prototype

End

YES

NO

Figure 1: Process of prototype development

B. System Analysis and Design

The purpose of the system analysis and design is to show

how the system will be implemented during implementation.

System analysis is the process of gathering and interpreting

facts, diagnosing problems, and using the information to

recommend improvements to the system. System design is

the process of defining the architecture, components,

modules, interface and data for system to satisfy specified

requirements.

Figure 2 shows the class diagram for Programming

Similarity Checking System. Class diagram consists of

classes and represent the relationship between class entities.

Figure 3 represents the process flow of similarity

calculation which is a main part of the programming

similarity checking system. This process consist of six steps

which are upload file, lexical analysis, 4-grams

representation, comparator, calculator and similarity.

Figure 2: RECs for Programming Similarity Checking System

Upload File

Calculator Comparator

4-grams

Representation

Lexical

Analysis

Similarity

Figure 3: Process flow of similarity calculation

The first step for similarity calculation is upload a file that

consists of source codes which is to compare with the existing

source codes. The second process is lexical analysis, which is

the process of converting a sequence of characters into a

sequence of tokens as shown in Table 1 for the example of

source code “int a=1”. The token is a group of characters

having a collective meaning, meanwhile lexeme is a

particular instant of token. The next process is 4-gram

representation which is a process of break that sequence of

token into smaller blocks as shown in Table 2. From Table 2,

each new token consists of 4 tokens from the original for 4-

gram tokens.

Table 1
Converting Process of Lexical Analysis

Token Type Lexeme

Data_type int
Identifier a

Operator =

Numeric 1
Separator ;

Table 2

Process of 4-grams Representation

IDs Token Type Lexeme
4-gram

Representation

2 Data_type int 2374
3 Identifier a 3748

7 Operator = 7483
4 Numeric 1 4838

8 Separator ; 8389

Then, the comparator component will compare the source

code to check the similarity as shown in Table 3. From both

of the source codes, the comparator detects the similarity of

[2374| int, 7483| =, 8237| ;]. After that, the calculator will

calculate the percentage of similarity based on Figure 4 by

using equation (1).

Journal of Telecommunication, Electronic and Computer Engineering

92 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Table 3

Process of Comparator for Two Source Code

Programming 1

int a = 1;

System.out.printIn(“Hello”);

Programming 2

int b = 1;

String a = “Hello”;

Lexeme
4-gram

Representation
Lexeme

4-gram

Representation

int 2374 int 2374

a 3748 b 3748

= 7483 = 7483
1 4838 1 4833

; 8389 ; 8337

System.
out.

printIn

3898 String 3379

(8988 a 3798
“hello” 9882 = 7982

) 8823 “hello” 9823

; 8237 ; 8237

A B C

Programming 1 Programming 2

Figure 4: Calculation of similarity source code for two different

programming

𝑆𝑖𝑚𝑙𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 1 ∩ 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 2

𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 1 ∪ 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 2

=
𝐵

𝐴 + 𝐵 + 𝐶
 × 100%

 × 100%
(1)

where: A = total number of blocks appeared in programming

1 but not in programming 2

 B = total number of blocks appeared in programming

1 and programming 2

 C = total number of blocks appeared in programming

2 but not in programming 1

IV. SYSTEM IMPLEMENTATION

The implementation is the most important phase in the

development process. The implementation phase is carried by

referring to the design phase to produce an organized user-

interface in various aspects.

Figure 5 shows the system menu hierarchy of the

Programming Similarity Checking System. The top level

items are the most general which is login menu and lower

levels are increasingly specific such as report menu.

Figure 5: System Menu Hierarchy of Programming Similarity Checking

System

In the implementation part of the system, description of

module will be explained with the aid of figure in interface

design. Firstly, Programming Similarity Checking System

allow user go to Sign-up Page by clicking sign-up button on

Login Page as shown in Figure 6(a). After that, user can key

in his data in Sign-up Page as presented in Figure 6(b) to

create his own account. While the user had an account, user

can log in to the Programming Similarity Checking System

by clicking login button on Login Page. Once the user

successfully login, user can manage his account. By clicking

on the link of user name allow user go to Edit Page to update

his account and link of logout allow user to logout from the

system as shown in Figure 6(c).

(a)

(b)

(c)

Figure 6: Interface of (a) Login, (b) Sign up and (c) Main page

Programming Similarity Checking System has two types of

users which are lecturer and student. For lecturer, lecturer are

able to create course and add course in Main Page as shown

in Figure 6(c). The different between create course and add

course are create course allow lecturer to manage and create

new course for users to add. Add course are only be able to

add the course which had been created. After click into

Course Page as presented in Figure 7(a), lecturer are able to

manage the course and create folder. Course management as

Programming Similarity Checking System

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 93

illustrated in Figure 7(b) allow lecturer drop course, delete

course and edit course. The difference between drop and

delete course is dropped course can be add back, but deleted

course will delete all the relate data which can’t be add back.

Therefore, delete course can only be done by the course’s

creator. While, Create folder button allow lecturer to create

new folder by setting the deadline.

Figure 7(c) shows check upload window, where lecturer

can click on selected student’s id to view the student record,

download selected file and filter search. While, in check

similarity window in Figure 7(d), lecturer can set the

plagiarism range. For example, plagiarism range set to above

75.00%, then all the similarity results which are above 75%

will be generate in red fonts.

(a)

(b)

(c)

(d)

Figure 7: Interface for lecturer; (a) Course interface (b) Manage course
interface (c) Check upload and (d) Check similarity

Meanwhile, for student as a user, student are allow to add

course at main page which is created by lecturer as shown in

Figure 6(c). Then, after click into Course Page in Figure 8(a),

student are able to drop course and click into the folder. Next,

go to the Folder Page in Figure 8(b). Student are allow to

upload file to the selected folder for similarity checking.

(a)

(b)

Figure 8: Interface for student; (a) Course Page and (b) Upload file

V. CONCLUSION AND FUTURE WORKS

Plagiarism will give a negative impact on the learning

process, especially among students if this issue is not taken as

a serious issue. Source code plagiarism detection focuses on

the problem of determining similarity among the source

codes. Due to the involvement of students in source code

plagiarism often happened in programming class, this paper

proposed Programming Similarity Checking System to

provide a platform for student to upload programming files

and enabling lecturers to check the plagiarisms between

students. As a result, plagiarisms among students can be

minimized and control.

This system has the potential to be expanded and enhance

for the future works. For example, file upload can be support

more format likes pdf format and system can be supported

more programming language such as C.

ACKNOWLEDGMENT

The research was supported by Ministry of Higher

Education of Malaysia (MOHE) for the grant of Fundamental

Research Grant Scheme (FRGS). (Ref:

FRGS/2/2014/ICT07/UMT/02/1).

REFERENCES

[1] D. Luke, D. P. S, S. L Johnson, S. Sreeprabha and E. B. Varghese,

“Software plagiarism detection techniques: A comparative study,”
International Journal of Computer Science and Information

Technologies (IJCSIT), vol. 5, no. 4, pp. 5020-5024, 2014.

[2] C. Roy, J. Cordy, “A survey on software clone detection research,”
Technical Report No. 2007-541, School of Computing Queen’s

University at Kingston Ontario, Canada, pp. 43-56, 2007.

[3] A. Christian and S. M. M. Tahaghoghi, “Plagiarism detection across
programming languages,” in ACSC '06 Proceedings of the 29th

Australasian Computer Science Conference, 2006, pp. 277-286.

[4] V. T. Martins, D. Fonte, P. R. Henriques, and D. da Cruz, “Plagiarism
detection: A tool survey and comparison.” OASIcs-Open Access Series

in Informatics. vol. 38. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, pp. 143-158, 2014.
[5] A. S. Bin-Habtoor and M. A. Zaher, “A survey on plagiarism detection

systems,” International Journal of Computer Theory and Engineering,

vol. 4, no. 2, pp. 185-188, Apr. 2012.
[6] S. Chauhan, A. Arora, and Y. Singhal, “Plagiarism detection of C

program using assembly language,” International Journal of Computer

Applications, vol. 158, no. 3, pp. 17-22, Jan. 2017.
[7] A. A. Moss, A System for Detecting Software Plagiarism. University

of Berkeley, CA, 2005.

Journal of Telecommunication, Electronic and Computer Engineering

94 e-ISSN: 2289-8131 Vol. 9 No. 3-5

[8] M. J. Wise. “YAP3: Improved detection of similarities in computer

program and other texts,” ACM SIGCSE Bulletin, vol. 28, no. 1, pp.
130–134, 1996.

[9] P. Lutz, M. Guido, and M. Phlippsen, “JPlag: Finding plagiarisms

among a set of programs,” Fakultätfür Informatik Technical Report
2000-1, Universität Kalrsruhe, Karlsruhe, Germany, 2000.

[10] A. Jadalla, and A. Elnagar, “PDE4Java: Plagiarism detection engine for

java source code: a clustering approach,” International Journal of
Business Intelligence and Data Mining, vol. 3, no. 2, pp. 121-135, Jan.

2008.

[11] D. Sheahen, and D. Joyner, “TAPS: A MOSS extension for detecting
software plagiarism at scale,” in L@S '16 Proceedings of the Third

(2016) ACM Conference on Learning @ Scale, 2016, pp. 285-288.

