

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 1

A Key Scheduling Algorithm Based on Dynamic

Quasigroup String Transformation and All-Or-

Nothing Key Derivation Function

Abdulkadir Hassan Disina, Sapiee Jamel, Muhammad Aamir, Zahraddeen A. Pindar,

Mustafa Mat Deris and Kamaruddin Malik Mohamad

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia,

86400 Parit Raja, Batu Pahat, Johor, Malaysia.

academicdisina@gmail.com

Abstract—Cryptographic ciphers depend on how quickly the

key affects the output of the ciphers (ciphertext). Keys are

traditionally generated from small size input (Seed) to a bigger

size random key. Key scheduling algorithm (KSA) is the

mechanism that generates and schedules all sub-keys for each

round of encryption. Researches have suggested that sub-keys

should be generated separately to avoid related-key attack.

Similarly, the key space should be disproportionately large to

resist any attack meant for secret keys. To archive that, some

algorithms adopt the use of matrixes such as quasigroup, Hybrid

cubes and substitution box (S-box) to generate the encryption

keys. Quasigroup has other algebraic property called

“Isotopism”, which literally means Different quasigroups that

has the same order of elements but different arrangements. This

paper proposed a Dynamic Key Scheduling Algorithm (KSA)

using Isotope of a quasigroup as the dynamic substitution table.

The proposed algorithm is a modification and upgrade to All-

or-nothing Key Derivation Function (AKDF). To minimize the

complexity of the algorithm, a method of generating Isotope

from a non-associative quasigroup using one permutation is

achieved. To validate the findings, non-associativity of the

generated isotopes has been tested and the generated isotopes

appeared to be non-associative. Furthermore, the proposed

KSA algorithm will be validated using the Randomness test

proposed and recommended by NIST, Avalanche and

Correlation Assessment test.

Index Terms—Key Scheduling Algorithm; Quasigroup;

Random Number Generator; String Transformation

I. INTRODUCTION

The modern-day cryptography is not only to provide

confidentiality, but simultaneously authenticates and verifies

the integrity of the message and the sender respectively

(Authenticated encryption). That ability can also be attributed

to cryptographic keys as most ciphers rely on the keys [1].

Key scheduling algorithm (KSA) is a cryptographic

algorithm that generates and manages session keys for all the

rounds of encryption and decryption. Researches were

conducted to provide a powerful key to withstand related key

attack and increase the difficulty to cryptanalyze and recover

secret keys [2][3]. It leads to the use of matrices and groups to

proportionately enlarge the key space so as to make a brute

force attack harder. Hybrid cube, cubicle hybrid cube and

encryption based on rotation of Magic cube are some of the

recent encryption algorithms that are based on matrices [1] [4].

The key space depends solely on the size of the matrix or cube.

Generating those matrices empirically requires a high-speed

processing capacity which can be very costly to resource-

constrain environments. However, static matrices can be

vulnerable to attack, an Adversary may recover the encryption

key by determining the exact matrix used. Cubicle Hybrid

Cube proposed cube rotations to convert the static nature of

Hybrid Cube to dynamic, thus increases the complexity of the

algorithm [5]. This paper proposed a dynamic Key Scheduling

Algorithm from a highly non-associative non-commutative

quasigroup. The proposed algorithm is primitively based on

All-Or-Nothing Key Derivation Function. The proposed

algorithm uses the user-given key alongside predefined

quasigroup to generate Isotope as a dynamic substitution table.

A new method of generating isotope of non-associative

quasigroup is achieved using one permutation. The non-

associativity and non-commutativity of the generated isotope

is analyzed. The output of the KSA algorithm will be analyzed

based on correlation assessment, avalanche effect and NIST

test suit.

II. PRELIMINARIES

A quasigroup is n × n matrix that contains a set of positive

integers arranged in rows and columns of the matrix, such that

each integer occurs once in each row and column [6][7].

Definition[8]: let Q = {a1,a2…….an} be a finite set of n

elements. A quasigroup (Q,*) is a groupoid (Algebra with one

binary operation) satisfying the law (∀u, v ∈Q) (∃! x, y ∈
Q) u*x=v & y*u=v.

However, shapeless quasigroup with non-associative

property proved to be more useful in crypto systems.

Therefore, the totally non-associative quasigroup of order 16

is adopted in this research paper from the work of Meyer [9].

A. Isotope

Isotopism refers to two or more quasigroups that has the

same order but different arrangement of elements, in such a

way that either of the quasigroup can be transformed to the

other. Several methods of generating isotope have been

developed over the years, some of those methods can be

found in [10][11]. Isotope can be generated and used from

existing quasigroup as a dynamic substitution table. The

definition of Isotopism is given in the next heading.

Definition [12]: A quasigroup (Q,\) is said to be isotopic to

Journal of Telecommunication, Electronic and Computer Engineering

2 e-ISSN: 2289-8131 Vol. 9 No. 3-5

another quasigroup (Q,*) if and only if there are bijection

α,β,γ from K onto Q such that γ (x * y) = α (x) • β (y) for each

x, y ∈ K. Then the triple (α,β,γ) is called an Isotopism (Q,*)

to (Q, •).

B. Non-Commutativity

The word commutative originated from “commute” which

literally means to move things around. Commutative property

is the ability to switch two operands with each other and

produce the same result. Commutative quasigroups produces

recognizable patterns that crypto system strives to avoid. On

the other hand, non-commutative quasigroups play a huge

role in crypto system in generating non-linear sequence, but

generating non-commutative quasigroup reciprocates with

computational cost. Therefore in this paper the non-

commutative quasigroup of order 16 is adopted from the work

of Mayer [9][13]. The non-commutative property can be

verified by the use of the following definition.

Definition [14]: let Q be the quasigroup of order n with

binary operation * and x, y ∈ Q such that x ≠ y. if x * y = y *

x then the binary operation is commutative. And if y * x ≠ x

* y then the quasigroup with binary operation (Q,*) is non-

commutative.

C. Non-associativity

Associative property in a group means an operation

between groups of quantities produce the same result as long

as the order is the same. The word “Non-associative” means

not necessarily associative. It produces a highly non-linear

sequence if properly utilized. Therefore, this paper adopted a

highly non-associative quasigroup for generating non-

associative Isotope as a dynamic substitution table. The non-

associativity has been tested for the generated isotopes. The

following definition is used for the test [8][12][13].

Definition [9]: let Q be the quasigroup of order n with

binary operation * and x, y 𝑎𝑛𝑑 𝑧 ∈ Q such that x ≠ y ≠ z. if

(x * y) * z = y * (x * z), then the binary operation is

Associative. And if (x * y) * z ≠ y * (x * z), then the

quasigroup with binary operation (Q,*) is non-associative.

D. Generating non-associative non-commutative

quasigroup

Non-commutative, non-associative quasigroup plays a vital

role in developing cryptographic primitives due to its

unpredictable nature, but they are quite difficult to generate if

computational cost is considered. There are many methods of

generating shapeless quasigroups, such methods include but

not limited to Using Feistel network and Non-affine complete

mapping. Table 1 and Table 2 show the tabular representation

of the mapping, interested readers should check Mayer for

detail [8][9][13].

Table 1

θ and i ⊕ θ on the integer of group [8]

x 0 1 2 3 4 5 6 7

θ(x) 2 0 6 4 7 5 3 1

(i⊕ θ)(x) 2 1 4 7 3 0 5 6

The quasigroup is defined as: x*y=θ(x ⊕ y) ⊕ y.

Table 2

Tabular representation of the mapping [8]

x θ(x) (i ⊕ θ)(x)

(0,0,0)

(0,0,1)

(0,1,0)
(0,1,1)

(1,0,0)

(1,0,1)
(1,1,0)

(1,1,1)

(0,1,0)

(0,0,0)

(1,1,0)
(1,0,0)

(1,1,1)

(1,0,1)
(0,1,1)

(0,0,1)

(0,1,0)

(0,0,1)

(1,0,0)
(1,1,1)

(0,1,1)

(0,0,0)
(1,0,1)

(1,1,0)

In a related development, another method of generating

multiple quasigroups from existing one is achieved using

“cyclic random permutation” (CRP). Eventually, generating

the CRP from encryption key increases the complexity of the

algorithm. Similarly, the structure of the quasigroup was not

considered and that could be used to launch a quasigroup

attack on the cipher [15].

Figure 1: Cipher based on multiple quasigroups [15]

All these methods require to generate a permutation of

order n, generating the permutation itself increases the

complexity of the algorithm and the structure of the

quasigroup depends solely on the nature of the permutation.

To generate a shapeless quasigroup using the above-

mentioned methods, a shapeless permutation is required.

Therefore, this paper proposed a method of generating a

shapeless quasigroup from predefined quasigroup. Each

quasigroup of order n literally has other n! Quasigroups called

Isotopes.

E. Quasigroup String transformation

Quasigroup String Transformation is an algebraic function

used in cryptographic as a primitive that transform an input

into a nonlinear formatted form, using a quasigroup as the

substitution table [7] [11]. This technique is widely used in

many cryptographic applications, such includes hash

functions key scheduling algorithm and ciphers [15]. The

diagram in Figure 2 visually describes a generic string

transformation of a given input.

Definition [11]: given a quasigroup (Q,*) with elements

{a1, a2, …..an} where ai ∈Q, i = 1, 2, to n. let l be a leader

where l∈ Q. b={b1,b2….bn} is obtained.

Tr(a1,a2..an)=(b1,b2.bn)={

𝑙 ∗ 𝑎1(𝑎2) 𝑗 = 1, … . 𝑛

𝑏𝑗 = 𝑏𝑗 − 1 ∗ 𝑎𝑗 ∗ (𝑎𝑗 + 1) 1 ≤ 𝑗 ≤ 𝑛

𝑏𝑛 = 𝑏𝑛 − 1 ∗ 𝑎𝑛(𝑙)

A Key Scheduling Algorithm Based on Dynamic Quasigroup String Transformation and All-Or-Nothing Key Derivation Function

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 3

Figure 2: Graphical representation of generic E Transformation [16]

The technique has been transformed to forward and

reverse, each round has different leader (l) to achieve

significant avalanche effect [11].

F. Key Derivation Function

Key derivation function (KDF) is used to generate

proportionately large cryptographic keys from small private

string. KDFs used two main sub functions (extractor and

expander) to transform the small input into cryptographically

pseudorandom output. KDFs and KSAs works together to

generate keys or have a lot in common. The following sub

function describes the KSA.

Definition: let KDF be the function G: {0,1}s → {1,0}n

using an operation that transform and expand short length

user key {0,1}s to arbitrary length {1,0}n random string,

where n > s.

G. Key Scheduling Algorithm

A cryptographic algorithm requires a mechanism that

generates random encryption keys. The key is used to

maintain the security (confidentiality and integrity) of data

and information while on transit. The size and number of sub-

keys depends on the design of the cipher. The key is either

generated or extracted from a bunch of key material. Hybrid

cubes is an example of KSAs that select encryption keys from

already generated key space [1]. Some encryption keys are

generated from small size user key using KDFs.

Definition: let KSA be the function F: {0,1}n→{1,0} 𝑛
1

{1,0} 𝑛
2
,{1,0} 𝑛

3
, {1,0} 𝑛

𝑠
 that generates or extract sub keys s

from generated encryption key n. each sub key must be highly

random and distinguishable from all sub keys.

Algebraic functions have been used to generate nonlinear

variable length cryptographic keys through certain process.

Conventional key derivation function has phases of

processes, single phase concatenates the private string from

the user with the predefined public string to generate the key

[17][18]. On the other hand, two phases KDF become the

improved version and to increase flexibility and randomness.

There are two main sub-functions in the KDF; extractor and

expander which works together to generate the cryptographic

key [17]. The extractor generates the variables from private

and predefined public string while the expander take input

from the extractor and perform the expansion until the key

has achieved the maximum number of bits required for the

encryption [18]. To align the proposed algorithms to current

standard, the key is generated in excess and then reduced to

128, 192 and 256 at the last stage. The following section will

explain the process.

III. PROPOSED METHODS

This paper proposed the use of one permutation to generate

an isotope from existing non-associative non-commutative

quasigroup. The user key determines the permutation that will

be used to generate the isotope as a substitution table. It

adopted the All-Or-Nothing Key Derivation Function

(AKDF) as primitive to the proposed KSA. The proposed

algorithm (KSA) takes arbitrary length input from user,

process it and bring out a random encryption key(s). The

graphic representation of the whole idea can be visualized in

Figure 3.

Figure 3: Dynamic Key Scheduling Algorithm

The proposed KSA accept user_key as the input from user

that the random encryption key will be extracted from. the

extractor therefore extract all the required variables for all the

processes and instantations. The algorithm contains a pre-

determined quasigroup (Q,*) known to the public and it is not

part of Alice and Bob’s secret key. It is used to generate the

isotophe (Q,\) based on the user key. All other functions are

adopted from All-Or-Nothing Key Derivation Function

AKDF. Based on the AKDF, the expansion functions are

responsible for algebraically dilating or expanding the input

key from small size to big. the size and summation of the user

private string are used to expand the key (Exp_f1 and Exp_f2),

any changes in the private string will result a measure change

in the output key. if an attaker predicts all the private string

exept for 1, the key cannot be recovered. the expantion

functions are very sensitive to changes in the input key. The

Exp_f3 use both output of Exp_f1 and Exp_f2 as input to

generate the third block. In this function, quasigroup string

transformation is used for the expansion. The use of

summation and size of the private string from the user play a

vital role in detecting any changes. With this algorithm,

adversary cannot predict the initial key by observing the

behaviour of the ciphertext.

The transformation function tr1, tr2 and tr3 are to transform

the tree output blocks from expansion function seperatly

while tr is the last transformation function that puts all the

three blocks together and transform them to a random string

to ensure security. the sub-keys will be produced from the

Journal of Telecommunication, Electronic and Computer Engineering

4 e-ISSN: 2289-8131 Vol. 9 No. 3-5

output of tr at the last stage.

A. Description of the proposed KSA

In this section, instantiation of all the function and variables

have been created to demonstrate the process. The functions

are, Extraction, Expansion and Transformation. All the sub-

functions of this algorithm will be explained with some

examples in the next section.

B. Dynamic Quasigroup (Q,|)

A method of generating quasigroup from existing

quasigroup is proposed. Each row and column of a

quasigroup of order n is a permutation of order n and each

quasigroup of order n has n × 2 permutations (rows and

columns) of order n. therefore in this paper a method of

generating quasigroup from a pre-defined quasigroup using

single permutation is achieved. The permutation is selected

from the predefined quasigroup based on the user key. The

shapeless permutation will be used to generate a dynamic

quasigroup with 100% commutativity and associativity

inheritance. The following definition describes the proposed

method.

Definition: Let (Q,\) be the Isotope of non-associative non-

commutative quasigroup(Q,*). Such that, (Q,\) =

π(Q,*).where π is a permutation in (Q,*).

Lemma: the quasigroups has direct mapping with each

other ((Q,*) → (Q,\)). Each element x in quasigroup (Q*)

mapped directly to element z in (Q,\). The isotope inherits the

shape of the parent quasigroup.

Proof: Let x*y be a binary operation in (Q,*). where π =

{0,C,6,7,1,8,F,E,A,5,3,D,4,9,2,B} and (Q,\) = π(Q,*(x*y)).

The quasigroup (Q,*) and (Q,\) has a direct mapping to each

other. (Q,\(x*y))= π(Q,*(x*y)).

C. Generating the Dynamic Quasigroup

The dynamic quasigroup is generated from a predefined

quasigroup of order 16 based on the user inputs as explained

earlier. The following definition and example demonstrate

the process.

Definition: Let (Q,*) be the non-associative non-

commutative quasigroup of order n.

i=sum % order of the quasigroup (Q,*)

π = {a1, a2….an}

a1=x*y1

a2= x*y2

an= x*yn

x is constant and y is from 0 to n.

Where x and y are locations in quasigroup (Q,*)

j=0 to15

Q,| = π (xi,yj)

Example

From the predefined non-associative non-commutative

quasigroup of order 16, the isotope is generated. The example

below, describes the process in details.

x=36 % 16

π = {a1, a2….an}

a1=4*0=0

a2=4*1=c

a16=4*16=B

π = {0,C,6,7,1,8,F,E,A,5,3,D,4,9,2,B}

Q,| = π (x,y)

The generated isotope is expected to inherit all the properties

of the parent quasigroup.

IV. ANALYSIS AND RESULT

In this paper, the method of generating shapeless

quasigroup from existing quasigroup with complete

inheritance has been tested. It has been analyzed to verify

whether the generated quasigroup has inherited the non-

commutative and non-associative property from the parent

quasigroup or not. Similarly, the final output of the algorithm

(encryption keys) has also been tested to verify the correlation

and avalanche effect between all sub keys. The randomness

of the generated key(s) is also tested using the randomness

test suit proposed by National Institute for Standard and

Technology (NIST).

A. Analysis of the quasigroup

In this section, the properties of the pre-defined and

generated quasigroups are analyzed to measure the

associativity and commutativity. For the quasigroup of order

16, there are 120 instances to compare the commutativity of

x*y with y*x. the favorable result is to obtain equal amount of

instances where x*y ≠ y * x in both predefined quasigroup and

the isotope. The adopted quasigroup is first examined. It

turned out to be only eight (8) instances appears to be

commutative. Almost all the permutations in the predefined

quasigroup have been used to create an isotope. All generated

isotopes inherited the same commutativity from the parent

quasigroup as presumed.

B. Test data

In this test, 3 different sizes of encryption keys (128, 256

and 512) were generated and the following result is obtained

from the test. Each key has 3 other sub keys (Sub_key_1,

Sub_key_2 Sub_key_3 Sub_key_4.). Table 3, Table 4, Table

5 and Table 6 contains input, output size and the output of

each generated keys. Each set of keys are denoted with an

alphabet (a, b, c and d), While each sub key is numbered from

1 to 4.

Table 3
Generated 128 bit keys

Keys ID Input: 12345678 Output Size: 128

Sub_key_1a A B 9 7 4 5 8 0 6 B 7 3 4 F 8 0
Sub_key_2a 9 8 B 7 B E 9 7 1 A 5 4 F B 8 4

Sub_key_3a 0 E B 0 D F E A 2 2 C 9 7 D 4 A

Sub_key_4a F D 4 4 5 9 E 8 4 3 2 B 4 6 6 E

Algorithm DKSA: {0,1}
n

→{1,0} 𝑛
1
 {1,0} 𝑛

2
,{1,0} 𝑛

𝑠

1. Q,\ = π(Q,*)

2. exp
f-1

 ← (x
i
= size +u

i
 mode n)

3. exp
f-2

←

y

j
= sum +p

j
 mode n

4. exp
f-3

←T
A
(b).

5. tr1←T
E,D

(l
2
(p)).

6. tr2←T
E,D

((l
3
y)).

7. tr3←T
E,D

((l
4
a)).

8. tr← T
E,D

(l
n
(l

6
(l

5
(x)))).

return {1,0} 𝑛
1
 {1,0} 𝑛

2
,{1,0} 𝑛

3
, {1,0} 𝑛

𝑠

A Key Scheduling Algorithm Based on Dynamic Quasigroup String Transformation and All-Or-Nothing Key Derivation Function

 e-ISSN: 2289-8131 Vol. 9 No. 3-5 5

Table 4

Generated 128 bit keys

Output keys Input: 0234567 Output Size: 128

Sub_key_1b D 6 9 9 9 B 1 6 B 3 3 F D 2 0 7

Sub_key_2b E 2 9 2 7 9 6 A 9 1 B D 5 3 F 8
Sub_key_3b 9 3 B E 2 1 5 4 F 9 5 B 9 2 1 8

Sub_key_4b B 1 2 D E 5 6 B 3 0 6 E B 0 9 3

Table 5

Generated 256 bit keys

Output keys Input: 12345679 Output Size: 256

Sub_key_1c E 2 3 C B 4 0 A A F 1 2 2 0 E A 0 9 7 3 F A C 5 6 B 7

E 8 F 0 A

Sub_key_2c C 1 B 0 E A F 0 2 A 7 B 5 2 9 9 8 5 6 4 E C C 5 0 7 E
9 2 2 4 B

Sub_key_3c 0 B F 9 1 7 A 9 A E C 4 D 5 2 4 6 E 4 5 9 2 9 B 3 6 5 F

5 2 1 2

Sub_key_4c E 6 2 D 1 D 3 6 1 F E 3 9 6 0 9 1 4 1 C B 6 7 4 3 6 F 0

F E 9 F

Table 6
Generated 512 bit keys

Output keys Input: 12345679 Output Size: 512

Sub_key_1d 0 9 3 5 9 4 2 8 3 3 9 8 A D 1 3 C 4 9 9 4 6 D 9 E 9 0 E

9 A 4 3 E 8 9 E E 6 E 8 F 3 9 2 2 5 1 F 7 9 6 9 2 9 A D
0 1 7 2 E 7 E C

ub_key_2d C 7 1 6 2 7 B 1 F 7 2 5 D D 6 E 9 0 1 8 6 E 7 E F 8 E E

D 0 9 7 0 C F C 7 4 8 F 7 5 C A 7 D 3 0 4 B 6 6 D 9 2
E 1 1 D 4 4 A 0 C

Sub_key_3d 7 5 C E 9 A A 5 9 D E B 5 3 9 5 0 A 1 4 2 2 4 D F 4 6

2 9 4 A 7 1 5 C B 8 4 8 0 A 4 C 1 4 3 9 C 8 7 D 3 A 0
C 3 8 2 D B 6 7 A 0

Sub_key_4d 8 7 6 7 E B A A C 5 3 C E 9 9 8 4 C 3 1 D 0 D 7 C 6 4

A 7 2 D D F 4 F 9 8 3 5 F A 6 B C 6 0 0 D 1 1 8 5 2 2
E 9 E A 1 9 0 B 6 C

C. Correlation Assessment

This test is to examine how each sub key relates to other

sub keys. In this test, the favorable result is usually close to 0

(< 1) and if the result is close to 1 then the elements that can

be used to predict other sub keys exist. Any predictable

pattern found between sub keys could be used by crypto

analyst to launch an attack. Two set of keys are tested in this

test and all the 4 sub keys are being compared with each other

to determine whether they are related or not. The test require

two variables (x and y) and for each comparison, one of the

operant is x and the other is considered as y [19]. The obtained

favorable result of this test can be verified from Table 7 and

Table 8.

Table 7

Correlation between one set of sub keys

x y Correlation

Sub_key_1a Sub_key_2a 0.268

Sub_key_1a Sub_key_3a -0.080

Sub_key_1a Sub_key_4a -0.116
Sub_key_2a Sub_key_3a 0.279

Sub_key_2a Sub_key_4a -0.132

Sub_key_3a Sub_key_4a 0.204

Table 8

Correlation between different sub keys

x y Correlation

Sub_key_1d Sub_key_2d 0.022

Sub_key_1d Sub_key_3d -0.074

Sub_key_1d Sub_key_4d 0.067

Sub_key_2d Sub_key_3d -0.080

Sub_key_2d Sub_key_4d -0.001

Sub_key_3d Sub_key_4d 0.098

D. Avalanche Effect

This test examines how small changes in the input

significantly affect the output. A scheme is said to have an

effective Avalanche property if small changes in the input

affectively changed the output [20] [21]. Ineffective

avalanche property in cryptographic scheme could be

exploited by the crypto analyst as vulnerability. The proposed

scheme appears to have a favorable avalanche effect as in

Table 9, Table 10, Table 11 and Table 12.

Table 9

Avalanche property between sub keys

Sub Keys Avalanche

Sub_key_1a Sub_key_2a 87.5%

Sub_key_1a Sub_key_3a 100%
Sub_key_1a Sub_key_4a 93.75%

Sub_key_2a Sub_key_3a 87.5%

Sub_key_2a Sub_key_4a 100%
Sub_key_3a Sub_key_4a 100%

Table 10

Avalanche property between different sub keys

Sub Keys Avalanche

Sub_key_1b Sub_key_2b 93.75%
Sub_key_1b Sub_key_3b 93.75%

Sub_key_1b Sub_key_4b 100%

Sub_key_2b Sub_key_3b 93.75%
Sub_key_2b Sub_key_4b 93.75%

Sub_key_3b Sub_key_4b 100%

Table 11
Avalanche property between sub keys

Sub Keys Avalanche

Sub_key_1c Sub_key_2c 93.75%
Sub_key_1c Sub_key_3c 100%

Sub_key_1c Sub_key_4c 93.75%

Sub_key_2c Sub_key_3c 97%
Sub_key_2c Sub_key_4c 91%

Sub_key_3c Sub_key_4c 91%

 Table 12

Avalanche property between different sub keys

x y Avalanche

Sub_key_1d Sub_key_2d 92%

Sub_key_1d Sub_key_3d 96%

Sub_key_1d Sub_key_4d 97%
Sub_key_2d Sub_key_3d 91%

Sub_key_2d Sub_key_4d 96%

Sub_key_3d Sub_key_4d 93%

E. The NIST Test

This is a standard test proposed by NIST to measure the

randomness of key scheduling algorithms, and any crypto

system that has to do with random numbers. Minimum of 100

bits is required as input for all the tests and if the P-value

obtained from each result is <0.01 then the sequence is not

random, otherwise, it’s random [22]. Out of the 16 different

tests, this paper focuses on only 3 most important ones. The

Frequency (Mono bit) Test, Frequency Test within Block and

Run Test. All subsequent tests in the NIST test suit depend

on the Frequency (Mono bit) test. The purpose of this is to

check the proportion of ones and zeros in the generated

random. Similarly, the Block test is to examine the frequency

of each block within the sequence. The length of each block

and how many blocks within a sequence will be determined

by this test. The Run test is to check the uninterrupted

sequence of like bits and to check how often those bits repeat

themselves in the generated pseudo random numbers [22].

Journal of Telecommunication, Electronic and Computer Engineering

6 e-ISSN: 2289-8131 Vol. 9 No. 3-5

Table 13 and Table 14 contain the obtained results of this test.

Table 13

The NIST test

Key ID Freq_Test Input Block Run Test

Sub_key_1a 0.6171 0.1512 0.9750
Sub_key_2a 0.6171 0.2017 0.9750

Sub_key_3a 0.8026 0.2317 0.4481

Sub_key_4a 1.0000 0.4335 0.6171

Table 14

The NIST test

Key ID Freq Test Input Block Run Test

Sub_key_1b 0.8597 0.1985 0.7215

Sub_key_2b 0.4795 0.9134 0.3515

Sub_key_3b 0.8597 0.7089 0.0514
Sub_key_4b 0.4795 0.6728 0.2309

V. CONCLUSION

Key scheduling algorithm (KSA) is the mechanism that

generates encryption keys and all other round keys for each

round of encryption. An adversary may study the behavior

and relationship between all the round keys as a way to launch

an attack on that algorithm Researches have suggested that

sub-keys should be generated separately and

disproportionately large to avoid related-key attack. The use

of matrices has been adapted to achieve maximum security.

Generating those matrices could be time consuming and the

pattern of the matrices could compromise the secrecy of the

algorithm. This paper introduced the use of highly shapeless

quasigroup as a dynamic substitution table for generating

encryption key(s). In the proposed scheme, all generated

Isotopes appears to have inherited all the properties of the

parent quasigroup. The proposed KSA adopted the AKDF as

the mechanism for expanding the key. All generated keys and

sub keys have been tested and proved to have a reasonable

randomness property. The future work of this research is to

compare with other schemes to practically validate the

proposed algorithm.

ACKNOWLEDGMENT

This research is supported by the Office for Research,

Innovation, Commercialization and Consultancy (ORICC),

Universiti Tun Hussein Onn Malaysia (UTHM) under Project

Vot No. U195.

REFERENCES

 S. Jamel, M. M. Deris, I. T. R. Yanto, and T. Herawan. “The hybrid

cubes encryption algorithm (HiSea),” in Advances in Wireless, Mobile
Networks and Applications. Communications in Computer and

Information Science, S. S. Al-Majeed, C. L. Hu, and D. Nagamalai,

Eds. Berlin, Heidelberg: Springer, 2011, pp. 191-200.
 J. Kelsey, and B. Schneier. “Key-schedule cryptanalysis of DEAL,” in

Selected Areas in Cryptography (SAC 1999). Lecture Notes in

Computer Science, H. Heys, and C. Adams, Eds. Berlin, Heidelberg:
Springer, 2000, pp. 118–134.

 J. Kelsey, B. Schneier, and D. Wagner, “Related-key cryptanalysis of

3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2 and TEA,” in
Information and Communications Security, Y. Han, T. Okamoto, and

S. Qing, Eds. Berlin, Heidelberg: Springer, pp. 233–246, 1997.

 M. F. Mushtaq, S. Jamel, and M. M. Deris, “Triangular coordinate
extraction (TCE) for hybrid cubes,” Journal of Engineering and

Applied Science, vol.12, no. 8, pp. 2164-2169, 2017.

 D. Rajavel, and S. P. Shantharajah, “Cubical key generation and
encryption algorithm based on hybrid cube’s rotation,” in Proceedings

of the International Conference on Pattern Recognition, Informatics

and Medical Engineering, 2012, pp. 183-187.
 V. Dimitrova, and J. Markovski, “On quasigroup pseudo random

sequence generators,” in Proc. of the 1st Balkan Conf. on Informatics,

2004, pp. 21–23.
 A. Krapeˇ, “An application of quasigroups in cryptology,” Math.

Maced, vol. 8, pp. 47–52, 2010.

 S. Markovski, D. Gligoroski, and L. Kocarev, “Unbiased random
sequences from quasigroup string transformations,” in the Proceedings

of the 12th Int. Workshop on Fast Software Encryption (FSE 2005),

vol. 3557, 2005, pp. 163–180.

 K. A. Meyer, A New Message Authentication Code Based on the Non-

Associativity of Quasigroups. Retrospective Theses and Dissertations,

2006.
 O. Grošek, “Isotopy of Latin squares in cryptography,” Tatra

Mountains Mathematical Publications, vol. 45, pp. 27–36, 2010.

 Smile Markovski, “Design of crypto premitives based on quasigroup,”
Quasigr. Relat. Syst., vol. 23, pp. 41–90, 2015.

 V. Bakeva, “Parastrophic quasigroup string processing,” in
Proceedings of the Conference on Informatics and Information

Technology, 2011, pp. 19–21.

 A. Mileva and S. Markovski, “Shapeless Quasigroups Derived by
Feistel Orthomorphisms,” Glasnik Matematički, vol. 47, no. 67, pp.

333–349, 2012.

 H. Michael Damm, “Totally anti-symmetric quasigroups for all
orders,” Discrete Math., vol. 307, no. 6, pp. 715–729, 2007.

 H. Zorkta and T. Kabani, “New Cipher Algorithm Based on Multiple

Quasigroups,” International Journal of Machine Learning and
Computing, vol. 1, no. 5, pp. 454–459, 2011.

 Z. Pindar, S. H. Jamel, A. Disina, and M. M. Deris, “Compression

function based on permutations quasigroups,” ARPN Journal of
Engineering and Applied Sciences, vol. 11, no. 12, pp. 1–8, 2015.

 A. H. Disina, S. Jamel, Z. A. Pindar, and M. M. Deris, “All-or-nothing

key derivation function based on quasigroup string,” in International
Conference on Information Science and Security (ICISS), 2006, pp. 6–

10.

 C. W. Chuah, E. Dawson, and L. Simpson, “Key derivation function:
the SCKDF scheme,” in Security and Privacy Protection in

Information Processing Systems, L. J. Janczewski, H. B. Wolfe, and S.

Shenoi, Eds. Berlin, Heidelberg: Springer, 2013, pp. 125–138.
 H. Krawczyk, “Cryptographic extraction and key derivation: The

HKDF scheme,” in Lect. Notes Comput. Sci., vol. 6223 LNCS, 2010,

pp. 631–648.
 H. Ahmad, A. Hassan, M. Saeb, and H. D. Hamed, “The ‘PYRAMIDS’

block cipher,” International Journal of Network Security, vol. 2, pp.

50–60, 2005.
 J. C. H. Castro, J. M. Sierra, A. Seznec, A. Izquierdo, and A. Ribagorda,

“The strict avalanche criterion randomness test,” Math. Comput.

Simul., vol. 68, no. 1, pp. 1–7, 2005.
 S. Ramanujam, and M. Karuppiah, “Designing an algorithm with high

Avalanche Effect,” Int. J. Comput. Sci. Netw. Secur., vol. 11, no. 1, pp.

106–111, 2011.
 L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S.

D. Leigh, M Levenson, M. Vangel, N. A. Heckert, and D. L. Banks, A

Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. National Institute of

Standard and Technology, Technology Administration, US

Department of Commerce, 2010.

