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Abstract— Constructive Cost Model II (COCOMO II) is one 

of the best-known software cost estimation model. The 

estimation of the effort in COCOMO II depends on several 

attributes that categorized by software size (SS), scale factors 

(SFs) and effort multipliers (EMs). However, provide accurate 

estimation is still unsatisfactory in software management. 

Neural Network (NN) is one of several approaches developed to 

improve the accuracy of COCOMO II. From the literature, they 

found that the learning using sigmoid function has always 

mismatched and ill behaved. Thus, this research proposes 

Hyperbolic Tangent activation function (Tanh) to use in the 

hidden layer of the NN. Two different architectures of NN with 

COCOMO (the basic COCOMO-NN and the modified 

COCOMO-NN) are used. Back-propagation learning algorithm 

is applied to adjust the COCOMO II effort estimation 

parameters. NASA93 dataset is used in the experiments. 

Magnitude of Relative Error (MRE) and Mean Magnitude of 

Relative Error (MMRE) are used as evaluation criteria. This 

research attempts to compare the performance of Tanh 

activation function with several activation functions, namely 

Uni-polar sigmoid, Bi-polar sigmoid, Gaussian and Softsign 

activation functions. The experiment results indicate that the 

Tanh with the modified COCOMO-NN architecture produce 

better result comparing to other activation functions. 

 

Index Terms—Activation Functions; Constructive Cost 

Model II; Effort Estimation; Neural Network. 

 

I. INTRODUCTION 

 

Software cost estimation processes is the most crucial and 

challenge task in the management of software project and in 

the software engineering area [1]. Software project manager 

and developers are interested to accurately estimate the effort 

and cost at the early stage of software development. Many 

models of software cost estimation have been developed and 

improved which can be categorized to algorithmic and non-

algorithmic models. Algorithmic models, also known as 

conventional method, provide mathematical and 

experimental equations to compute software cost based on 

statistical analysis of the past projects data and use a 

mathematical formula to estimate project cost based on the 

project size and other factors such as number of software 

engineers. Constructive cost model (COCOMO) [2] and 

Software Lifecycle Management (SLIM) [3] are some 

examples of the algorithms models. Non-algorithmic models 

or non-parametric models established based on heuristic 

approaches and experts’ knowledge, where Expert Judgement 

and Top-Down models belong to this category [4]. The most 

popular algorithmic cost estimation model is Boehm’s 

Constructive Cost Model (COCOMO I and II) [3]. COCOMO 

II is used to estimate project effort, followed by software 

development time, cost and manpower estimation. 

COCOMO II model consists of three sublevels or models 

which are Application-Composition model, Early Design 

model and Post-Architecture model. Application-

Composition model is appropriate for the applications that 

developed rapidly using interoperable components that based 

on GUI builders and is based on new object point’s 

estimation. While Early Design model is utilized in the early 

phases of a software project and can be used in Application 

Generator, System Integration, or Infrastructure 

Development Sector. It size can be measures by Unadjusted 

Function Points (UFP). Post-Architecture model is the most 

detailed model comparing to others and used after the overall 

architecture of the projects has been designed. Either function 

points or Lines of Code (LOC) can be used to determine the 

size of software project [4].  

Due to the restriction of the algorithmic models, the use of 

the non-algorithmic models has been discovered based on 

soft computing techniques for cost estimation involved fuzzy 

logic (FL), evolutionary computation (EC), and neural 

networks (NN) [5]. The architecture of the neural network 

and its parameters involved the number of layers, the number 

of nodes, transfer function, weights, biases and the learning 

rate. These factors influence the network performance. This 

research investigates the role of different activation functions 

to improve the accuracy of the effort estimation.  

Feed forward multilayer perceptron with backpropagation 

learning algorithm is generally used for estimating software 

effort [6]. This paper considered the features of COCOMO II 

based on NN using Hyperbolic Tangent function and 

compares the result with other activation functions using 

NASA93 projects dataset. This research also explores the 

expectation from [7] to proves that Tanh improve the 

COCOMO II.  

This article is ordered as following. For section I, is the 

introduction. In section II, it shows the literature review. 

Section III presents the research methodology and discusses 

the two-different architecture of COCOMO-NN that used in 

this research. In Section IV, the methodology is evaluated as 

well as the results are presented and discussed. Section V 

presents the conclusion and summarizes the future research 

directions. 
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II. LITERATURE REVIEW  

 

For decades, many models for cost estimation have been 

developed and used in software management and many 

techniques have been used to improve these models to 

accurately estimate the effort. Neural network is the most 

used technique due to its learning capability and its ability to 

model complex problems [8].  

Alshalif, Ibrahim and Herawan [7] proposed Tanh to 

improve COCOMO II by providing initial results. The 

research is extended by this paper by comparing the impact 

between Tanh and other activation functions to two different 

architectures of NN with COCOMO.  

Reddy and Raju [9] used neural network to improve 

COCOMO model with 17 Effort Multiplier and 5 Scale 

Factors. The proposed method used multi-layer feed forward 

neural network and used the modified COCOMO-NN. The 

network was trained with back propagation learning 

algorithm. Linear activation function was used in all the 

layers of the network. They compared the estimated effort 

with the actual effort. COCOMO81 dataset was used in the 

experiments and the result indicates that the estimation 

accuracy has been improved by using this model. 

Kaushik et al. [10] used intermediate COCOMO with 15 

Effort multipliers. They integrated COCOMO with Neural 

Network using basic COCOMO-NN. Perceptron learning 

algorithm used for training. For the input layer, they used 

identity activation function and for the hidden and output 

layer the threshold activation function was used. As well as, 

the COCOMO81 datasets with 63 projects was used in the 

experiments. The Mean Magnitude of Relative Error 

(MMRE) for the proposed model was less than the MMRE 

for the COCOMO model. 

Kaushik et al. [11] used the approach of Reddy and Raju 

[9] with different activation functions. They used sigmoid 

activation function in the hidden and output layers and used 

modified COCOMO-NN. Three datasets were used, namely 

COCOMO81 with 63 projects, COCOMO NASA 2 with 93 

projects and COCOMO II SDR with 12 projects. Comparing 

with Reddy model [9], this model performs better 

improvement in term of Mean Magnitude of Relative Error 

(MMRE).  

In [12], the authors used multi-layer feed forward neural 

network with modified COCOMO-NN to accommodate 

COCOMO. The network was trained with backpropagation 

learning algorithm and used identity function for all the 

layers. The attributes used with this model were 15 EM and 5 

SF and 2 biases. COCOMO81 with 63 historical projects 

were used in this work. This model improves the accuracy 

comparing to the COCOMO model. 

Mukherjee and Malu [13] used multi-layer feed forward 

neural networks with basic COCOMO-NN. They used back-

propagation learning algorithm for the training. In this model, 

they used sigmoid activation function in the hidden layer and 

linear one in the output layer. This model shows better result 

comparing to COCOMO model and comparing to the model 

developed by Kaushik et al. [10]. 

Kumar and Bhatia [14] used multi-layer feed forward 

neural networks with basic COCOMO-NN. The inputs to the 

network were the 15 EM and software size in KLOC. Back-

propagation learning algorithm with tangent function in the 

hidden layer and linear function in the output layer were 

chosen. This model shows improvement in the accuracy using 

the NASA I that consists of 60 projects. 

Sarno et al. [15] compared the two-different architecture of 

COCOMO-NN consist of modified and basic COCOMO-

NN. In this comparison, they used back-propagation learning 

algorithm with sigmoid function at the hidden layer and linear 

at the output layer. They used 17 inputs for the basic 

COCOMO-NN and 23 for the modified COCOMO-NN with 

COCOMO81 and NASA93 datasets, respectively. This 

model shows that the modified COCOMO-NN performs 

better than the basic one. 

In [16], the authors used fuzzy logic with the modified 

multi-layer feed forward neural networks, and back-

propagation learning algorithm with sigmoid function at the 

hidden layer and linear at the output layer. Nasa93 dataset 

was used for training and testing. 

Rijwani and Jain [17] used multi-layer feed forward neural 

networks with basic COCOMO-NN to achieve more 

accuracy in software effort estimation.  The proposed NN 

used 23 inputs and a hidden layer with tangent function. 

COCOMO81 dataset was used in the experiments and in this 

research, it noted that the model with neural network improve 

the estimation accuracy significantly. 

 

III. RESEARCH METHODOLOGY 

 

Through a detailed literature review, we observed that there 

are several factors that affect the network performance due to 

the architecture of the network and their parameter settings. 

These factors consist of the number of layers, how many 

nodes in each layer, the transfer function in each node, 

learning algorithm parameters and the weights which define 

the connectivity between nodes. From these factors, there is 

no standard rule to define the ideal parameter settings but 

even small parameter changes can cause large differences in 

the results of almost all networks [11]. The aim of this work 

is to compare the Tanh activation function with other 

activation functions in the two different neural network 

architectures. Feed-forward neural network with 

backpropagation learning algorithm will be used for both 

architectures. Four main phases to perform the back-

propagation training algorithm. First, the initialization of the 

weights and biases. Next, feed forward. Then, back 

propagation of errors. Finally, updating the weights and 

biases. 

 

A. Activation functions 

The activation functions also called as transfer functions 

due to their task of transforming the neuron activation level 

into output signal. This research is demonstrated the use of 

different activation functions in neural network to estimate 

the effort. Moreover, COCOMO II associated with Neural 

Network (NN) helps to accurately estimate the software 

effort. Several activation functions can be used with neural 

network such as Tanh, Uni-polar sigmoid, Bi-polar sigmoid, 

Gaussian and softsign activation functions. The formulas of 

these functions [18] are as follows: 

 

Tanh:                    
 

(1) 

Uni-polar sigmoid: 
 

(2) 

Bi-polar sigmoid: 
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Gaussian:  
2xexf   (4) 

Softsign:  
x

x
xf




1
 (5) 

 

B. Basic COCOMO neural network architecture 

This architecture of the network is based on the used 

dataset which is NASA93 dataset. This dataset contains 93 

projects and 24 attributes represented as 17 Effort Multipliers, 

5 Scale Factors, one Software Size and the Actual Effort. In 

this architecture one hidden layer between input and output 

layer will be used. There is no specific value for number of 

nodes in the hidden layer. Therefore, four nodes will be used 

in the hidden layer. The steps needed to implement this model 

are: 

 

Step 1 : Initialize the inputs as  ii inputx ln . 

Step 2 : Initialize the weights iw  , iwh  and biases ib

. 

Step 3 : Set the learning rate α(0 < α ≤ 1). 

Step 4 : Test stopping condition for false. 

Repeat the steps 5-13. 

Step 5 : Perform steps 6-12 for each training pair 

Step 6 : Compute the hidden unit iH  sums its 

weighted input signals to calculate net       

input given by: 

iinn wxbH                                  (6) 

where:   n=1 to 4 

 i=1 to 23 
Step 7 : Activate the hidden layer by applying the 

activation function over iH  and send the 

output signal from the hidden unit to the 

input of output layer units.  

Step 8 : Compute the output unit, estE  calculates the 

net input given by: 

  nnest whHwhHbE  112       

(7) 

where:   n=1 to 4 

 

Step 9 : Calculate the error correction term   as: 

estact EE                                      (8) 

where estE is the actual effort from the 

dataset ln(Eact) and estE is the estimated 

effort from step 8. The hidden error is 

calculated as: 

DevOAF*nhn wh                      (9) 

where:   n=1 to 4 

DevOAF = the derivative of the activation 

function that will be used.        

Step 10 : Update the weights between hidden and the 

output layer as:  

        iHoldwhnewwh **             (10) 

         *22  oldbnewb i                    (11) 

Step 11 : Update the weights and bias between input 

and hidden layers as: 

 

    ihii xoldweineww   *               (12) 

    nnn oldbnewb                           (13) 

Step 12 : Count the test data using new weights 

Step 13  Check for the stopping condition. If the error 

between estimated and actual effort in the 

test data is smaller than a specific tolerance 

or the number of iteration overrides a 

specific number, stop: else continue.                                 

 

Using this training process, iteration forward and backward 

proceed until the terminating condition is satisfied. The 

learning rate used this symbol α that will be used in the above 

formula and it is constant to determine the network learning 

speed. The bigger value for the learning rate, the faster it will 

learn. But, sometimes bigger value could make the learning 

process over fitting. Figure 1. Shows the architecture of Basic 

COCOMO-NN. 

 

 
 

Figure 1: Basic COCOMO-NN Architecture 

 

C. Modified COCOMO neural network architecture 

The input in this architecture is from NASA93 dataset 

containing 24 inputs but the major difference as compared to 

the basic COCOMO-NN is that the separation of the inputs 

into two parts. Part one deals with the 17 Effort Multipliers 

which represent the upper section and the second part deals 

with the 5 Scale Factors that represent the lower section.  

Moreover, software size is not used as an input in the input 

layer, but it is applied as a constant in scale factors weight. 

This model also has several steps to use the architecture. They 

are:  

 

Step 1 : Initialize the inputs as ix  and jy . 

Step 2 : Initialize the weights iwei = weh = wsh =1 

and jwsi =0. Initialize the bias 1b   and 2b . 

Step 3 : Set the learning rate α(0 < α ≤ 1). 

Step 4 : Test stopping condition for false. 

Repeat the steps 5-13. 

Step 5 : Perform steps 6-12 for each training pair. 

Step 6 : Each hidden unit EMH  and SFH  sums its 

weighted input signals to calculate net input 

given by: 

iiEM weixbH  1                        (14) 

 for i= 1 to 17. 

 

  sizewsiybH iiSF ln*2        (15) 

for i= 1 to 5. 
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Step 7 : Activate the hidden layer by applying 

activation function over EMH and SFH  , 

then send the output signal from the hidden 

unit to the input of output layer units. 

Step 8 : Compute the output unit estE , calculates the 

net input given by: 

wshHwehHE SFEMest *                (16) 

Step 9 : Calculate the error correction term (δ) as: 

             estact EE                               (17) 

Where actE is the actual effort from the 

dataset ln(Eact) and estE is the estimated 

effort from step 8. 

Step 10 : Update the weights between hidden and the 

output layer as:  

    EMHoldwehnewweh   *    

(18) 

    SFHoldwshnewwsh   *     

(19) 

The hidden error is calculated as: 

   DevOAFwehEM *                      (20) 

   DevOAFwshSF *                       (21) 

Where DevOAF is the derivative of the 

activation function that will be used.     

Step 11 : Update the weights and bias between input 

and hidden layers as: 

    iEMii xoldweinewwei       (22) 

for i=1 to 17. 

  iSFii yoldwsinewwsi   *)(      (23) 

for i=1 to 5. 

    EMoldbnewb   11                   (24) 

    SFoldbnewb   22                   (25) 

Step 12 : Count the test data using new weights. 

Step 13 : Check for the stopping condition. If the 

error between estimated and actual effort in 

the test data is smaller than a specific 

tolerance or the number of iteration 

overrides a specific number, stop: else 

continue. 

 

Using this training approach, iteration forward and 

backward conducted until the terminating condition is 

satisfied. Figure 2 shows the modified COCOMO-NN 

architecture. 

 

 
 

Figure 2: Modified COCOMO-NN Architecture 

 

IV. EXPERIMENTAL RESULTS 

 

Integration of the COCOMO II with soft computing 

technique can minimize and cope with the ambiguity and 

uncertainty of the software attributes. This paper aims to 

integrate the neural network that use hyperbolic tangent 

activation function in its hidden layer with the COCOMO II 

to treat these ambiguities and uncertainty. This section will 

show and compare the result of the proposed model using 

hyperbolic tangent function with other functions for different 

architectures of COCOMO-NN using NASA93 datasets and 

compare the results based on the Magnitude of Relative Error 

(MRE) and Mean Magnitude of Relative Error (MMRE). The 

equation of calculating MRE and MMRE are:    

 

MRE =  
|ActualEffort− EstimatedEffort|

ActualEffort
   x 100     (26) 

 

MMRE =  
1

N
     ∑ MRE𝑖

N
i             (27) 

 

From these equations, the smaller value of MRE and 

MMRE is the closer to actual effort. Table 1 presents the 

result and comparison using Basic COCOMO-NN on 

NASA93 dataset by comparing the performance of different 

activation functions, namely Uni-polar, Bi-polar sigmoid, 

Gaussian and softsign with Tanh. The result shows that 

MMRE for the Uni-polar sigmoid is 28.5116, Bi-polar 

sigmoid is 29.8051, Gaussian is 24.5334, softsign is 26.4988 

and Tanh is 28.3494. It can be observed that the Gaussian 

function performs better estimation comparing to other 

activation functions in the Basic COCOMO-NN architecture. 

Figure 3 shows the graphical view of MRE and MMRE it 

shows that Gaussian function has the lower value of MMRE 

with basic COCOMO-NN model which is 24.5334 and it 

indicates that the Gaussian function is suitable to use in the 

basic architecture of COCOMO-NN. 
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Table 1 

MRE and MMRE for NASA93 dataset with the Basic COCOMO-NN. 
 

Basic COCOMO-NN 

N
o
 

P
ro

je
ct

-I
d
 

U
n

i-
p
o
la

r 

si
g

m
o

id
 

B
i-

p
o
la

r 

si
g

m
o

id
 

G
au

ss
ia

n
 

so
ft

si
g
n
 

T
an

h
 

1 75 17.7625 20.4278 9.5649 13.6148 17.4282 

2 76 20.6300 23.2024 12.7183 16.6270 20.3074 
3 77 25.8022 28.2070 18.4061 22.0601 25.5007 

4 78 14.9948 11.2678 26.4576 20.7945 15.4622 

5 79 12.5220 15.3572 3.8021 8.1100 12.1664 
6 80 19.7499 22.3508 11.7505 15.7025 19.4238 

7 81 27.0147 29.3802 19.7395 23.3337 26.7180 

8 82 14.7901 17.5517 6.2963 10.4925 14.4437 
9 83 17.7410 20.4070 9.5413 13.5923 17.4067 

10 84 13.2443 16.0561 4.5964 8.8688 12.8917 
11 85 36.9044 38.9494 30.6150 33.7222 36.6480 

12 86 29.6715 31.9508 22.6610 26.1244 29.3856 

13 87 28.9678 31.2699 21.8872 25.3853 28.6790 
14 88 30.4366 32.6912 23.5024 26.9282 30.1538 

15 89 18.7401 21.3737 10.6400 14.6417 18.4098 

16 90 41.6338 43.5255 35.8158 38.6901 41.3966 
17 91 14.7901 17.5517 6.2963 10.4925 14.4437 

18 92 111.7053 104.8439 132.8082 122.3826 112.5657 

19 93 44.6200 39.9329 59.0359 51.9139 45.2078 
MMRE 28.5116 29.8051 24.5334 26.4988 28.3494 

 

 
 

Figure 3: MRE and MMRE for Basic COCOMO-NN 
 

For the Modified COCOMO-NN the results show in Table 

2 the comparison is done on NASA93 dataset as well. Here, 

there is a decrement in the relative error using the Tanh 

function. The Mean Magnitude of Relative Error (MMRE) 

for the entire testing set is 18.2699, 11.5390, 29.3847, 

29.7889 and 9.8948 for Uni-polar sigmoid, Bi-polar sigmoid, 

Gaussian, softsign and Tanh, respectively. This clearly shows 

that the COCOMO II model using neural network with Tanh 

function provide better cost estimation comparing to the 

estimation done using other functions in the modified 

COCOMO-NN architecture. As well as, Modified 

COCOMO-NN architecture provide better estimation as the 

Basic architecture when comparing table 1 with Table 2.  

Figure 4 shows the graphical representation of MRE and 

MMRE values for the five activation functions. MRE values 

were plotted for each project in the testing set and MMRE 

shows that Tanh provides the lower values which is 9.8948 

so it provides better estimation comparing to other activation 

functions.  

 

 

 

 

 

Table 2 
MRE and MMRE for NASA93 dataset with the modified COCOMO-NN. 

 

Modified COCOMO-NN 
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1 6 44.9670 32.8479 69.1336 37.4301 26.3220 

2 16 24.9599 18.0946 42.1190 14.5541 13.0196 
3 26 7.5987 7.2539 2.8914 17.065 5.0737 

4 31 14.0153 5.8354 32.2389 7.4512 0.9552 

5 43 14.5330 6.7451 29.3132 43.0227 8.1455 
6 55 18.2050 3.8868 28.1683 42.1008 6.2391 

7 61 5.3815 16.056 16.3778 32.5969 9.1636 

8 63 16.2227 8.1656 29.5367 43.2029 8.5635 
9 76 18.5462 4.9653 14.6828 30.6764 11.5707 

MMRE 18.2699 11.5390 29.3847 29.7889 9.8948 

 

 

 
 

Figure 4: MRE and MMRE for modified COCOMO-NN  

 

V. CONCLUSION 

 

In this work, two NN-COCOMO II with different 

activation functions, namely Tanh, Uni-polar sigmoid, Bi-

polar sigmoid, Gaussian and softsign activation functions 

models were constructed and implemented for effort 

estimation. The performance of the modified NN_COCOMO 

II with Tanh produced the more accurate effort in the MMRE 

measuring criteria. Moreover, it should be noted that the 

comparison of the effort was done with all the projects in the 

dataset. However, the MRE and MMRE comparison was 

done in the testing set only to evaluate the model. This 

method can be improved further by hybridizing this model 

with evolutionary algorithms such as genetic algorithm and 

particle swarm. 

 

ACKNOWLEDGMENTS 

 

This paper is funded by Fundamental Research Grant 

Scheme (FRGS) vote number 1610 from Ministry of Higher 

Education.  
 

REFERENCES 

 
[1] C. Jones, “Software cost estimation in 2002,” The Journal of Defense 

Software Engineering, vol. 15, pp. 4-8, Jun. 2002.  

[2] B. W. Boehm, Software engineering economics. Englewood Cliffs, NJ: 

Prentice-hall, 1981, pp. 9-29. 

0

20

40

60

80

M
R

E 
%

 a
n

d
 M

M
R

E 
%

Testing set projects 

MRE and MMRE



Journal of Telecommunication, Electronic and Computer Engineering 

82 e-ISSN: 2289-8131   Vol. 9 No. 3-5  

[3] L. H. Putnam, “A general empirical solution to the macro software 

sizing and estimating problem,” IEEE Transactions on Software 
Engineering, vol. 4, no. 4, pp. 345-361, Jul. 1978. 

[4] B. W. Boehm, R. Madachy, and B. Steece, Software Cost Estimation 

with COCOMO II. Upper Saddle River, NJ: Prentice Hall, 2000, pp. 
12-31. 

[5] A. Kaushik, A. Chauhan, D. Mittal, and S. Gupta, “COCOMO 

estimates using neural networks,” International Journal of Intelligent 
Systems and Applications, vol. 4, pp. 22-28, Aug.  2012. 

[6] O. Tailor, A. Kumar, and M. P. Rijwani, “A new high performance 

neural network model for software effort estimation,” International 
Journal of Innovative Science, Engineering & Technology, vol. 1, pp. 

400-405, May 2014. 

[7] S. A. Alshalif, N. Ibrahim, T. Herawan, “Artificial neural network with 
hyperbolic tangent activation function to improve the accuracy of 

COCOMO II model,” in The Second International Conference on Soft 

Computing and Data Mining (SCDM), Springer, 2016, pp. 81-90. 
[8] C. Lopez-Martin, and A. Abran, “Neural networks for predicting the 

duration of new software projects,” Journal of Systems and Software, 

vol. 101, pp. 127-135, Mar. 2015. 

[9] C. S. Reddy, and K. Raju, “A concise neural network model for 

estimating software effort,” International Journal of Recent Trends in 

Engineering, vol. 1, pp. 188-193, May. 2009. 
[10] A. Kaushik, A. Chauhan, D. Mittal, and S. Gupta, “COCOMO 

estimates using neural networks,” International Journal of Intelligent 

Systems and Applications, vol. 4, pp. 22-28, Aug. 2012. 
[11] A. Kaushik, A. K. Soni, and R. Soni, “A simple neural network 

approach to software cost estimation,” Global Journal of Computer 
Science and Technology, vol. 13, pp. 23-30, Dec. 2013. 

[12] M. Madheswaran, and D. Sivakumar, “Enhancement of prediction 

accuracy in COCOMO model for software project using neural 
network,” in Fifth International Conference on Computing, 

Communications and Networking Technologies (ICCCNT), IEEE, 

2014, pp. 1-5. 
[13] S. Mukherjee, and R. K. Malu, “Optimization of project effort estimate 

using neural network,” in 2014 IEEE International Conference on 

Advanced Communications, Control and Computing Technologies, 
2014, pp. 406-410. 

[14] G. Kumar, and P. K. Bhatia, “Automation of software cost estimation 

using neural network technique,” International Journal of Computer 
Applications, vol. 98, pp. 11-17, Jan. 2014. 

[15] R. Sarno, and J. Sidabutar, “Comparison of different Neural Network 

architectures for software cost estimation,” in 2015 International 
Conference on Computer, Control, Informatics and its Applications 

(IC3INA), 2015, pp. 68-73. 

[16] R. Sarno., and J. Sidabutar, “Improving the accuracy of COCOMO's 
effort estimation based on neural networks and fuzzy logic model,” in 

International Conference on Information & Communication 

Technology and Systems (ICTS), 2015, pp. 197-202.  

[17] P. Rijwani, and S. Jain, “Enhanced software effort estimation using 

multi layered feed forward artificial neural network technique,” 

Procedia Computer Science, vol. 89, pp. 307-312, Dec. 2016. 

[18] B. Karlik, and A. V. Olgac, “Performance analysis of various activation 

functions in generalized MLP architectures of neural networks,” 
International Journal of Artificial Intelligence and Expert Systems, vol. 

1, pp. 111-122, Feb. 2011. 

 

 
 


