

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 77

Improving the Accuracy of COCOMO II Effort

Estimation Based on Neural Network with

Hyperbolic Tangent Activation Function

Sarah Abdulkarem Alshalif, Noraini Ibrahim and Waddah Waheeb
Software Engineering Research Group, Faculty of Computer Science and Software Engineering,

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

gi140034@siswa.uthm.edu.my

Abstract— Constructive Cost Model II (COCOMO II) is one

of the best-known software cost estimation model. The

estimation of the effort in COCOMO II depends on several

attributes that categorized by software size (SS), scale factors

(SFs) and effort multipliers (EMs). However, provide accurate

estimation is still unsatisfactory in software management.

Neural Network (NN) is one of several approaches developed to

improve the accuracy of COCOMO II. From the literature, they

found that the learning using sigmoid function has always

mismatched and ill behaved. Thus, this research proposes

Hyperbolic Tangent activation function (Tanh) to use in the

hidden layer of the NN. Two different architectures of NN with

COCOMO (the basic COCOMO-NN and the modified

COCOMO-NN) are used. Back-propagation learning algorithm

is applied to adjust the COCOMO II effort estimation

parameters. NASA93 dataset is used in the experiments.

Magnitude of Relative Error (MRE) and Mean Magnitude of

Relative Error (MMRE) are used as evaluation criteria. This

research attempts to compare the performance of Tanh

activation function with several activation functions, namely

Uni-polar sigmoid, Bi-polar sigmoid, Gaussian and Softsign

activation functions. The experiment results indicate that the

Tanh with the modified COCOMO-NN architecture produce

better result comparing to other activation functions.

Index Terms—Activation Functions; Constructive Cost

Model II; Effort Estimation; Neural Network.

I. INTRODUCTION

Software cost estimation processes is the most crucial and

challenge task in the management of software project and in

the software engineering area [1]. Software project manager

and developers are interested to accurately estimate the effort

and cost at the early stage of software development. Many

models of software cost estimation have been developed and

improved which can be categorized to algorithmic and non-

algorithmic models. Algorithmic models, also known as

conventional method, provide mathematical and

experimental equations to compute software cost based on

statistical analysis of the past projects data and use a

mathematical formula to estimate project cost based on the

project size and other factors such as number of software

engineers. Constructive cost model (COCOMO) [2] and

Software Lifecycle Management (SLIM) [3] are some

examples of the algorithms models. Non-algorithmic models

or non-parametric models established based on heuristic

approaches and experts’ knowledge, where Expert Judgement

and Top-Down models belong to this category [4]. The most

popular algorithmic cost estimation model is Boehm’s

Constructive Cost Model (COCOMO I and II) [3]. COCOMO

II is used to estimate project effort, followed by software

development time, cost and manpower estimation.

COCOMO II model consists of three sublevels or models

which are Application-Composition model, Early Design

model and Post-Architecture model. Application-

Composition model is appropriate for the applications that

developed rapidly using interoperable components that based

on GUI builders and is based on new object point’s

estimation. While Early Design model is utilized in the early

phases of a software project and can be used in Application

Generator, System Integration, or Infrastructure

Development Sector. It size can be measures by Unadjusted

Function Points (UFP). Post-Architecture model is the most

detailed model comparing to others and used after the overall

architecture of the projects has been designed. Either function

points or Lines of Code (LOC) can be used to determine the

size of software project [4].

Due to the restriction of the algorithmic models, the use of

the non-algorithmic models has been discovered based on

soft computing techniques for cost estimation involved fuzzy

logic (FL), evolutionary computation (EC), and neural

networks (NN) [5]. The architecture of the neural network

and its parameters involved the number of layers, the number

of nodes, transfer function, weights, biases and the learning

rate. These factors influence the network performance. This

research investigates the role of different activation functions

to improve the accuracy of the effort estimation.

Feed forward multilayer perceptron with backpropagation

learning algorithm is generally used for estimating software

effort [6]. This paper considered the features of COCOMO II

based on NN using Hyperbolic Tangent function and

compares the result with other activation functions using

NASA93 projects dataset. This research also explores the

expectation from [7] to proves that Tanh improve the

COCOMO II.

This article is ordered as following. For section I, is the

introduction. In section II, it shows the literature review.

Section III presents the research methodology and discusses

the two-different architecture of COCOMO-NN that used in

this research. In Section IV, the methodology is evaluated as

well as the results are presented and discussed. Section V

presents the conclusion and summarizes the future research

directions.

Journal of Telecommunication, Electronic and Computer Engineering

78 e-ISSN: 2289-8131 Vol. 9 No. 3-5

II. LITERATURE REVIEW

For decades, many models for cost estimation have been

developed and used in software management and many

techniques have been used to improve these models to

accurately estimate the effort. Neural network is the most

used technique due to its learning capability and its ability to

model complex problems [8].

Alshalif, Ibrahim and Herawan [7] proposed Tanh to

improve COCOMO II by providing initial results. The

research is extended by this paper by comparing the impact

between Tanh and other activation functions to two different

architectures of NN with COCOMO.

Reddy and Raju [9] used neural network to improve

COCOMO model with 17 Effort Multiplier and 5 Scale

Factors. The proposed method used multi-layer feed forward

neural network and used the modified COCOMO-NN. The

network was trained with back propagation learning

algorithm. Linear activation function was used in all the

layers of the network. They compared the estimated effort

with the actual effort. COCOMO81 dataset was used in the

experiments and the result indicates that the estimation

accuracy has been improved by using this model.

Kaushik et al. [10] used intermediate COCOMO with 15

Effort multipliers. They integrated COCOMO with Neural

Network using basic COCOMO-NN. Perceptron learning

algorithm used for training. For the input layer, they used

identity activation function and for the hidden and output

layer the threshold activation function was used. As well as,

the COCOMO81 datasets with 63 projects was used in the

experiments. The Mean Magnitude of Relative Error

(MMRE) for the proposed model was less than the MMRE

for the COCOMO model.

Kaushik et al. [11] used the approach of Reddy and Raju

[9] with different activation functions. They used sigmoid

activation function in the hidden and output layers and used

modified COCOMO-NN. Three datasets were used, namely

COCOMO81 with 63 projects, COCOMO NASA 2 with 93

projects and COCOMO II SDR with 12 projects. Comparing

with Reddy model [9], this model performs better

improvement in term of Mean Magnitude of Relative Error

(MMRE).

In [12], the authors used multi-layer feed forward neural

network with modified COCOMO-NN to accommodate

COCOMO. The network was trained with backpropagation

learning algorithm and used identity function for all the

layers. The attributes used with this model were 15 EM and 5

SF and 2 biases. COCOMO81 with 63 historical projects

were used in this work. This model improves the accuracy

comparing to the COCOMO model.

Mukherjee and Malu [13] used multi-layer feed forward

neural networks with basic COCOMO-NN. They used back-

propagation learning algorithm for the training. In this model,

they used sigmoid activation function in the hidden layer and

linear one in the output layer. This model shows better result

comparing to COCOMO model and comparing to the model

developed by Kaushik et al. [10].

Kumar and Bhatia [14] used multi-layer feed forward

neural networks with basic COCOMO-NN. The inputs to the

network were the 15 EM and software size in KLOC. Back-

propagation learning algorithm with tangent function in the

hidden layer and linear function in the output layer were

chosen. This model shows improvement in the accuracy using

the NASA I that consists of 60 projects.

Sarno et al. [15] compared the two-different architecture of

COCOMO-NN consist of modified and basic COCOMO-

NN. In this comparison, they used back-propagation learning

algorithm with sigmoid function at the hidden layer and linear

at the output layer. They used 17 inputs for the basic

COCOMO-NN and 23 for the modified COCOMO-NN with

COCOMO81 and NASA93 datasets, respectively. This

model shows that the modified COCOMO-NN performs

better than the basic one.

In [16], the authors used fuzzy logic with the modified

multi-layer feed forward neural networks, and back-

propagation learning algorithm with sigmoid function at the

hidden layer and linear at the output layer. Nasa93 dataset

was used for training and testing.

Rijwani and Jain [17] used multi-layer feed forward neural

networks with basic COCOMO-NN to achieve more

accuracy in software effort estimation. The proposed NN

used 23 inputs and a hidden layer with tangent function.

COCOMO81 dataset was used in the experiments and in this

research, it noted that the model with neural network improve

the estimation accuracy significantly.

III. RESEARCH METHODOLOGY

Through a detailed literature review, we observed that there

are several factors that affect the network performance due to

the architecture of the network and their parameter settings.

These factors consist of the number of layers, how many

nodes in each layer, the transfer function in each node,

learning algorithm parameters and the weights which define

the connectivity between nodes. From these factors, there is

no standard rule to define the ideal parameter settings but

even small parameter changes can cause large differences in

the results of almost all networks [11]. The aim of this work

is to compare the Tanh activation function with other

activation functions in the two different neural network

architectures. Feed-forward neural network with

backpropagation learning algorithm will be used for both

architectures. Four main phases to perform the back-

propagation training algorithm. First, the initialization of the

weights and biases. Next, feed forward. Then, back

propagation of errors. Finally, updating the weights and

biases.

A. Activation functions

The activation functions also called as transfer functions

due to their task of transforming the neuron activation level

into output signal. This research is demonstrated the use of

different activation functions in neural network to estimate

the effort. Moreover, COCOMO II associated with Neural

Network (NN) helps to accurately estimate the software

effort. Several activation functions can be used with neural

network such as Tanh, Uni-polar sigmoid, Bi-polar sigmoid,

Gaussian and softsign activation functions. The formulas of

these functions [18] are as follows:

Tanh:

(1)

Uni-polar sigmoid:

(2)

Bi-polar sigmoid:

(3)

 
x

x

e

e
xf

2

2

1

1









 
xe

xf



1

1

 
x

x

e

e
xf










1

1

Improving the Accuracy of COCOMO II Effort Estimation Based on Neural Network with Hyperbolic Tangent Activation Function

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 79

Gaussian:  
2xexf  (4)

Softsign:  
x

x
xf




1
 (5)

B. Basic COCOMO neural network architecture

This architecture of the network is based on the used

dataset which is NASA93 dataset. This dataset contains 93

projects and 24 attributes represented as 17 Effort Multipliers,

5 Scale Factors, one Software Size and the Actual Effort. In

this architecture one hidden layer between input and output

layer will be used. There is no specific value for number of

nodes in the hidden layer. Therefore, four nodes will be used

in the hidden layer. The steps needed to implement this model

are:

Step 1 : Initialize the inputs as  ii inputx ln .

Step 2 : Initialize the weights iw , iwh and biases ib

.

Step 3 : Set the learning rate α(0 < α ≤ 1).

Step 4 : Test stopping condition for false.

Repeat the steps 5-13.

Step 5 : Perform steps 6-12 for each training pair

Step 6 : Compute the hidden unit iH sums its

weighted input signals to calculate net

input given by:

iinn wxbH   (6)

where: n=1 to 4

 i=1 to 23
Step 7 : Activate the hidden layer by applying the

activation function over iH and send the

output signal from the hidden unit to the

input of output layer units.

Step 8 : Compute the output unit, estE calculates the

net input given by:

 nnest whHwhHbE  112

(7)

where: n=1 to 4

Step 9 : Calculate the error correction term  as:

estact EE  (8)

where estE is the actual effort from the

dataset ln(Eact) and estE is the estimated

effort from step 8. The hidden error is

calculated as:

DevOAF*nhn wh  (9)

where: n=1 to 4

DevOAF = the derivative of the activation

function that will be used.

Step 10 : Update the weights between hidden and the

output layer as:

     iHoldwhnewwh ** (10)

      *22  oldbnewb i (11)

Step 11 : Update the weights and bias between input

and hidden layers as:

    ihii xoldweineww   * (12)

    nnn oldbnewb   (13)

Step 12 : Count the test data using new weights

Step 13 Check for the stopping condition. If the error

between estimated and actual effort in the

test data is smaller than a specific tolerance

or the number of iteration overrides a

specific number, stop: else continue.

Using this training process, iteration forward and backward

proceed until the terminating condition is satisfied. The

learning rate used this symbol α that will be used in the above

formula and it is constant to determine the network learning

speed. The bigger value for the learning rate, the faster it will

learn. But, sometimes bigger value could make the learning

process over fitting. Figure 1. Shows the architecture of Basic

COCOMO-NN.

Figure 1: Basic COCOMO-NN Architecture

C. Modified COCOMO neural network architecture

The input in this architecture is from NASA93 dataset

containing 24 inputs but the major difference as compared to

the basic COCOMO-NN is that the separation of the inputs

into two parts. Part one deals with the 17 Effort Multipliers

which represent the upper section and the second part deals

with the 5 Scale Factors that represent the lower section.

Moreover, software size is not used as an input in the input

layer, but it is applied as a constant in scale factors weight.

This model also has several steps to use the architecture. They

are:

Step 1 : Initialize the inputs as ix and jy .

Step 2 : Initialize the weights iwei = weh = wsh =1

and jwsi =0. Initialize the bias 1b and 2b .

Step 3 : Set the learning rate α(0 < α ≤ 1).

Step 4 : Test stopping condition for false.

Repeat the steps 5-13.

Step 5 : Perform steps 6-12 for each training pair.

Step 6 : Each hidden unit EMH and SFH sums its

weighted input signals to calculate net input

given by:

iiEM weixbH  1 (14)

 for i= 1 to 17.

  sizewsiybH iiSF ln*2   (15)

for i= 1 to 5.

Journal of Telecommunication, Electronic and Computer Engineering

80 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Step 7 : Activate the hidden layer by applying

activation function over EMH and SFH ,

then send the output signal from the hidden

unit to the input of output layer units.

Step 8 : Compute the output unit estE , calculates the

net input given by:

wshHwehHE SFEMest * (16)

Step 9 : Calculate the error correction term (δ) as:

 estact EE  (17)

Where actE is the actual effort from the

dataset ln(Eact) and estE is the estimated

effort from step 8.

Step 10 : Update the weights between hidden and the

output layer as:

    EMHoldwehnewweh   *

(18)

    SFHoldwshnewwsh   *

(19)

The hidden error is calculated as:

 DevOAFwehEM *  (20)

 DevOAFwshSF *  (21)

Where DevOAF is the derivative of the

activation function that will be used.

Step 11 : Update the weights and bias between input

and hidden layers as:

    iEMii xoldweinewwei   (22)

for i=1 to 17.

  iSFii yoldwsinewwsi   *)((23)

for i=1 to 5.

    EMoldbnewb   11 (24)

    SFoldbnewb   22 (25)

Step 12 : Count the test data using new weights.

Step 13 : Check for the stopping condition. If the

error between estimated and actual effort in

the test data is smaller than a specific

tolerance or the number of iteration

overrides a specific number, stop: else

continue.

Using this training approach, iteration forward and

backward conducted until the terminating condition is

satisfied. Figure 2 shows the modified COCOMO-NN

architecture.

Figure 2: Modified COCOMO-NN Architecture

IV. EXPERIMENTAL RESULTS

Integration of the COCOMO II with soft computing

technique can minimize and cope with the ambiguity and

uncertainty of the software attributes. This paper aims to

integrate the neural network that use hyperbolic tangent

activation function in its hidden layer with the COCOMO II

to treat these ambiguities and uncertainty. This section will

show and compare the result of the proposed model using

hyperbolic tangent function with other functions for different

architectures of COCOMO-NN using NASA93 datasets and

compare the results based on the Magnitude of Relative Error

(MRE) and Mean Magnitude of Relative Error (MMRE). The

equation of calculating MRE and MMRE are:

MRE =
|ActualEffort− EstimatedEffort|

ActualEffort
 x 100 (26)

MMRE =
1

N
 ∑ MRE𝑖

N
i (27)

From these equations, the smaller value of MRE and

MMRE is the closer to actual effort. Table 1 presents the

result and comparison using Basic COCOMO-NN on

NASA93 dataset by comparing the performance of different

activation functions, namely Uni-polar, Bi-polar sigmoid,

Gaussian and softsign with Tanh. The result shows that

MMRE for the Uni-polar sigmoid is 28.5116, Bi-polar

sigmoid is 29.8051, Gaussian is 24.5334, softsign is 26.4988

and Tanh is 28.3494. It can be observed that the Gaussian

function performs better estimation comparing to other

activation functions in the Basic COCOMO-NN architecture.

Figure 3 shows the graphical view of MRE and MMRE it

shows that Gaussian function has the lower value of MMRE

with basic COCOMO-NN model which is 24.5334 and it

indicates that the Gaussian function is suitable to use in the

basic architecture of COCOMO-NN.

Improving the Accuracy of COCOMO II Effort Estimation Based on Neural Network with Hyperbolic Tangent Activation Function

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 81

Table 1

MRE and MMRE for NASA93 dataset with the Basic COCOMO-NN.

Basic COCOMO-NN

N
o

P
ro

je
ct

-I
d

U
n

i-
p
o
la

r

si
g

m
o

id

B
i-

p
o
la

r

si
g

m
o

id

G
au

ss
ia

n

so
ft

si
g
n

T
an

h

1 75 17.7625 20.4278 9.5649 13.6148 17.4282

2 76 20.6300 23.2024 12.7183 16.6270 20.3074
3 77 25.8022 28.2070 18.4061 22.0601 25.5007

4 78 14.9948 11.2678 26.4576 20.7945 15.4622

5 79 12.5220 15.3572 3.8021 8.1100 12.1664
6 80 19.7499 22.3508 11.7505 15.7025 19.4238

7 81 27.0147 29.3802 19.7395 23.3337 26.7180

8 82 14.7901 17.5517 6.2963 10.4925 14.4437
9 83 17.7410 20.4070 9.5413 13.5923 17.4067

10 84 13.2443 16.0561 4.5964 8.8688 12.8917
11 85 36.9044 38.9494 30.6150 33.7222 36.6480

12 86 29.6715 31.9508 22.6610 26.1244 29.3856

13 87 28.9678 31.2699 21.8872 25.3853 28.6790
14 88 30.4366 32.6912 23.5024 26.9282 30.1538

15 89 18.7401 21.3737 10.6400 14.6417 18.4098

16 90 41.6338 43.5255 35.8158 38.6901 41.3966
17 91 14.7901 17.5517 6.2963 10.4925 14.4437

18 92 111.7053 104.8439 132.8082 122.3826 112.5657

19 93 44.6200 39.9329 59.0359 51.9139 45.2078
MMRE 28.5116 29.8051 24.5334 26.4988 28.3494

Figure 3: MRE and MMRE for Basic COCOMO-NN

For the Modified COCOMO-NN the results show in Table

2 the comparison is done on NASA93 dataset as well. Here,

there is a decrement in the relative error using the Tanh

function. The Mean Magnitude of Relative Error (MMRE)

for the entire testing set is 18.2699, 11.5390, 29.3847,

29.7889 and 9.8948 for Uni-polar sigmoid, Bi-polar sigmoid,

Gaussian, softsign and Tanh, respectively. This clearly shows

that the COCOMO II model using neural network with Tanh

function provide better cost estimation comparing to the

estimation done using other functions in the modified

COCOMO-NN architecture. As well as, Modified

COCOMO-NN architecture provide better estimation as the

Basic architecture when comparing table 1 with Table 2.

Figure 4 shows the graphical representation of MRE and

MMRE values for the five activation functions. MRE values

were plotted for each project in the testing set and MMRE

shows that Tanh provides the lower values which is 9.8948

so it provides better estimation comparing to other activation

functions.

Table 2
MRE and MMRE for NASA93 dataset with the modified COCOMO-NN.

Modified COCOMO-NN

N
o

.

P
ro

je
ct

-I
d

U
n

i-
p
o
la

r

si
g

m
o

id

B
i-

p
o
la

r

si
g

m
o

id

G
au

ss
ia

n

so
ft

si
g
n

T
an

h

1 6 44.9670 32.8479 69.1336 37.4301 26.3220

2 16 24.9599 18.0946 42.1190 14.5541 13.0196
3 26 7.5987 7.2539 2.8914 17.065 5.0737

4 31 14.0153 5.8354 32.2389 7.4512 0.9552

5 43 14.5330 6.7451 29.3132 43.0227 8.1455
6 55 18.2050 3.8868 28.1683 42.1008 6.2391

7 61 5.3815 16.056 16.3778 32.5969 9.1636

8 63 16.2227 8.1656 29.5367 43.2029 8.5635
9 76 18.5462 4.9653 14.6828 30.6764 11.5707

MMRE 18.2699 11.5390 29.3847 29.7889 9.8948

Figure 4: MRE and MMRE for modified COCOMO-NN

V. CONCLUSION

In this work, two NN-COCOMO II with different

activation functions, namely Tanh, Uni-polar sigmoid, Bi-

polar sigmoid, Gaussian and softsign activation functions

models were constructed and implemented for effort

estimation. The performance of the modified NN_COCOMO

II with Tanh produced the more accurate effort in the MMRE

measuring criteria. Moreover, it should be noted that the

comparison of the effort was done with all the projects in the

dataset. However, the MRE and MMRE comparison was

done in the testing set only to evaluate the model. This

method can be improved further by hybridizing this model

with evolutionary algorithms such as genetic algorithm and

particle swarm.

ACKNOWLEDGMENTS

This paper is funded by Fundamental Research Grant

Scheme (FRGS) vote number 1610 from Ministry of Higher

Education.

REFERENCES

[1] C. Jones, “Software cost estimation in 2002,” The Journal of Defense

Software Engineering, vol. 15, pp. 4-8, Jun. 2002.

[2] B. W. Boehm, Software engineering economics. Englewood Cliffs, NJ:

Prentice-hall, 1981, pp. 9-29.

0

20

40

60

80

M
R

E
%

 a
n

d
 M

M
R

E
%

Testing set projects

MRE and MMRE

Journal of Telecommunication, Electronic and Computer Engineering

82 e-ISSN: 2289-8131 Vol. 9 No. 3-5

[3] L. H. Putnam, “A general empirical solution to the macro software

sizing and estimating problem,” IEEE Transactions on Software
Engineering, vol. 4, no. 4, pp. 345-361, Jul. 1978.

[4] B. W. Boehm, R. Madachy, and B. Steece, Software Cost Estimation

with COCOMO II. Upper Saddle River, NJ: Prentice Hall, 2000, pp.
12-31.

[5] A. Kaushik, A. Chauhan, D. Mittal, and S. Gupta, “COCOMO

estimates using neural networks,” International Journal of Intelligent
Systems and Applications, vol. 4, pp. 22-28, Aug. 2012.

[6] O. Tailor, A. Kumar, and M. P. Rijwani, “A new high performance

neural network model for software effort estimation,” International
Journal of Innovative Science, Engineering & Technology, vol. 1, pp.

400-405, May 2014.

[7] S. A. Alshalif, N. Ibrahim, T. Herawan, “Artificial neural network with
hyperbolic tangent activation function to improve the accuracy of

COCOMO II model,” in The Second International Conference on Soft

Computing and Data Mining (SCDM), Springer, 2016, pp. 81-90.
[8] C. Lopez-Martin, and A. Abran, “Neural networks for predicting the

duration of new software projects,” Journal of Systems and Software,

vol. 101, pp. 127-135, Mar. 2015.

[9] C. S. Reddy, and K. Raju, “A concise neural network model for

estimating software effort,” International Journal of Recent Trends in

Engineering, vol. 1, pp. 188-193, May. 2009.
[10] A. Kaushik, A. Chauhan, D. Mittal, and S. Gupta, “COCOMO

estimates using neural networks,” International Journal of Intelligent

Systems and Applications, vol. 4, pp. 22-28, Aug. 2012.
[11] A. Kaushik, A. K. Soni, and R. Soni, “A simple neural network

approach to software cost estimation,” Global Journal of Computer
Science and Technology, vol. 13, pp. 23-30, Dec. 2013.

[12] M. Madheswaran, and D. Sivakumar, “Enhancement of prediction

accuracy in COCOMO model for software project using neural
network,” in Fifth International Conference on Computing,

Communications and Networking Technologies (ICCCNT), IEEE,

2014, pp. 1-5.
[13] S. Mukherjee, and R. K. Malu, “Optimization of project effort estimate

using neural network,” in 2014 IEEE International Conference on

Advanced Communications, Control and Computing Technologies,
2014, pp. 406-410.

[14] G. Kumar, and P. K. Bhatia, “Automation of software cost estimation

using neural network technique,” International Journal of Computer
Applications, vol. 98, pp. 11-17, Jan. 2014.

[15] R. Sarno, and J. Sidabutar, “Comparison of different Neural Network

architectures for software cost estimation,” in 2015 International
Conference on Computer, Control, Informatics and its Applications

(IC3INA), 2015, pp. 68-73.

[16] R. Sarno., and J. Sidabutar, “Improving the accuracy of COCOMO's
effort estimation based on neural networks and fuzzy logic model,” in

International Conference on Information & Communication

Technology and Systems (ICTS), 2015, pp. 197-202.

[17] P. Rijwani, and S. Jain, “Enhanced software effort estimation using

multi layered feed forward artificial neural network technique,”

Procedia Computer Science, vol. 89, pp. 307-312, Dec. 2016.

[18] B. Karlik, and A. V. Olgac, “Performance analysis of various activation

functions in generalized MLP architectures of neural networks,”
International Journal of Artificial Intelligence and Expert Systems, vol.

1, pp. 111-122, Feb. 2011.

