

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 51

Software Ageing Measurement Model (SAMM):

An Instrument Development

Zaiha Nadiah Zainal Abidin1, Jamaiah H. Yahaya1 and Aziz Deraman2
1Faculty of Technology and Information Science, Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor, Malaysia.
 2School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,

21030 Kuala Nerus, Terengganu Malaysia.

zaihanadya@yahoo.com

Abstract—The rapid expansion in software development

forced the owners and developers of a software to develop a good

quality software and relevant for use in a long period of time

without affecting the operation and high maintenance cost.

There should be a standard measurement or indicator to

monitor relevance level of the software from internal and

external views of the product. Software ageing measurement is

an effort to help the owners of the software to monitor the level

of relevance of the application software that has been developed

and operated in certain environment. This study aims to develop

software ageing measurement model and therefore, the

instrument for measuring the ageing should be developed as the

input to identify the quality status and relevancy of the

measured software. There are 3 phases in developing software

ageing measurement instrument: development of measurement

requirement, development of the instrument items and

instrument validation. After all the processes have been

implemented, the instrument is finalized and readied to be used

in software ageing measurement model. In this study, the

instrument was developed based on the Software Ageing Factors

Hierarchical (SAFH) Framework. The measurement in the

instrument uses Likert scales as the numerical values.

Index Terms—Framework; Software Ageing; Software

Ageing Factors Hierarchical; Software Ageing Measurement

Instrument.

I. INTRODUCTION

There are various domains that use ageing concept as a

quality measurement of the product such as human [1],

insulation system [2] and textile [3]. In previous studies, the

researchers used the concept of ageing to understand the

influential factors that led to ageing and to find solutions to

resolve this issue. By studying and understanding the factors,

it will be a standard rule or mechanism to overcome the

issues. In software ageing, there are four dimensions that

should be emphasized [4]:

i. Type of analysis in software ageing

ii. Type of system that relevance

iii. Software ageing indicator

iv. Software rejuvenation

In our study, the main focuses will be on software ageing

indicator and software rejuvenation. The basic concept that

should be understood to perform this study is software

ageing, software measurement and software maintenance.

The pioneer of software ageing [5] mentioned that there are

two main things that related to software ageing; functionality

of the software and how the software reacts to its

environment. In previous study, most of software ageing

researcher measure software ageing based on the product

itself such as memory bloating, line of codes, memory leak,

data corruption and file log [4-9].

In previous studies, [10-12] highlighted the external

aspects of software ageing such as storage space, memory

bloating and unreleased file lock. Technology is growing

faster and all the internal aspect can be resolve in contrast to

external factors that need to be studied more to have the

solution [14]. According to [9, 10] software can be classified

into two groups which are littleAging and bigAging. Based

on [9, 10], further study need to be done to underline classes

of software ageing and the action to be taken to ensure

software stay young and relevant. In order to fulfil this

requirement in the concept of software evolution, software

quality, software maintenance and software ageing need to be

understood and explored.

There are various studies in software evolution that touch

about user needs, user satisfaction and customers’ demands

[14-19]. Previous researcher attempt to develop a standard

measurement to measure software quality in many aspects

such a process and products [23-29]. Software evolve to meet

all the user requirements by making some corrective action to

improve the software [18-20]. It is necessary to have software

that always meet user requirement, but there are also a

problem when all the flow, change and requirement not

documented correctly and without any standard policy. These

may lead to software performance degradation that called

software ageing [4, 6, 7, 21, 22]. In this study, we focus on

the development of software ageing measurement model as a

standard tool for software practitioner to monitor the

relevancy of their software to the user and environment.

Critical study has been carried out by empirical study,

discussion with experts, observation and brainstorming

sessions. This paper will discuss further on how software

ageing measurement instrument will be developed. It starts

with introduction in the Section I. Section II presents the

methodology of the proposed instrument, whilst Section III

discusses on the software ageing measurement instrument.

Finally, Section IV concludes this paper with a conclusion.

II. METHODOLOGY OF INSTRUMENT DEVELOPMENT

Software ageing instrument was developed by empirical

study, expert discussions and brainstorming. Figure 1

illustrates the methodology used to develop the instrument.

There are few steps in developing the software ageing

measurement instrument as shown in the figure and will be

discussed in the next following sub sections.

Journal of Telecommunication, Electronic and Computer Engineering

52 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Figure 1: Methodology of instrument development

A. Development of measurement requirement

The instrument development process began with the

development of measurement requirement that obtained from

the analysis of literature review, analysis of measurement

theory and concept, and findings from empirical study.

B. Development of instruments item

After all the measurement requirement has been identified,

the process of developing instruments item was conducted

along with the discussions and views with several experts in

this area of research. The draft instrument is finally

constructed and readied to be validated.

C. Instrument validation

Process of instrument validation was conducted with

experts and pilot study. After instrument validation process

completed, the instrument items were refined and upgraded

based on the feedbacks from experts and pilot study. The

reliability test was also been conducted. Finally, the

completed instrument was ready to be used in software ageing

measurement model.

III. SOFTWARE AGEING MEASUREMENT INSTRUMENT

Software ageing factors hierarchical framework was

developed as a base of software ageing measurement

instrument. The hierarchical framework is shown in Figure 2.

The structure of the classification framework was developed

by adopting the Goal Question Metric (GQM) approach and

Factor Metric Attribute Measure (FAME) method as

discussed in detail in [28, 29]. In this framework, 5 elements

have been recognised to be executed sequentially in Software

Ageing Factors Hierarchical Framework (SAFH). The

elements are goal, factor, construct, item and measurement.

A. Element 1: Purpose/Goal

In the first element, the goal to be achieved is defined

precisely. In this study the goal to be achieved is software

ageing measurement. It is important that the goal is defined

clearly so that the next elements which are factors will be

constructed correctly. All the factors will reflect the final goal

of this task.

B. Elements 2: Factors

The second level of this framework is factor. It has to be

identified in the plot associated with the goal. Previous study

[had revealed that there are four factors that have been

identified associated and influenced the software ageing

which are functional, human, product profile and

environment. Functional factor relates to the usability of the

software. Software that cannot function according to user

specification then it is considered as ageing. Human factor

relates to people in terms of management, users, education,

experience, knowledge and popularity. When people do not

want to use this software anymore then it is considered to be

in the phase of ageing. While for product profile, the aspects

that need to be taken into account in this regard are date of

acquisition, purchase, production, technology and software

life cycle. The forth factor in this framework is environment

that is considered as an external factor which involves

accessories, alternatives and technological changes.

Figure 2: Software Ageing Factors Hierarchical Framework (SAFH)

C. Element 3: Constructs

Element 3 in this hierarchy is construct. It is plotted from

four main factors defined earlier which are human,

functional, product profile and environment. In this

instrument, constructs that derive from the factors are

altogether contain 23 classes which include Adaptability,

Stability, Performance, Interactivity, Popularity, Knowledge,

Experience, Training, Satisfaction, Support system,

Adaptability, Technology suitability, Training content,

Software satisfaction, Rationality, Maintenance support,

Policy & Documentation, Environment adaptability,

Environment change stability, and Technology acceptance.

Each of the 23 constructs will be detailed and dispersed into

items.

D. Element 4: Items

Every construct has its own items that has been classified

thoroughly through empirical study, expert review and

brainstorming sessions. This item will help researcher to find

more reliable result on software ageing. The items are

considered the most measureable metrics that can help users

to evaluate or measure a specific software based on ageing

phenomenon.

Software Ageing Measurement Model (SAMM): An Instrument Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 53

E. Elements 5: Measurements

The next element is measurement. Every item in the

instruments are measured using Likert scales 1 to 5. Scales 1

to 5 representing the rate from highest to lowest. As an

example, in a human factor there is a training construct (sub

factor) and in the training construct there is an item (question)

“Training is needed before using the software:” and the

answer is in a Likert scale which are

1 = Strongly agree, 2 = Agreed, 3 = Simple, 4 = Disagree and

5 = Strongly disagree.

Based on Software Ageing Factors Hierarchical (SAFH)

Framework, an instrument to measure the software ageing

was developed. In this instrument, there are four factors that

we used from result of empirical study, expert review, brain

storming and literature review. From four factors, we derive

23 construct as shown in Table 1. From the construct we

identify a suitable item to be used in the instrument of

software ageing measurement.

Table 1

Instrument Construct

Factor Construct
No of

item

Total

item

Average

Alpha
Cronbach

Functional

Adaptability 3

15

0.955

Stability 4

Performance 2

Interactivity 6

Human

Popularity 4

25

0.962

Knowledge 2

Experience 2
Training 7

Satisfaction 7

Support system 3

Product Profile

Adaptability 2

36

0.957

Stability 4

Technology
suitability

1

Training

content
2

Software

satisfaction
11

Rationality 3
Maintenance

support
5

Policy &

Documentation
4

Popularity 4

Environment

Environment
adaptability

1

6 0.971

Environment

change stability
3

Technology
acceptance

1

Popularity 1

In functional factors there are four constructs which are

adaptability, stability, performance and interactivity. Total

item that derived in functional factor are 15 items. In human

factors there are six constructs which are popularity,

knowledge, experience, training, satisfaction and support

system. Total item that derived in human factor is 25 items as

shown in Table 1. In product profile factors, there are nine

constructs including adaptability, stability, technology

suitability, training content, software satisfaction, rationality,

maintenance support, policy & documentation and

popularity. There are 36 items that derived from this factor.

The forth factor is environment that contains 4 construct and

6 items. The constructs are environment adaptability,

environment change stability, technology acceptance and

popularity. There are 6 items that derive from environment

factor.

The reliability test was conducted on this developed

instrument. Table 1 shows the result. It shows that the average

of Alpha Cronbach is above 0.900 which means the reliability

testing result is good and all the items can be used in this

instrument.

IV. CONCLUSION

Software need to be monitored thoroughly to maintain its

quality and relevancy to the user. In this dynamic operating

environment of software, software changes very fast and the

relevancy of the software needs to be measured and

maintained. In order to maintain its quality and relevancy, a

standard mechanism needs to be established and followed. As

a solution, this study proposes a standard measurement model

as guidance to software owner to monitor the performance

and ageing progress of the software. The development of

Software Ageing Measurement instrument has been

discussed in this paper and will be used as an input in the

software ageing measurement model. In the next future work,

formulation of measurement and algorithm will be developed

to compute the relevance result as an indicator of software

ageing index. The development of software ageing

measurement model will be discussed in future.

ACKNOWLEDGMENT

This research project was funded partly by the

Fundamental Research Grant Scheme, Malaysia Ministry of

Higher Education which was granted under Universiti

Kebangsaan Malaysia (FRGS/1/2012/SG05/UKM/02/10)

and the Universiti Malaysia Terengganu research grant under

FRGS vot 59297.

REFERENCES

[1] A. R. Torres, and M. S Kiirzner, “Ageing and longevity are related to

growth hormone/insulin-like growth factor-1 secretion,” International

Journal of Experimental, Clinical, Behavioural and Technological
Gerontology, vol. 48, no. 6, pp. 401-407. 2002.

[2] A. C. Gjerde, “Multi factor ageing models - origin and similarities,” in

IEEE Electrical Insulation Magazine, vol. 13, no. 1, pp. 199-204. 1997.

[3] R. B. Bresee, “General effects on ageing textile,” Journal of The

American Institute of Conservation., vol. 25, no. 1, pp. 39-48, 1986.
[4] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software

aging and rejuvenation: Where we are and where we are going,” in

2011 IEEE Third Int. Work. Software Aging Rejuvenation, 2011, pp. 1-
6.

[5] D. L. Parnas, “Software aging invited,” in Proceedings of 16th

International Conference on Software Engineering., 1994, pp. 279-
287.

[6] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software

rejuvenation: analysis, module and applications,” in Twenty-Fifth
International Symposium on Fault-Tolerant Computing. Digest of

Papers, 1995, pp. 381-390.

[7] M. Grottke, R. Matias Jr. and K. S. Trivedi, “The Fundamentals of
Software Aging,” in Proceedings of the International Workshop on

Software Aging and Rejuvenation, 2008, pp. 1-6.

[8] D. Cotroneo, R. Natella and R. Pietrantuono, “Is software aging related
to software metrics?,” in 2010 IEEE Second International Workshop

on Software Aging and Rejuvenation, San Jose CA, USA, 2010, pp. 1-

6.
[9] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software

aging analysis of the Linux operating system,” in 2010 IEEE 21st

International Symposium on Software Reliability Engineering, 2010,
pp. 71-80.

Journal of Telecommunication, Electronic and Computer Engineering

54 e-ISSN: 2289-8131 Vol. 9 No. 3-5

[10] B. Wah, “Software aging and rejuvenation,” in Wiley Encyclopedia of

Computer Science and Engineering. John Wiley & Son, Inc, 2008.
[11] T. Thein, “Proactive software rejuvenation solution for software

aging,” 2011, Available at http://eurosoutheastasia-ict.org/wp-

content/plugins/alcyonis-event-agenda//files/Thandar-Thein.pdf.
[Retrieved 9/2/2012]

[12] A. Deraman, Memburu Kualiti Perisian (Inaugural speech). UKM

Publisher, 2011.
[13] M. M. Lehman, “Programming systems growth dynamics,” in Info-

Tech State of the Art Lectures, no. 18, pp. 391-412, 1974.

[14] L. A. Belady and M.M. Lehman, “A Model of Large Program
Development,” IBM Systems Journal, vol. 15, no. 1, pp. 225-252, 1976.

[15] M. M. Lehman, Program Evolution: Processes of Software. San Diego,

CA, USA: Academic Press Professional, Inc., 1985, pp. 538.
[16] V.T. Rajlich & K.H. Bennet, “A Staged Model for the Software Life

Cycle,” Journal Computer, vol. 33, no. 7, pp. 66-71 ,2000.

[17] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of
software evolution: An empirical study on open source software,” in

2009 IEEE International Conference on Software Maintenance, 2009,

pp. 51-60.

[18] I. Sommerville, Software Engineering. 9th Edition, Addison Wesley,

2010

[19] A. April, J. M. Desharnais and R. Dumke, “A formalism of ontology to
support a software maintenance knowledge-based system,” in The

Eighteenth International Conference on Software Engineering

Knowledge Engineering Conference (SEKE06), 2006, pp. 331–336.
[20] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software

aging and rejuvenation: Where we are and where we are going,” in

2011 IEEE Third Int. Work. Software Aging Rejuvenation, 2011, no.

30, pp. 1–6.
[21] J. H. Yahaya, Z. N. Zainal Abidin, N. M. Ali and A. Deraman,

“Software ageing measurement and classification using goal question

metric (GQM) approach”, in Proceeding of 2013 Science and
Information Conference, 2013, London, UK, pp. 160-165.

[22] I. Tervonen, “Support for quality-based design and inspection,” IEEE

Software, vol. 13, no. 1, pp. 44–54, 1996.
[23] J. H. Yahaya, The Development of Software Certification Model Based

on Product Quality Approach. PhD Thesis, UKM, 2007.

[24] J. H. Yahaya, A. Deraman, and A. R. Hamdan, “Software certification
model based on product quality approach,” Journal of Sustainability

Science and Management, vol. 3, no. 2, pp. 14-29, 2008.

[25] J. H. Yahaya, A. Deraman and A. R. Hamdan, “Continuously ensuring
quality through software product certification: A case study,” in 2010

International Conference on Information Society, 2010, pp. 183-188.

[26] N. Drouin, M. Badri and F. Touré, “Analyzing software quality
evolution using metrics: An empirical study on open source software,”

Journal of Software, vol. 8, no. 10, pp 2462-2473, 2013.

[27] P. Lew, “Software Quality Metrics, Do and Dont’s,” in Software

Quality Improvements, 2014.

[28] Z. N. Zainal Abidin, J. H. Yahaya and A. Deraman, “ Kerangka hirarki

faktor penuaan perisian: satu kajian empirik di kalangan pengamal
perisian di Malaysia,” Jurnal Teknologi, vol. 78, no. 8, pp. 139-151,

2016.

[29] Z. N. Zainal Abidin, J. H. Yahaya and A. Deraman, “ Software Ageing
Measurement Model (SAMM): A conceptual model,” in 2015

International Conference on Electrical Engineering and Informatics
(ICEEI), 2016, pp. 456-461.

