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Abstract—Cryptographic ciphers depend on how quickly the 

key affects the output of the ciphers (ciphertext). Keys are 

traditionally generated from small size input (Seed) to a bigger 

size random key. Key scheduling algorithm (KSA) is the 

mechanism that generates and schedules all sub-keys for each 

round of encryption. Researches have suggested that sub-keys 

should be generated separately to avoid related-key attack. 

Similarly, the key space should be disproportionately large to 

resist any attack meant for secret keys. To archive that, some 

algorithms adopt the use of matrixes such as quasigroup, Hybrid 

cubes and substitution box (S-box) to generate the encryption 

keys. Quasigroup has other algebraic property called 

“Isotopism”, which literally means Different quasigroups that 

has the same order of elements but different arrangements. This 

paper proposed a Dynamic Key Scheduling Algorithm (KSA) 

using Isotope of a quasigroup as the dynamic substitution table. 

The proposed algorithm is a modification and upgrade to All-

or-nothing Key Derivation Function (AKDF). To minimize the 

complexity of the algorithm, a method of generating Isotope 

from a non-associative quasigroup using one permutation is 

achieved. To validate the findings, non-associativity of the 

generated isotopes has been tested and the generated isotopes 

appeared to be non-associative. Furthermore, the proposed 

KSA algorithm will be validated using the Randomness test 

proposed and recommended by NIST, Avalanche and 

Correlation Assessment test. 

 

Index Terms—Key Scheduling Algorithm; Quasigroup; 

Random Number Generator; String Transformation 

 

I. INTRODUCTION 

 

The modern-day cryptography is not only to provide 

confidentiality, but simultaneously authenticates and verifies 

the integrity of the message and the sender respectively 

(Authenticated encryption). That ability can also be attributed 

to cryptographic keys as most ciphers rely on the keys [1]. 

Key scheduling algorithm (KSA) is a cryptographic 

algorithm that generates and manages session keys for all the 

rounds of encryption and decryption. Researches were 

conducted to provide a powerful key to withstand related key 

attack and increase the difficulty to cryptanalyze and recover 

secret keys [2][3]. It leads to the use of matrices and groups to 

proportionately enlarge the key space so as to make a brute 

force attack harder. Hybrid cube, cubicle hybrid cube and 

encryption based on rotation of Magic cube are some of the 

recent encryption algorithms that are based on matrices [1] [4]. 

The key space depends solely on the size of the matrix or cube. 

Generating those matrices empirically requires a high-speed 

processing capacity which can be very costly to resource-

constrain environments. However, static matrices can be 

vulnerable to attack, an Adversary may recover the encryption 

key by determining the exact matrix used. Cubicle Hybrid 

Cube proposed cube rotations to convert the static nature of 

Hybrid Cube to dynamic, thus increases the complexity of the 

algorithm [5]. This paper proposed a dynamic Key Scheduling 

Algorithm from a highly non-associative non-commutative 

quasigroup. The proposed algorithm is primitively based on 

All-Or-Nothing Key Derivation Function. The proposed 

algorithm uses the user-given key alongside predefined 

quasigroup to generate Isotope as a dynamic substitution table. 

A new method of generating isotope of non-associative 

quasigroup is achieved using one permutation. The non-

associativity and non-commutativity of the generated isotope 

is analyzed. The output of the KSA algorithm will be analyzed 

based on correlation assessment, avalanche effect and NIST 

test suit. 

 

II. PRELIMINARIES 

 

A quasigroup is n × n matrix that contains a set of positive 

integers arranged in rows and columns of the matrix, such that 

each integer occurs once in each row and column [6][7]. 
 

Definition[8]: let Q = {a1,a2…….an} be a finite set of n 

elements. A quasigroup (Q,*) is a groupoid (Algebra with one 

binary operation) satisfying the law (∀u, v ∈Q) (∃! x, y ∈
Q) u*x=v & y*u=v.    

      

However, shapeless quasigroup with non-associative 

property proved to be more useful in crypto systems. 

Therefore, the totally non-associative quasigroup of order 16 

is adopted in this research paper from the work of Meyer [9]. 
 

A. Isotope  

Isotopism refers to two or more quasigroups that has the 

same order but different arrangement of elements, in such a 

way that either of the quasigroup can be transformed to the 

other. Several methods of generating isotope have been 

developed over the years, some of those methods can be 

found in [10][11]. Isotope can be generated and used from 

existing quasigroup as a dynamic substitution table. The 

definition of Isotopism is given in the next heading. 

 

Definition [12]: A quasigroup (Q,\) is said to be isotopic to 
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another quasigroup (Q,*) if and only if there are bijection 

α,β,γ from K onto Q such that γ (x * y) = α (x) • β (y) for each 

x, y ∈ K. Then the triple (α,β,γ) is called an Isotopism (Q,*) 

to (Q, •). 

 

B. Non-Commutativity 

The word commutative originated from “commute” which 

literally means to move things around. Commutative property 

is the ability to switch two operands with each other and 

produce the same result. Commutative quasigroups produces 

recognizable patterns that crypto system strives to avoid. On 

the other hand, non-commutative quasigroups play a huge 

role in crypto system in generating non-linear sequence, but 

generating non-commutative quasigroup reciprocates with 

computational cost. Therefore in this paper the non-

commutative quasigroup of order 16 is adopted from the work 

of Mayer [9][13]. The non-commutative property can be 

verified by the use of the following definition. 

 

Definition [14]: let Q be the quasigroup of order n with 

binary operation * and x, y ∈ Q such that x ≠ y. if x * y = y * 

x then the binary operation is commutative. And if y * x ≠ x 

* y then the quasigroup with binary operation (Q,*) is non-

commutative. 

 

C. Non-associativity 

Associative property in a group means an operation 

between groups of quantities produce the same result as long 

as the order is the same. The word “Non-associative” means 

not necessarily associative. It produces a highly non-linear 

sequence if properly utilized. Therefore, this paper adopted a 

highly non-associative quasigroup for generating non-

associative Isotope as a dynamic substitution table. The non-

associativity has been tested for the generated isotopes. The 

following definition is used for the test [8][12][13]. 

 

Definition [9]: let Q be the quasigroup of order n with 

binary operation * and x, y 𝑎𝑛𝑑 𝑧 ∈ Q such that x ≠ y ≠ z. if 

(x * y) * z = y * (x * z), then the binary operation is 

Associative. And if (x * y) * z ≠ y * (x * z), then the 

quasigroup with binary operation (Q,*) is non-associative. 

 

D. Generating non-associative non-commutative 

quasigroup 

Non-commutative, non-associative quasigroup plays a vital 

role in developing cryptographic primitives due to its 

unpredictable nature, but they are quite difficult to generate if 

computational cost is considered. There are many methods of 

generating shapeless quasigroups, such methods include but 

not limited to Using Feistel network and Non-affine complete 

mapping. Table 1 and Table 2 show the tabular representation 

of the mapping, interested readers should check Mayer for 

detail [8][9][13]. 

 
Table 1 

θ and i ⊕ θ on the integer of group [8] 
 

x 0 1 2 3 4 5 6 7 

θ(x) 2 0 6 4 7 5 3 1 

(i⊕ θ)(x) 2 1 4 7 3 0 5 6 

 

The quasigroup is defined as: x*y=θ(x ⊕ y) ⊕ y. 
 

 
 

 

Table 2 

Tabular representation of the mapping [8] 
 

x θ(x) (i ⊕ θ)(x) 

(0,0,0) 

(0,0,1) 

(0,1,0) 
(0,1,1) 

(1,0,0) 

(1,0,1)  
(1,1,0) 

(1,1,1) 

(0,1,0) 

(0,0,0) 

(1,1,0) 
(1,0,0) 

(1,1,1) 

(1,0,1) 
(0,1,1) 

(0,0,1) 

(0,1,0) 

(0,0,1) 

(1,0,0) 
(1,1,1) 

(0,1,1) 

(0,0,0) 
(1,0,1) 

(1,1,0) 

 

In a related development, another method of generating 

multiple quasigroups from existing one is achieved using 

“cyclic random permutation” (CRP). Eventually, generating 

the CRP from encryption key increases the complexity of the 

algorithm. Similarly, the structure of the quasigroup was not 

considered and that could be used to launch a quasigroup 

attack on the cipher [15]. 

 
Figure 1: Cipher based on multiple quasigroups [15] 

 

All these methods require to generate a permutation of 

order n, generating the permutation itself increases the 

complexity of the algorithm and the structure of the 

quasigroup depends solely on the nature of the permutation. 

To generate a shapeless quasigroup using the above-

mentioned methods, a shapeless permutation is required. 

Therefore, this paper proposed a method of generating a 

shapeless quasigroup from predefined quasigroup. Each 

quasigroup of order n literally has other n! Quasigroups called 

Isotopes. 

 

E. Quasigroup String transformation 

Quasigroup String Transformation is an algebraic function 

used in cryptographic as a primitive that transform an input 

into a nonlinear formatted form, using a quasigroup as the 

substitution table [7] [11]. This technique is widely used in 

many cryptographic applications, such includes hash 

functions key scheduling algorithm and ciphers [15]. The 

diagram in Figure 2 visually describes a generic string 

transformation of a given input. 

 

Definition [11]: given a quasigroup (Q,*) with elements 

{a1, a2, …..an} where ai ∈Q, i = 1, 2, to n. let l be a leader 

where l∈ Q. b={b1,b2….bn} is obtained. 
 

Tr(a1,a2..an)=(b1,b2.bn)={

𝑙 ∗ 𝑎1(𝑎2) 𝑗 = 1, … . 𝑛 

𝑏𝑗 = 𝑏𝑗 − 1 ∗ 𝑎𝑗 ∗ (𝑎𝑗 + 1) 1 ≤ 𝑗 ≤ 𝑛 

𝑏𝑛 = 𝑏𝑛 − 1 ∗ 𝑎𝑛(𝑙) 
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Figure 2: Graphical representation of generic E Transformation [16] 

 

The technique has been transformed to forward and 

reverse, each round has different leader (l) to achieve 

significant avalanche effect [11]. 

 

F. Key Derivation Function 

Key derivation function (KDF) is used to generate 

proportionately large cryptographic keys from small private 

string. KDFs used two main sub functions (extractor and 

expander) to transform the small input into cryptographically 

pseudorandom output. KDFs and KSAs works together to 

generate keys or have a lot in common. The following sub 

function describes the KSA. 

 

Definition: let KDF be the function G: {0,1}s → {1,0}n 

using an operation that transform and expand short length 

user key {0,1}s to arbitrary length {1,0}n random string, 

where n > s. 

 

G. Key Scheduling Algorithm 

A cryptographic algorithm requires a mechanism that 

generates random encryption keys. The key is used to 

maintain the security (confidentiality and integrity) of data 

and information while on transit. The size and number of sub-

keys depends on the design of the cipher. The key is either 

generated or extracted from a bunch of key material. Hybrid 

cubes is an example of KSAs that select encryption keys from 

already generated key space [1]. Some encryption keys are 

generated from small size user key using KDFs. 

 

Definition: let KSA be the function F: {0,1}n→{1,0} 𝑛
1
 

{1,0} 𝑛
2
,{1,0} 𝑛

3
, {1,0} 𝑛

𝑠
 that generates or extract sub keys s 

from generated encryption key n. each sub key must be highly 

random and distinguishable from all sub keys. 

 

Algebraic functions have been used to generate nonlinear 

variable length cryptographic keys through certain process. 

Conventional key derivation function has phases of 

processes, single phase concatenates the private string from 

the user with the predefined public string to generate the key 

[17][18]. On the other hand, two phases KDF become the 

improved version and to increase flexibility and randomness. 

There are two main sub-functions in the KDF; extractor and 

expander which works together to generate the cryptographic 

key [17]. The extractor generates the variables from private 

and predefined public string while the expander take input 

from the extractor and perform the expansion until the key 

has achieved the maximum number of bits required for the 

encryption [18]. To align the proposed algorithms to current 

standard, the key is generated in excess and then reduced to 

128, 192 and 256 at the last stage. The following section will 

explain the process. 

 

 

III. PROPOSED METHODS 

 

This paper proposed the use of one permutation to generate 

an isotope from existing non-associative non-commutative 

quasigroup. The user key determines the permutation that will 

be used to generate the isotope as a substitution table. It 

adopted the All-Or-Nothing Key Derivation Function 

(AKDF) as primitive to the proposed KSA. The proposed 

algorithm (KSA) takes arbitrary length input from user, 

process it and bring out a random encryption key(s). The 

graphic representation of the whole idea can be visualized in 

Figure 3. 

 
Figure 3: Dynamic Key Scheduling Algorithm 

 

The proposed KSA accept user_key as the input from user 

that the random encryption key will be extracted from. the 

extractor therefore extract all the required variables for all the 

processes and instantations. The algorithm contains a pre-

determined quasigroup (Q,*) known to the public and it is not 

part of Alice and Bob’s secret key. It is used to generate the 

isotophe (Q,\) based on the user key. All other functions are 

adopted from All-Or-Nothing Key Derivation Function 

AKDF. Based on the AKDF, the expansion functions are 

responsible for algebraically dilating or expanding the input 

key from small size to big. the size and summation of the user 

private string are used to expand the key (Exp_f1 and Exp_f2), 

any changes in the private string will result a measure change 

in the output key. if an attaker predicts all the private string 

exept for 1, the key cannot be recovered. the expantion 

functions are very sensitive to changes in the input key. The 

Exp_f3 use both output of Exp_f1 and Exp_f2 as input to 

generate the third block. In this function, quasigroup string 

transformation is used for the expansion. The use of 

summation and size of the private string from the user play a 

vital role in detecting any changes. With this algorithm, 

adversary cannot predict the initial key by observing the 

behaviour of the ciphertext.  

The transformation function tr1, tr2 and tr3 are to transform 

the tree output blocks from expansion function seperatly 

while tr is the last transformation function that puts all the 

three blocks together and transform them to a random string 

to ensure security. the sub-keys will be produced from the 



Journal of Telecommunication, Electronic and Computer Engineering 

4 e-ISSN: 2289-8131   Vol. 9 No. 3-5  

output of tr at the last stage. 

 

A. Description of the proposed KSA 

In this section, instantiation of all the function and variables 

have been created to demonstrate the process. The functions 

are, Extraction, Expansion and Transformation. All the sub-

functions of this algorithm will be explained with some 

examples in the next section. 

 

 
 

B. Dynamic Quasigroup (Q,|) 

A method of generating quasigroup from existing 

quasigroup is proposed. Each row and column of a 

quasigroup of order n is a permutation of order n and each 

quasigroup of order n has n × 2 permutations (rows and 

columns) of order n. therefore in this paper a method of 

generating quasigroup from a pre-defined quasigroup using 

single permutation is achieved. The permutation is selected 

from the predefined quasigroup based on the user key. The 

shapeless permutation will be used to generate a dynamic 

quasigroup with 100% commutativity and associativity 

inheritance. The following definition describes the proposed 

method. 

 

Definition: Let (Q,\) be the Isotope of non-associative non-

commutative quasigroup(Q,*). Such that, (Q,\) = 

π(Q,*).where π is a permutation in (Q,*). 

Lemma: the quasigroups has direct mapping with each 

other ((Q,*) → (Q,\)). Each element x in quasigroup (Q*) 

mapped directly to element z in (Q,\). The isotope inherits the 

shape of the parent quasigroup. 

Proof: Let x*y be a binary operation in (Q,*). where π = 

{0,C,6,7,1,8,F,E,A,5,3,D,4,9,2,B} and (Q,\) = π(Q,*(x*y)). 

The quasigroup (Q,*) and (Q,\) has a direct mapping to each 

other. (Q,\(x*y))= π(Q,*(x*y)). 

 

C. Generating the Dynamic Quasigroup 

The dynamic quasigroup is generated from a predefined 

quasigroup of order 16 based on the user inputs as explained 

earlier. The following definition and example demonstrate 

the process. 

 

Definition: Let (Q,*) be the non-associative non-

commutative quasigroup of order n. 

i=sum % order of the quasigroup (Q,*) 

π = {a1, a2….an} 

a1=x*y1 

a2= x*y2 

an= x*yn 

x is constant and y is from 0 to n. 

Where x and y are locations in quasigroup (Q,*) 

j=0 to15 

Q,| = π (xi,yj) 

 

Example 

From the predefined non-associative non-commutative 

quasigroup of order 16, the isotope is generated. The example 

below, describes the process in details. 

x=36 % 16 

π = {a1, a2….an} 

a1=4*0=0 

a2=4*1=c 

a16=4*16=B 

π = {0,C,6,7,1,8,F,E,A,5,3,D,4,9,2,B} 

Q,| = π (x,y) 

The generated isotope is expected to inherit all the properties 

of the parent quasigroup. 

 

IV. ANALYSIS AND RESULT 

 
In this paper, the method of generating shapeless 

quasigroup from existing quasigroup with complete 

inheritance has been tested. It has been analyzed to verify 

whether the generated quasigroup has inherited the non-

commutative and non-associative property from the parent 

quasigroup or not. Similarly, the final output of the algorithm 

(encryption keys) has also been tested to verify the correlation 

and avalanche effect between all sub keys. The randomness 

of the generated key(s) is also tested using the randomness 

test suit proposed by National Institute for Standard and 

Technology (NIST). 

 

A. Analysis of the quasigroup 

In this section, the properties of the pre-defined and 

generated quasigroups are analyzed to measure the 

associativity and commutativity. For the quasigroup of order 

16, there are 120 instances to compare the commutativity of 

x*y with y*x. the favorable result is to obtain equal amount of 

instances where x*y ≠ y * x in both predefined quasigroup and 

the isotope. The adopted quasigroup is first examined. It 

turned out to be only eight (8) instances appears to be 

commutative. Almost all the permutations in the predefined 

quasigroup have been used to create an isotope. All generated 

isotopes inherited the same commutativity from the parent 

quasigroup as presumed. 

 

B. Test data 

In this test, 3 different sizes of encryption keys (128, 256 

and 512) were generated and the following result is obtained 

from the test. Each key has 3 other sub keys (Sub_key_1, 

Sub_key_2 Sub_key_3 Sub_key_4.). Table 3, Table 4, Table 

5 and Table 6 contains input, output size and the output of 

each generated keys. Each set of keys are denoted with an 

alphabet (a, b, c and d), While each sub key is numbered from 

1 to 4. 
 

Table 3  
Generated 128 bit keys 

 

Keys ID Input: 12345678 Output Size: 128 

Sub_key_1a A B 9 7 4 5 8 0 6 B 7 3 4 F 8 0 
Sub_key_2a 9 8 B 7 B E 9 7 1 A 5 4 F B 8 4 

Sub_key_3a 0 E B 0 D F E A 2 2 C 9 7 D 4 A 

Sub_key_4a F D 4 4 5 9 E 8 4 3 2 B 4 6 6 E 

 
 

Algorithm DKSA: {0,1}
n

→{1,0} 𝑛
1
 {1,0} 𝑛

2
,{1,0} 𝑛

𝑠
 

1. Q,\ = π(Q,*) 

2. exp
f-1

 ← (x
i
= size +u

i
 mode n) 

3. exp
f-2 

←
 
y

j
= sum +p

j
 mode n 

4. exp
f-3

←T
A
(b). 

5. tr1←T
E,D

(l
2
(p)). 

6. tr2←T
E,D

((l
3
y)). 

7. tr3←T
E,D

((l
4
a)). 

8. tr← T
E,D

(l
n
(l

6
(l

5
(x)))). 

 

return {1,0} 𝑛
1
 {1,0} 𝑛

2
,{1,0} 𝑛

3
, {1,0} 𝑛

𝑠
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Table 4  

Generated 128 bit keys 
 

Output keys Input: 0234567 Output Size: 128 

Sub_key_1b D 6 9 9 9 B 1 6 B 3 3 F D 2 0 7 

Sub_key_2b E 2 9 2 7 9 6 A 9 1 B D 5 3 F 8 
Sub_key_3b 9 3 B E 2 1 5 4 F 9 5 B 9 2 1 8 

Sub_key_4b B 1 2 D E 5 6 B 3 0 6 E B 0 9 3 

 
Table 5  

Generated 256 bit keys 

 

Output keys Input: 12345679 Output Size: 256 

Sub_key_1c E 2 3 C B 4 0 A A F 1 2 2 0 E A 0 9 7 3 F A C 5 6 B 7 

E 8 F 0 A 

Sub_key_2c C 1 B 0 E A F 0 2 A 7 B 5 2 9 9 8 5 6 4 E C C 5 0 7 E 
9 2 2 4 B 

Sub_key_3c 0 B F 9 1 7 A 9 A E C 4 D 5 2 4 6 E 4 5 9 2 9 B 3 6 5 F 

5 2 1 2 

Sub_key_4c E 6 2 D 1 D 3 6 1 F E 3 9 6 0 9 1 4 1 C B 6 7 4 3 6 F 0 

F E 9 F 

 

Table 6  
Generated 512 bit keys 

 

Output keys Input: 12345679 Output Size: 512 

Sub_key_1d 0 9 3 5 9 4 2 8 3 3 9 8 A D 1 3 C 4 9 9 4 6 D 9 E 9 0 E 

9 A 4 3 E 8 9 E E 6 E 8 F 3 9 2 2 5 1 F 7 9 6 9 2 9 A D 
0 1 7 2 E 7 E C 

ub_key_2d C 7 1 6 2 7 B 1 F 7 2 5 D D 6 E 9 0 1 8 6 E 7 E F 8 E E 

D 0 9 7 0 C F C 7 4 8 F 7 5 C A 7 D 3 0 4 B 6 6 D 9 2 
E 1 1 D 4 4 A 0 C 

Sub_key_3d 7 5 C E 9 A A 5 9 D E B 5 3 9 5 0 A 1 4 2 2 4 D F 4 6 

2 9 4 A 7 1 5 C B 8 4 8 0 A 4 C 1 4 3 9 C 8 7 D 3 A 0 
C 3 8 2 D B 6 7 A 0 

Sub_key_4d 8 7 6 7 E B A A C 5 3 C E 9 9 8 4 C 3 1 D 0 D 7 C 6 4 

A 7 2 D D F 4 F 9 8 3 5 F A 6 B C 6 0 0 D 1 1 8 5 2 2 
E 9 E A 1 9 0 B 6 C 

 

C. Correlation Assessment 

This test is to examine how each sub key relates to other 

sub keys. In this test, the favorable result is usually close to 0 

(< 1) and if the result is close to 1 then the elements that can 

be used to predict other sub keys exist. Any predictable 

pattern found between sub keys could be used by crypto 

analyst to launch an attack. Two set of keys are tested in this 

test and all the 4 sub keys are being compared with each other 

to determine whether they are related or not. The test require 

two variables (x and y) and for each comparison, one of the 

operant is x and the other is considered as y [19]. The obtained 

favorable result of this test can be verified from Table 7 and 

Table 8. 
 

Table 7  

Correlation between one set of sub keys 

 

x y Correlation 

Sub_key_1a Sub_key_2a  0.268 

Sub_key_1a Sub_key_3a -0.080 

Sub_key_1a Sub_key_4a -0.116 
Sub_key_2a Sub_key_3a  0.279 

Sub_key_2a Sub_key_4a -0.132 

Sub_key_3a Sub_key_4a  0.204 

 

Table 8  

Correlation between different sub keys 

 

x y Correlation 

Sub_key_1d Sub_key_2d 0.022 

Sub_key_1d Sub_key_3d -0.074 

Sub_key_1d Sub_key_4d 0.067 

Sub_key_2d Sub_key_3d -0.080 

Sub_key_2d Sub_key_4d -0.001 

Sub_key_3d Sub_key_4d 0.098 

D. Avalanche Effect 

This test examines how small changes in the input 

significantly affect the output. A scheme is said to have an 

effective Avalanche property if small changes in the input 

affectively changed the output [20] [21]. Ineffective 

avalanche property in cryptographic scheme could be 

exploited by the crypto analyst as vulnerability. The proposed 

scheme appears to have a favorable avalanche effect as in 

Table 9, Table 10, Table 11 and Table 12. 
 

Table 9  

Avalanche property between sub keys 
 

Sub Keys Avalanche 

Sub_key_1a Sub_key_2a 87.5% 

Sub_key_1a Sub_key_3a 100% 
Sub_key_1a Sub_key_4a 93.75% 

Sub_key_2a Sub_key_3a 87.5% 

Sub_key_2a Sub_key_4a 100% 
Sub_key_3a Sub_key_4a 100% 

 

Table 10 

Avalanche property between different sub keys 
 

Sub Keys Avalanche 

Sub_key_1b Sub_key_2b  93.75% 
Sub_key_1b Sub_key_3b  93.75% 

Sub_key_1b Sub_key_4b  100% 

Sub_key_2b Sub_key_3b  93.75% 
Sub_key_2b Sub_key_4b  93.75% 

Sub_key_3b Sub_key_4b  100% 

 

Table 11 
Avalanche property between sub keys 

 

Sub Keys Avalanche 

Sub_key_1c Sub_key_2c 93.75% 
Sub_key_1c Sub_key_3c 100% 

Sub_key_1c Sub_key_4c 93.75% 

Sub_key_2c Sub_key_3c 97% 
Sub_key_2c Sub_key_4c 91% 

Sub_key_3c Sub_key_4c 91% 

 
 Table 12  

Avalanche property between different sub keys 

 

x y Avalanche 

Sub_key_1d Sub_key_2d  92% 

Sub_key_1d Sub_key_3d 96% 

Sub_key_1d Sub_key_4d  97% 
Sub_key_2d Sub_key_3d  91% 

Sub_key_2d Sub_key_4d  96% 

Sub_key_3d Sub_key_4d  93% 

 

E. The NIST Test 

This is a standard test proposed by NIST to measure the 

randomness of key scheduling algorithms, and any crypto 

system that has to do with random numbers. Minimum of 100 

bits is required as input for all the tests and if the P-value 

obtained from each result is <0.01 then the sequence is not 

random, otherwise, it’s random [22]. Out of the 16 different 

tests, this paper focuses on only 3 most important ones. The 

Frequency (Mono bit) Test, Frequency Test within Block and 

Run Test. All subsequent tests in the NIST test suit depend 

on the Frequency (Mono bit) test. The purpose of this is to 

check the proportion of ones and zeros in the generated 

random. Similarly, the Block test is to examine the frequency 

of each block within the sequence. The length of each block 

and how many blocks within a sequence will be determined 

by this test. The Run test is to check the uninterrupted 

sequence of like bits and to check how often those bits repeat 

themselves in the generated pseudo random numbers [22]. 
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Table 13 and Table 14 contain the obtained results of this test. 

 
Table 13  

The NIST test 

 

Key ID Freq_Test Input Block Run Test 

Sub_key_1a 0.6171 0.1512 0.9750 
Sub_key_2a 0.6171 0.2017 0.9750 

Sub_key_3a 0.8026 0.2317 0.4481 

Sub_key_4a 1.0000 0.4335 0.6171 

 

Table 14 

The NIST test 

Key ID Freq Test Input Block Run Test 

Sub_key_1b 0.8597 0.1985 0.7215 

Sub_key_2b 0.4795 0.9134 0.3515 

Sub_key_3b 0.8597 0.7089 0.0514 
Sub_key_4b 0.4795 0.6728 0.2309 

 

V. CONCLUSION 

 

Key scheduling algorithm (KSA) is the mechanism that 

generates encryption keys and all other round keys for each 

round of encryption. An adversary may study the behavior 

and relationship between all the round keys as a way to launch 

an attack on that algorithm Researches have suggested that 

sub-keys should be generated separately and 

disproportionately large to avoid related-key attack. The use 

of matrices has been adapted to achieve maximum security. 

Generating those matrices could be time consuming and the 

pattern of the matrices could compromise the secrecy of the 

algorithm. This paper introduced the use of highly shapeless 

quasigroup as a dynamic substitution table for generating 

encryption key(s). In the proposed scheme, all generated 

Isotopes appears to have inherited all the properties of the 

parent quasigroup. The proposed KSA adopted the AKDF as 

the mechanism for expanding the key. All generated keys and 

sub keys have been tested and proved to have a reasonable 

randomness property. The future work of this research is to 

compare with other schemes to practically validate the 

proposed algorithm. 
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