

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 45

An Overview of Regression Testing

Amir Ngah1, Malcolm Munro2 and Mohammad Abdallah3
1School of Informatics and Applied Mathematics, University Malaysia Terengganu,

21030 Kuala Nerus, Terengganu, Malaysia.
2School of Engineering and Computing Sciences, Durham University, DL1 3LE, United Kingdom.

3Faculty of Science and IT, Az-Zaytoonah University of Jordan, Amman, Jordan.

amirnma@umt.edu.my

Abstract—Regression testing is expensive but an essential

activity in software maintenance. Regression testing validates

modified software and ensure that the modified parts of the

program do not introduce unexpected errors. This paper briefly

describes an overview of regression testing specifically

regression test selection techniques. Most regression test

selection techniques are based on program slicing techniques.

Index Terms—Regression Testing; Regression Test Selection;

Test Case Minimization; Test Case Prioritization.

I. INTRODUCTION

According to the IEEE Standard 1219-1998 [1], regression

testing can be involved in different levels such as unit,

integration or system level testing. Regression testing also

described as one kind of testing that is applied at all these

three levels. These three levels of testing are similar to the

process of testing in development although they have to be

focused on modifications that have occurred in the program.

Most existing regression testing techniques concentrate on

unit testing. Some of the techniques focused on all levels of

testing [2; 3].

This paper discusses regression testing specifically

regression test selection techniques. The paper is organized

as follows. The second section presents an evaluation

framework for regression test selection techniques. The third

section presents regression testing strategies. Then,

categories of regression testing techniques are discussed in

the fourth section. The most significant topic in this chapter

is about regression test selection techniques presented in the

fifth section. Then, the sixth section discusses a regression

testing in different environments.

II. AN EVALUATION FRAMEWORK FOR REGRESSION TEST

SELECTION TECHNIQUES

Rothermel and Harrold [4] proposed a framework for

evaluating regression test selection techniques. This

framework is used to evaluate the regression test selection

techniques that will be explained in the later section. The

framework is based on four categories which are

inclusiveness, precision, efficiency and generality.

Inclusiveness measures the capabilities of techniques to

select test cases that will cause the modified program to give

a different output than the certified program. A regression test

selection technique is safe if it selects all test cases that can

give different output. Precision measures the ability of

techniques to avoid select test cases that cannot give different

output between the certified and the modified programs. A

regression test selection technique is precise if the technique

is capable of omitting test cases that cannot give different

output. Efficiency measures the computational cost, thus the

practicality of a regression test selection technique. The

generality of a regression test selection technique is its ability

to be used in a wide and practical range of situations.

III. REGRESSION TESTING STRATEGIES

An important issue in regression testing is how to reuse the

existing test suite for the modified program [2]. There are two

main regression testing strategies; retest all, and selective

retest. A retest all approach reruns all the existing test suite

on the modified program. In theory, retest all approach is safe

because it can exercise all modification parts in the modified

program. However, it is not practical to use for large software

systems because of the time and resources needed.

Selective retest techniques, in contrast, attempt to reduce

the time required to retest a modified program by selecting a

subset of the existing test suite and retesting only the relevant

part of the modified program. Rothermel and Harrold [2] have

identified two issues in the selective retest techniques: (1) the

issue of how to select test cases from the existing test suite

and (2) the issue of identifying where additional test cases

may be required.

IV. CATEGORIES OF REGRESSION TESTING TECHNIQUES

Rothermel et al. [5] consider three techniques for reducing

the cost of regression testing. They are regression test

selection, test suite minimization and test case prioritization

techniques.

A. Regression Test Selection

Many papers concentrate on regression test selection

techniques [2, 3, 6, 7, 8, 9, 10]. Those techniques attempt to

reduce the cost of regression testing by selecting appropriate

test cases using information from the certified program, the

modified program and the existing test suite. A detailed

explanation about this category will be given in the next

section.

B. Test Suite Minimization

Test suite minimization techniques decrease cost by

minimizing a test suite that still maintains the same coverage

of the initial test suite with respect to a particular test

coverage metric. Harrold et al. [11] propose a minimization

technique that helps to manage a test suite by determining

redundant and obsolete test cases. The technique introduced

a mechanism that selects a set of test cases from

the test suite, but still provides the desired testing coverage of

Journal of Telecommunication, Electronic and Computer Engineering

46 e-ISSN: 2289-8131 Vol. 9 No. 3-5

the program. The technique requires an association between

the test cases and the testing requirements of the program, but

it is independent of the test selection criteria and can be

applied if this association can be made. The minimization

technique can also accommodate test suites that use more

than one test selection criteria. The technique can be

performed on the entire test suite or on a test suite consisting

of those test cases that test the changed or affected parts of a

program. This technique was incorporated into a data flow

testing system called Combat. Hsu and Orso [12] have

developed a general framework and tool for supporting test-

suite minimization called MINTS. Their evaluation shows

that MINTS can be used to instantiate a number of different

test-suite minimization problems and efficiently find an

optimal solution for such problems using different solvers

[12].

C. Test Case Prioritization

Test case prioritization technique provides another method

for assisting with regression testing. The prioritization

technique let testers order their test cases, so that those test

cases with the highest priority are executed earlier than those

with lower priority according to some criterion. Elbaum et al.

classify test case prioritization techniques into three groups.

The groups are based on control, statements and function

level of a program.

V. REGRESSION TEST SELECTION TECHNIQUES

The subject of selective regression testing has received

considerable attention from the software testing and software

maintenance research communities. Some of the regression

test selection techniques are discussed below. These

regression test selection techniques can be divided into few

categories based on elements used in their techniques such as

control-flow based [2], textual differencing based [3; 7], code

entities based [10] and program slicing based [6; 8; 9].

A. Control-flow Based

Rothermel and Harrold [2] propose a safe and efficient

regression test selection technique based on control-flow

graphs (CFG). They have proposed two main algorithms;

intraprocedural and interprocedural. The intraprocedural

algorithm operates on individual procedures. The

interprocedural algorithm operates on entire programs or

subsystems. In this technique, both the certified and the

modified programs will be transformed into a CFG in order to

perform comparison. The comparison algorithm compares

each node in both CFGs. If both nodes differ, the algorithm

will select test cases from Test Suite (T) that execute the node

in CFG of the certified program to test the modified program.

These two algorithms are implemented in two different

tools. They are DejaVu1 for intraprocedural algorithm and

DejaVu2 for interprocedural algorithm. Both tools have been

developed to analyze C programs. By using both algorithms,

this technique is suitable for a level of regression testing

including unit, integration and system level.

Rothermel and Harrold claim that their technique can

decrease the time required to carry out regression testing for

the modified program, even when considering the cost of

performing the analysis to select the test cases. Their

interprocedural test selection algorithm can give huge savings

than intraprocedural test selection algorithm in term of

reducing the number of test cases. The technique can give

significant savings when applied to large or complex

programs. This result is based on their experiment of the

application of their technique to the “Siemens programs” by

Hutchins. The result show that DejaVu1which perform

intraprocedural algorithm always selected 100% of test cases

for the modified procedures. This means there is no

significant reduction in the size of test suite for the modified

procedures. In contrast to this, DejaVu2 in average selects

about 55.6% test cases for the modified program. This means

DejaVu2 can give saving about 44.4% of test cases size. This

technique is considered as a safe regression test selection

technique but not precise [2; 13].

B. Textual Differencing Based

Vokolos and Frankl [3] have developed a tool called Pythia

that is used to reduce the cost of regression testing. The Unix-

based tool implements an analysis technique that is called

textual differencing because it works by comparing the

source files from the certified and modified programs. The

Pythia tool can be used to analyze software systems written

in the C programming language. Vokolos and Frankl claimed

that a novel characteristic of Pythia is that it has been

implemented by using standard Unix tools. The

characteristics of the Pythia tool are:

i. It selects a safe regression test suite.

ii. It supplies both intraprocedural and interprocedural

analysis. So, it can be used for single C functions or

software systems.

iii. It has been implemented using standard Unix tools.

iv. The comparison between the certified and the modified

programs uses the Unix tool called diff. No abstract

representation of the program is needed in the

comparison.

v. Instrumentation, for determining the execution trace of

the certified program, is done directly by the C

compiler, during module compilation.

vi. In principle, it can be easily extended to support other

popular programming languages, such as C++.

The Pythia tool has been integrated into a shell script to

include cc, the C language compiler, pretty, a beautifier for C

programs, and diff, the general purpose file comparison

program. Pythia consists of a few stand-alone programs:

kform, instr, xqt, and txt. The functionality of these programs

and a description on how Pythia works is as follows:

i. The sources file for the certified program is converted

using the program kform– into a canonical form.

Kform is a script that uses the program pretty, the C

program beautifier.

ii. The canonical files are instrumented and compiled

using the program instr. Instrumentation is used to

maintain a basic block execution trace for the certified

program. Instr is a script that uses cc, the C compiler.

iii. The program being tested is executed via the program

xqt, which maintains a history of test cases along with

the basic blocks executed by each test case.

iv. The modified program are also converted into

canonical files with the program kform.

v. The program txt compares the certified program with

the modified program canonical files, by using diff, and

analyses the differences, as reported by diff, to

determine the set of all test cases that have exercised

by the modified statements.

Vokolos and Frankl [3] have used the framework for

evaluating selective regression testing techniques developed

An Overview of Regression Testing

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 47

by Rothermel and Harrold [4]. They have claimed that textual

differencing is a safe selective regression testing technique in

terms of inclusiveness. For precision, textual differencing is

not 100% precise due to the fact that they do not perform

semantic analysis. In term of efficiency, the computational

cost of textual differencing will be reasonable. In term of

generality, textual differencing involves all forms of code

modifications like insertions, deletions, and changes of

statements. It can works on both in intraprocedural and

interprocedural aspects of a program. They also claimed that

their technique can easily be extended to programs written in

languages that have a mechanism to perform basic block

instrumentation and to transform the source code into

canonical form.

Vokolos and Frankl [7] claimed that the Pythia tool can

quickly analyze software systems written in C programs and

be effective in reducing the set of regression test cases. The

claim is based on the results from a case study involving a

software system of approximately 11,000 lines of source code

written for the European Space Agency. The system called

ORACOLO2 is written in C and was developed within the

Microsoft Visual C++ 1.5 environment. There were 33

different faults discovered and recorded. Each fault was

corrected and a new version of the program was created for

each fault. The results of their case study shows that Pythia

reduced the size of the regression test suite by at least 90% on

average in almost 40% of the program versions (13/33). A

reduction of at least 80% was reported in almost 50% of the

program versions (16/33). This shows that the textual

differencing based technique, Pythia, can give significant

reduction in regression test suite size. Pythia is considered as

a safe regression test selection technique but not precise [7].

C. Code Entities Based

Chen et al. [10] have proposed a regression test selection

technique based on identifying modified code entities such as

functions, variables, types, and macros. Test cases that have

traversed modified code entities will be counted in the test

suite for the modified program. The technique has been

implemented in a tool called TestTube that combines static

and dynamic analysis to perform selective retesting of

programs or systems written in the C programming language.

The tool has been developed with a combination of existing

analysis tools. The collection of tools can be divided into

three categories, including instrumentation tools, program

database tools, and test selection tools. In the instrumentation

tools, app (the Annotation Preprocessor C) instruments the

source code automatically. The C Information Abstractor

(CIA) is used to build a C program database in the program

database tools category. The technique is considered as a safe

regression test selection technique but less precise [4].

D. Slicing Based Techniques

There are a number of regression test selection techniques

based on program slicing techniques. Binkley [6] conducted

a survey about the application of program slicing to

regression testing. He divided into three groups of program

slicing that are used in regression testing. The first group uses

dynamic slicing, the second group presents program slicing

using program dependent graphs (PDG), and the third group

is based on Weiser’s data-flow definition of slicing.

Agrawal et al. [14] have proposed three algorithms to be

used in their technique called an incremental regression

testing. The algorithms are an execution slice, a dynamic

slice, and a relevant slice. The execution slice of the program

with respect to a test case is referred to as the set of statements

executed under that test case. The dynamic program slice

with respect to the output variables gives

us the statements that are not only executed but also have an

effect on the program output under that test case. The relevant

slice with respect to the program output for a test case is

referred to the set of statements that, if modified, may alter

the program output for the given test case.

Agrawal et al. [14] have pointed out that the amount of

regression testing effort saved using their technique

obviously depends on the nature of test cases as well as the

locations of the modifications made. If the number of test

cases are large and each of them exercise small parts of the

program’s functionality then using these techniques should

offer huge savings. The modification parts of the program

may also have a major effect on the amount of savings

implied by using these techniques. The incremental

regression testing technique is considered as a precise

regression test selection technique but less safe [15].

Gupta et al. [16] have developed a data flow based

regression testing technique that uses slicing algorithms to

explicitly determine the affected definition-use associations

made by a program change. The technique uses two slicing

algorithms to detect directly and indirectly affected def-use

associations. The first algorithm works backward from the

changed statement to its definitions. The second algorithm is

a forward walk from the same point as the first algorithm. The

forward algorithm detects uses, and subsequent definitions

and uses that are affected by a definition that is changed at

that point. Gupta et al. [16] claim that the slicing algorithms

are efficient because they detect the def-use associations

without considering either the data flow history or the

complete recomputation of data flow for the certified

program. They also claim that their technique could easily be

modified from all-uses criterion to other data flow testing

criteria. The technique can also be extended to

interprocedural regression testing using interprocedural

slicing. The technique is considered as a safe regression test

selection technique but less precise [4].

Gallagher et al. [17] have proposed a novel approach for

regression test selection based on exclusion. They claim that

an exclusion-based technique is likely to be more effective

that an inclusion-based technique in two ways. First, it will

more confidently identify all non-modification revealing tests

in terms of safety. Second, in terms of the impact of the

approach, by reducing the size of regression

tests by excluding tests that are not related to modification.

Gallagher et al. proposed four steps in his exclusion technique

as follows:

i. Decompose and Reduce System Version n. The

decomposition slices are constructed for the

considered system and reduced by equivalent slices.

ii. Match Tests with Code. The decomposition slices are

match to the relevant test cases using Vokolos and

Frankl technique [3].

iii. Decompose and Reduce System Version n + 1. The

process is same as in step 1. Then, obtain the tests for

decomposition slice clusters that remain unchanged.

iv. Use tests that remain after removing those obtained in

step 3. Any tests for unchanged code are not needed.

These all slicing based RTS techniques are classified as

inclusion techniques which select test cases from test suite

that are needed in regression testing. The idea of the

Journal of Telecommunication, Electronic and Computer Engineering

48 e-ISSN: 2289-8131 Vol. 9 No. 3-5

regression test selection by exclusion was proposed by

Gallagher et al. [17]. Ngah et al. [18, 19] have developed a

new regression test selection by exclusion using

decomposition slicing called ReTSE. Exclusion technique

omits test cases from test suite that are not needed in

regression testing.

VI. REGRESSION TESTING IN DIFFERENT ENVIRONMENTS

There are implementations of regression testing techniques

in the literature. They can be divided into four groups:

structured based programs, object-oriented based programs,

web based applications and component-based systems.

A. Structured Based Programs

Structured based program are often composed of program

flow structures such as sequence, selection and iteration

compare to object-oriented program that are based on objects

which have their attributes and methods. There are a number

of techniques as well as tools that are proposed for regression

testing for structured based programs, especially the C

programming language. Examples are the

Rothermel and Harrold technique with their tools DejaVu1

and DejaVu2 [2], TestTube tool by Chen et al. [10], and

Pythia tool by Vokolos and Frankl [3]. The explanation of

these techniques and tools have already been described in the

previous section.

B. Object-oriented Based Programs

Orso et al. [20] have introduced a regression test selection

technique for Java programs. The technique can handle the

object-oriented features of the language, is safe and precise,

and applicable to large systems. The technique consists of

two parts: partitioning and selection. The partitioning part is

executed first in order to build a high level graph

representation of certified and modified programs and

performs an analysis of the graphs. The goal of the analysis

is to identify the parts of the certified and the modified

programs that have changed based on information on changed

classes and interfaces. Then, the selection part of the

technique builds a more detailed graph representation of the

identified parts of the certified and the modified programs,

analyses the graph to identify differences between the

programs, and selects a set of test cases in the test suite that

traverse the changes. This technique is implemented in a tool

called DEJAVOO. Orso et al. claim the results of the

empirical study of their tool is encouraging in terms of

efficiency and effectiveness. The technique reduces the time

for regression testing as high as 62.5% for a largest system.

The cost-effectiveness improves with the size of the program

under test.

Wu et al. [21] have proposed a regression testing technique

based on the analysis of the dependence relationship among

functions in a system. They have defined that the object-

oriented features, such as inheritance, dynamic binding,

polymorphism and message passing are related to the

function calls which are associated with certain objects. The

technique performs in two phase analysis. The first phase is

to analyze the affected variables, functions, function

dependence relationships at the statement level after the

modification. The technique is safe because it considers all

possible effects of the modification on the system. This static

phase is considerably more efficient. In the second phase, the

technique dynamically select test cases that are needed to be

retested by using the function calling graph (FCG) of each

test case in order to precisely process object-oriented features

and thus enhance the precision of the technique. The FCG can

be constructed based on the record of the calling sequence of

functions. So, the required overhead is proportional to the

number of function calls.

Harrold et al. [22] have introduced a safe regression test

selection technique for Java. The technique can efficiently

handle the features of object-oriented language specifically

the Java language, such as polymorphism, dynamic binding,

and exception handling. The technique is an adaptation of

Rothermel and Harrold technique [2], which is based on a

control flow representation of the certified

and modified programs to select test cases to be rerun. The

technique performs three steps. First, it constructs a graph to

represent the control flow and the type of information for the

set of classes under analysis. Then, it traverses the graph to

identify affected edges. Finally, based on the coverage matrix

obtained through instrumentation, the technique selects the

test cases that exercise the affected edges identified from the

test suite for the certified program.

Unlike the Rothermel and Harrold technique [2], which is

uses the CFG, the technique by Harrold et al. [22] introduces

the Java Interclass Graph (JIG) as a representation of the

program. A JIG accommodates the Java features and can be

used by the graph-traversal algorithm to identify dangerous

entities. Dangerous entity is an edge that affected by a change

by comparing the certified and the modified programs.

Empirical studies indicate that the technique can be effective

in reducing the size of the test suite [22].

C. Web Based Applications

Tarhini et al. [23] have proposed a safe regression testing

selection technique for web applications based on an Event

Dependency Graphs (EDG). The EDG is used to model the

certified and the modified web applications. Then both EDG’s

are compared in order to select the affected nodes and the

potentially affected nodes. The affected nodes are used to

select test suite for the certified web application. Empirical

results show that the technique reduced the test set size [23].

About 44-90% of test cases were eliminated. The selected test

cases still cover the modified and potentially modified

components.

Lin et al. [24] have introduced a code transformation

approach to regression test selection. The transformed code

forms a local Java program which simulates the functionality

and behavior of the Web service applications in an end-to-

end manner. Safe regression test selection techniques can

then be applied to the transformed code and safely reduce the

test cases for the Web service applications. This approach is

implemented on Web service applications written in Java and

deployed in the Axis server only.

Ruth et al. [25; 26] have proposed a gray-box approach that

support safe regression test selection technique for

verification of Web service system in an end-to-end manner.

A gray-box approach is a technique that does not involve

code-based knowledge directly, in contrast to white box

approach. Their approach is based on the safe regression test

selection technique by Rothermel and Harrold [2] which is

uses a CFG as a representation of the certified and modified

programs. Each node represents a code entity and each edge

represents the control flow from one code entity to another.

The entities can be statements, methods, classes, or

components [25]. Then, the technique identifies affected

An Overview of Regression Testing

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 49

edges by comparing the CFGs of certified and modified

programs. Finally, based on the set of affected edges, the

technique selects test cases for T’ from test suite T that need

to be rerun.

D. Components Based System

Gao et al. [27] have proposed a systematic retest method

for software components based on a component retest model.

This method has been implemented in a component test tool

called COMPTest. The COMPTest tool can automatically

identify component-based API changes and impacts, as well

as reusable test cases in a component test suite. They claimed

that the tool has two major advantages:

i. Automatic identification and analysis of API-oriented

component changes and impacts based on given API-

based component test models and other meta-data,

such as function and dependency information in a

component.

ii. Automatic black-box test selection for reuse and test

suit refreshment for a component.

VII. CONCLUSION

This paper discusses researches on regression testing

specifically regression test selection techniques. Based on

these studies, it is hard to identify the best techniques for

regression test selection. This is because every proposed

technique has their own focusses and purposes. Moreover, it

is more difficult to compare because some proposed

techniques are based on difference environment like structure

based programs, object oriented programs, web based

applications and component based systems as mentioned in

previous section. The only current framework to evaluate the

regression test selection technique has been proposed by

Harrold et al. [28]. However this framework is quite old and

may not suitable for current environment of the programs or

systems. Therefore, a suitable and efficient framework or

method is significantly needed in order to evaluate the

regression test selection techniques.

ACKNOWLEDGMENT

This research is sponsor by Ministry of Education,

Malaysia Government under Research Acculturation

Collaborative Grant (RACE), Vot No. 56032.

REFERENCES

[1] IEEE Standard for Software Maintenance. IEEE Std 1219-1998. Oct

1998.

[2] G. Rothermel and M. J. Harrold. “A safe, efficient regression test

selection technique,” ACM Transactions on Software Engineering
Methodology, vol. 6, no. 2, pp. 173-210, 1997.

[3] F.I. Vokolos and P.G. Frankl. “Pythia: A regression test selection tool

based on textual differencing,” in Proceedings of the International
Conference on Reliability, Quality and Safety of Software-intensive

Systems, 1997, pp. 3-21.

[4] G. Rothermel and M. J. Harrold. “Analyzing regression test selection
techniques,” IEEE Transactions on Software Engineering, vol. 22, no.

8, pp. 529-551, 1996.

[5] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. “Prioritizing
test cases for regression testing,” IEEE Transactions on Software

Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[6] Da. Binkley. “The application of program slicing to regression

testing,”. Information & Software Technology, vol. 40, no. 11-12, pp.
583-594, 1998.

[7] F. I. Vokolos and P. G. Frankl. “Empirical evaluation of the textual

differencing regression testing technique,” in Proceedings of the
International Conference on Software Maintenance, 1998, pp. 44-53.

[8] I. Forgacs, A. Hajnal, and E. Takacs. “Regression slicing and its use in

regression testing,” in Proceedings of the IEEE International Computer
Software and Applications Conference, 1998, pp. 464-469.

[9] K. B. Gallagher and J. R. Lyle. “Using program slicing in software

maintenance,” IEEE Transactions on Software Engineering, vol. 17,
no. 8, pp. 751-761, 1991.

[10] Y. F. Chen, D. S. Rosenblum, and K. P. Vo. “Testtube: A system for

selective regression testing,” in Proceeding of the International
Conference on Software Engineering, 1994, pp. 211-220.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. “A methodology for

controlling the size of a test suite,” ACM Transactions on Software
Engineering and Metholdology, vol. 2, no. 3, pp. 270-285, 1993.

[12] H. Y. Hsu and A. Orso, “Mints: A general framework and tool for

supporting test-suite minimization,” in Proceedings of the IEEE 31st

International Conference on Software Engineering, 2009, pp. 419-429.

[13] G. Rothermel and M. J. Harrold. “Empirical studies of a safe regression

test selection technique,” IEEE Transactions on Software Engineering,
vol. 24, no. 6, pp. 401-419, 1998.

[14] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London. “Incremental

regression testing,” in Proceedings of the International Conference on
Software Maintenance, 1993, pp. 348-357.

[15] G. Baradhi and N. Mansour. “A comparative study of five regression
testing algorithms,” in Proceedings of the Australian Software

Engineering Conference , 1997, pp. 174-180.

[16] R. Gupta, M. J. Harrold, and M. L. Soffa. “An approach to regression
testing using slicing,” in Proceedings of the International Conference

on Software maintenance, 1992, pp. 299-308.

[17] K. Gallagher, T. Hall, and S. Black. “Reducing regression test size by
exclusion,” in Proceedings of the International Conference on

Software Maintenance, 2007, pp. 154-163.

[18] A. Ngah, M. Munro and K. Gallagher. “Regression test selection model

using decomposition slicing,” in the Proceedings of the IASTED

International Conference on Software Engineering, 2012, pp. 23-24.

[19] A. Ngah, M. Y. M. Saman and M. Munro. “ReTSE: Slicing based
regression testing,” WIT Transaction Engineering Sciences, vol. 86,

page 457-470, 2014.

[20] A. Orso, N. Shi, and M. J. Harrold. “Scaling regression testing to large
software systems,” in Proceedings of the ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2004, pp. 241-

251.
[21] Y. Wu, M. H. Chen, and H. M. Kao. “Regression testing on object-

oriented programs,” in Proceedings of the 10th International

Symposium on Software Reliability Engineering, 1999, pp. 270–279.
[22] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S.

Snha, S. A. Spoon, and A. Gujarathi. “Regression test selection for java

software,” in Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Language, and Applications,

2001, pp. 312-326.

[23] A. Tarhini, Z. Ismail, and N. Mansour. “Regression testing web
applications,” in Proceedings of the International Conference on

Advanced Computer Theory and Engineering, 2008, pp. 902-906.

[24] F. Lin, M. Ruth, and S. Tu. “Applying safe regression test selection
techniques to java web services,” in Proceedings of the International

Conference on Next Generation Web Services Practices, 2006, pp. 133-

142.
[25] M. Ruth and S. Tu. “A safe regression test selection technique for web

services,” in Proceedings of the International Conference on Internet

and Web Applications and Services, 2007, pg. 47.
[26] M. Ruth, S. Oh, A. Loup, B. Horton, O. G., M. Mata, and S. Tu.

“Towards automatic regression test selection for web services,” in

Proceedings of the 31st Annual International Computer Software and
Applications Conference, 2007, pp. 729-736.

[27] J. Gao, D. Gopinathan, Q. Mai, and J. He. “A systematic regression

testing method and tool for software components,” in Proceedings of
the IEEE International Computer Software and Application

Conference, 2006, pp. 455-466.

[28] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker.
Empirical studies of a prediction model for regression test selection.

IEEE Transactions on Software Engineering, vol. 27, no. 3, pp. 248-

263, 2001.

