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Abstract—Software product line (SPL) engineering paradigm 

is commonly used to manage variability and commonalities of 

business applications to satisfy a specific need or goal of a 

particular market. However, due to time and space complexity, 

combinatorial interaction testing (CIT) has been suggested to 

reduce the size of test suites. Although CIT is known as a 

promising approach to overcome these problems, there are still 

issues such as combinatorial explosion of features, which drains 

budget allocated for testing. Therefore, test case prioritization 

(TCP) is preferred to gain a better result in terms of producing 

an efficient detection of faults. Among prioritization techniques 

used in regression testing is similarity-based test case 

prioritization. Similarity-based test case prioritization 

rearranges test cases through calculation of distance between 

test cases using similarity measures. Result from the use of 

similarity measures in test case prioritization contributes to a 

much better testing process. This paper provides a comparison 

of selected similarity measures to investigate the feasibility and 

suitability of similarity measures to be used in SPL through 

experimentation. Jaccard, Hamming, Jaro-Winkler, Cosine 

similarity, Counting, and Sorensein distances have been chosen 

as similarity measures in this study. The result showed Jaro-

Winkler as the best similarity measure with an 84.96% Average 

Percentage of Faults Detected (APFD) value across eight feature 

models. The study offers insights on similarity measures in SPL 

context. Further, the paper concludes with suggestions on room 

for improvement, which could be achieved through 

experimentation and comparison studies. 

 

Index Terms—Similarity-based; Similarity Measure; 

Software Product Line Testing; Test Case Prioritization. 

 

I. INTRODUCTION 

 

Software Product Line (SPL) engineering is founded on the 

concept of reusability of products from the same family, 

which can be systematically reused either as common assets 

or only shared by a subset of the family [1]. Many software 

organizations modify their development process from single 

system to SPL to take advantage of reduction of time, cost, 

and effort to market, while significantly increases the quality 

of the derived products. SPL can be shown in graphical 

fashion using Feature Model (FM), which describes inter-

relationships between features. FM helps in modelling 

commonalities and variability of all products within a product 

family for product derivation process, which is known as 

configuration process. In this process, a selection of desirable 

features from FM to be developed for final application only 

allows a valid combination of features to be formed, which is 

known as configuration [2]. One of common quality 

assurance measures in SPLs is SPL testing. The difference 

between testing a single system and SPL is a single system 

only considers a single product at a time, whereas SPL 

considers entire SPL products to be tested. Due to this, SPL 

needs a systematic testing process due to commonalities and 

variabilities of features. SPL testing process struggles with 

complexity when the number of configurations (products) 

increases exponentially as the number of features grows 

linearly, which is known as combinatorial explosion. 

Resources allocated for SPL testing might be exhausted 

before testing completes and the faults might be left 

undetected. Thus, this prompts the need for a new method to 

overcome these challenges. A promising method to deal with 

these challenges comprises regression testing which is 

capable of reducing the number of test artifacts in single 

system either through minimization, selection, or 

prioritization [15]. Test case prioritization (TCP) is chosen to 

overcome SPL testing challenges as it considers best 

sequence of test cases to be tested, which may help in 

reducing the effort of testing.  

Moreover, TCP has been adapted in recent SPL works in 

[1], [2], [3], and [6]. TCP based on similarity measures is no 

stranger in test case prioritization method as indicated in [3], 

[6], and [12]. This approach, known as similarity-based 

prioritization aims to reorder test cases in terms of 

dissimilarity values for an SPL configuration to achieve a 

certain criteria. A graphic depiction of a similarity-based 

prioritization approach is shown in Figure 1. Similarity-based 

measures work on the assumption that most dissimilar test 

cases will generate most dissimilar configurations, which 

could produce more errors compared to similar ones [3]. 

Similarity values of a configuration are between zero and one, 

with zero indicating the configuration as similar, whereas one 

indicating the configuration as completely different, although 

this varies according to similarity measures’ formula. 

Typically, the input for an SPL similarity-based approach is 

a set of sampled configurations which is generated either 

through a domain expert or a sampling algorithm that 

undergoes combinatorial interaction testing (CIT) such as 

ICPL, AETG, CASA, and Chavtal, which is also known as 

test case selection.  

The remainder of the paper is organized as follows. Section 

II summarizes related works on similarity measures in test 

case prioritization. Section III states the background in SPL 

testing. Section IV includes experimental process and results 

based on similarity measures, which are presented and 

illustrated. Section V includes discussion based on the 

experiment’s results. Section VI deliberates threat to validity. 

Finally, Section VII draws conclusions and future work. 
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Figure 1: Similarity-based prioritization approach 

 

II. RELATED WORKS 

 

In previous studies, various researchers have applied 

similarity measures in a single system testing process. This 

includes the work by Ledru et al. [36], which have 

investigated the use of string distances in test case 

prioritization and determined the best type of string distances 

through comparing four classical string distance metrics. The 

result obtained is a string distance that is feasible to be used. 

The researchers reported Manhattan distance as the best 

choice to be used for prioritization purpose. Another work in 

single system is an empirical study performed on the effects 

of different similarity measures used for test case 

prioritization by Wang et al. [37]. The work evaluated the 

effects of six similarity measures on two similarity-based test 

case prioritization algorithms. The results obtained by their 

statistical analysis showed that Euclidian distance is more 

efficient in finding defects than other similarity measures. 

Moreover, Cohen et al. [38] carried out a comparison of 

several string distance metrics in name-matching tasks and 

concluded that Jaro-Winkler is a fast distance metric in 

calculation. 

Another work by Choi et al. [22] gathered 76 distance 

measures and binary similarity measures for classification 

according to hierarchical clustering and performed a study 

their relationships. Their study provided more insights on 

various similarity measures that have yet to be used in SPL 

domain. Furthermore, work by Bilenko and Yurveyvich, [23] 

discussed similarity functions’ importance in learning 

problem and suggested the creation of a function that can 

adapt to a particular domain as a suitable area to be 

researched. 

In SPL, there is a rising number of contributions in 

similarity-based prioritization. Among the work done using 

similarity-based prioritization technique is by Henard et al. 

[3]. The work proposed a combination of similarity heuristics 

and search-based approaches to prioritize test suites. The 

results indicated that two most dissimilar test cases will 

generate a higher fault detection rate than similar ones since 

the former ones are more likely to cover more features than 

the rest, which leads to more faults detected. Moreover, work 

by Sanchez et al. [10] conducted a comparison of test case 

prioritization criteria by dividing the approaches inside TCP 

to five categories. The categories consist of dissimilarity 

measures with Jaccard distance selected to be used as 

dissimilarity prioritization criteria’s representative. The 

experiment investigated whether prioritization criteria 

presented are effective at improving the rate of early fault 

detection of SPL test suites, and whether the criteria are able 

to improve current fault detection rate. The work indicated 

significant differences in the rate of early fault detection 

provided by different prioritization criteria.  

Another work by Devroey et al. [28] carried out an 

investigation on dissimilarity-based test generation for SPL 

behavior model and utilized similarity measures such as 

Hamming, Jaccard, Dice, Anti-dice, and Levenstein. They 

concluded that Hamming Distance and Jaccard distance as 

the most efficient similarity measures. More recently, another 

work by Al-hajjaji et al. [6] proposed a similarity-based 

prioritization approach to improve early rate of fault detection 

and interactive coverage between features. The work utilized 

Hamming distance as a similarity measure and compared it 

with a default order of sampling algorithms such as ICPL, 

CASA, and Chavtal, as well as, random order of test suites. 

Results obtained through their experimentation showed that 

Hamming distance improved the default order of 

configuration and indicated current sampling algorithm— 

default order is already suitable for testing, while 

modification indeed had improved the result of experiment.  

Moreover, test suites generated by sampling algorithm are 

commonly ordered by using a similarity-based prioritization 

algorithm. The algorithm helps to decide test cases’ new 

placements in a prioritized test suite to achieve a desired goal. 

In single system, various works have been done to improve 

prioritization algorithms such as [14], [35], and [32]. Fang et 

al. [35] provided a new technique for test case prioritization 

through an empirical study based on farthest-first ordered 

sequence (FOS) algorithm and greed-aided-clustering (GOS) 

algorithm. Their work concluded that their technique was 

able to find bugs and increased fault detection rate. 

Furthermore, nearest neighbor algorithm is regarded as the 

most suitable algorithm for a large dimensionality of data and 

efficient in generating a low computational overhead [32]. 

Another work by Wang et al. [37] investigated the effects of 

similarity measures on two similarity-based algorithms—

ART-based prioritization algorithm (ART) and global 

similarity-based prioritization algorithm. The study 

concluded Euclidian distance might be a better choice to be 

used in test case prioritization. In SPL, various types of 

prioritization algorithms have been used in SPL including [3], 

[6], and [10]. Work by Henard et al. [3] incorporated local 

maximum prioritization and global maximum prioritization 

algorithms to bypass combinatorial explosion in SPL. 

Whereas, Sanchez et al. [10] used a local maximum 

prioritization in their work to investigate the best type of test 

case prioritization technique. On the other hand, Al-Hajjaji et 

al. [6] proposed an all-yes-config algorithm, which is 

typically used in Linux community to select the most number 

of features in a product as the first one to be tested in a 

prioritized test suite. 

Based on the studies analyzed, to the best of the authors’ 

knowledge, there is no extensive comparison on similarity 

measures carried out by researchers in the past on test case 

prioritization for SPL. Thus, the current study is motivated to 

conduct an empirical study to investigate various types of 

similarity measures, in the context of white-box testing in test 

case prioritization. 

 

 

 



An Experiment of Different Similarity Measures on Test Case Prioritization for Software Product Lines 

 

 e-ISSN: 2289-8131   Vol. 9 No. 3-4 179 

III. BACKGROUND 

 

A. Feature Model 

The usage of Feature Model (FM) is commonly used in 

SPL as a visual representation to describe features that exist 

along with their relationship between each other. Feature 

modelling was first introduced by Kang [29] in Feature-

Oriented Domain Analysis (FODA), which has been utilized 

widely in SPL since it supports SPL’s development life cycle. 

Figure 2 shows an Electronic Shopping FM consisting of 

eight features with their relationships. The relationships that 

exist in the FM are as follows: 

i. Mandatory - Catalogue is required as a child feature of 

E-shop. 

ii. Optional - Search that is optional to it—is a parent 

node. 

iii. Or - at least Bank Transfer or Credit Card must be 

selected. 

iv. Alternative - High or Standard must be selected. 

v. Require - if Credit Card exists, High must be selected. 

vi. Exclude - A and B cannot exist in the same product. 

Both Require and Exclude are known as Cross Tree 

Constraint relationships. Based on FM, test case selection 

process using Combinatorial Interaction Testing (CIT) will 

select a valid combination of features which is known as 

configuration. 

 

 
Figure 2: Feature model Electronic Shopping [10] 

 

B. Combinatorial Interaction Testing 

The challenge of SPL testing gets more complex when a 

large number of features are involved, which contributes to a 

higher number of products, thus, requiring a high testing 

effort. This is unfeasible in SPL testing. Thus, CIT has been 

proposed to reduce the number of products to a considerable 

amount comprising the most relevant products [6, 10]. The 

most relevant set of products or known as test cases is a subset 

of a large number of test cases. A subset which consists the 

most features and relationships are most welcomed as it 

consists the most faults to be revealed. 

 Existing works using CIT variation include pairwise 

testing (two-wise) in SPL [4, 24, 25, 26]. Pairwise testing 

generate possible valid combinations of features in a product. 

In SPL, the generation of configuration is done by using a 

sampling algorithm such as ICPL, Chavtal, CASA, and 

AETG [2, 6]. However, even after CIT has been performed, 

the number of test cases generated are still substantially high. 

Thus, TCP is recommended by many researchers to be used 

as it rearranges best sequence of test cases with maximum 

coverage to detect all faults present in a test suite. 

 

C. Test Case Prioritization 

Testing all test cases in a real SPL environment is 

considered as unfeasible due to limited testing time and cost. 

Thus, TCP is a preferable approach to be used in SPL. TCP 

rearranges test cases, which covers the most interaction 

between features to be prioritized first. TCP works under the 

assumption that most faults are triggered by the most different 

products, which consequently contributes to low testing effort 

and fast market release. To achieve a high rate of fault 

detection, a few selection criteria have been proposed by 

Sanchez et al. [10] such as Cyclomatic Complexity (CC), 

Cross Tree Constraint Ratio (CTCR), or a similarity-based 

prioritization that relies on product similarity from a test suite 

to determine the new order of product to be tested. The 

common concept of TCP is to achieve a faster rate of fault 

detection and a higher coverage. In this study, the authors 

focus on similarity criteria that have been established in 

existing works. SPL products will be ordered based on their 

similarity value ranging from zero to one, with zero denoting 

two products that are completely similar whereas one 

denoting two products that are completely different from each 

other. 

 

D. Similarity Measure 

The usage of similarity measures in TCP for SPL is 

described in this section. The authors selected six types of 

similarity measures, which have been considered as the best 

or most suitable similarity measures to be used in TCP based 

on existing works [3, 6, 16, 22]. The rationale of selecting six 

similarity measures in this study is because the authors are 

motivated to explore various types of similarity measures. 

The TCP starts by utilizing products generated by a sampling 

algorithm such as ICPL. The authors also show the 

calculation for six products and the order of products in a test 

suite. Further, the authors use a local maximum prioritization 

algorithm in order to avoid biasness. The algorithm allows the 

authors to determine the order of products by firstly selecting 

two more dissimilar products (i.e. products with the highest 

distance between them) and add them to a prioritization list. 

Secondly, the process of selecting products with the next 

highest distance is continued until all products have been 

added to the list. The list represents the order of products to 

be tested [1]. An example of an original order of an electronic 

shop’s products in a test suite are shown next. The authors 

only selected six products and their respective calculation to 

save space in the paper. 

 

Product 1 = {E-Shop, Catalogue, Payment, Bank Transfer, 

Security, High} 

Product 2 = {E-Shop, Catalogue, Payment, Bank Transfer, 

Security, Standard} 

Product 3 = {E-Shop, Catalogue, Payment, Credit Card, 

Security, High} 

Product 4 = {E-Shop, Catalogue, Payment, Bank Transfer, 

Credit Card, Security, High} 

Product 5 = {E-Shop, Catalogue, Payment, Bank Transfer, 

Security, High, Search} 

Product 6 = {E-Shop, Catalogue, Payment, Bank Transfer, 

Security, Standard, Search} 

 

1) Jaccard Distance 

 

Jaccard Distance = (1 - 
|𝑃𝑎 ∩ 𝑃𝑏|

|𝑃𝑎 ∪ 𝑃𝑏|
) (1) 
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where: pa ∩ 𝑝b = Common features between Product A and B 

            pa ∪ 𝑝b = Total features between Product A and B 

 

Distance among test cases using Jaccard distance is shown 

on Table 1 and example of calculation is shown below. 

 

(P1 versus P2) = 1 - (5/7) = 0.286 
 

Table 1 
Jaccard distance 

 

Product  P1 P2 P3 P4 P5 P6 

P1 0.0 0.286 0.286 0.143 0.143 0.375 
P2 0.286 0.0. 0.5 0.375 0.375 0.143 

P3 0.286 0.5 0.0 0.143 0.375 0.444 

P4 0.143 0.375 0.143 0.0 0.25 0.444 
P5 0.143 0.375 0.375 0.25 0.0 0.25 

P6 0.375 0.143 0.444 0.444 0.25 0.0 

 

 

Order of products in test suite: P6, P3, P5, P2, P4, P1 

 

2) Hamming Distance 

 

Hamming Distance (pa, pb, F) = 1 - 
 |𝑝a ∩ pb| + |(F\pa) ∩(F\pb)| 

|𝐹|
 (2) 

 

where: pa ∩ 𝑝b = Common features between Product A and B 
(F\pa) ∩ (F\pb) = Features that do not exist between 

Product A and B 

F = Total number of features in test suite 

 

Distance among test cases using Hamming distance is 

shown on Table 2 and example of calculation is shown below.  

 

(P1 versus P2) = 1 – ((5 + 2)/ 9) = 0.22 

 
Table 2 

Hamming distance 

 

 

Order of products in test suite: P6, P3, P5, P2, P4, P1 

 

3) Jaro-Winkler 

 

𝐽𝑎𝑟𝑜 − 𝑊𝑖𝑛𝑘𝑙𝑒𝑟(𝑡,𝑇−1)= [Jaro (t, 𝑇𝑖−1) +
𝑝′

10
 * (1-Jaro (t,t)] (3) 

 

The first part of Jaro-Winkler is used to calculate Jaro 

distance, whereas, the second part of Jaro-Winkler is used as 

an extension to give a weight into a prefix character in the 

strings. 

 

𝑑𝑗= 
1

3
(

𝑚

𝑠1
+

𝑚

𝑠2
+

𝑚−𝑡

𝑚
) (4) 

 

where: m = Count of maximum number of matching 

characters in the same order 

 𝑠1 = Length of the first product 

 𝑠2 = Length of the second product  

 t = Half number of transposition of characters in 

strings 

 

Whereas the second part of Winkler is given by: 

 

𝑑𝑗𝑤= 𝑑𝑗 + (ℓp(1-𝑑𝑗)) (5) 

 

where: ℓ = Length of common prefix at the start of string, up 

to a maximum of four characters. 

p = Standard weight used in Jaro-Winkler, p=0.1. 

 

Distance among test cases is using Jaro-Winkler is shown 

on Table 3 and example of calculation is shown below. 

 

(P1 versus P2) = 0.066 

Jaro distance = 1/3 (5/6 + 5/6 + 5/5) = 0.89 

Jaro-Winkler = 0.89 + ((4 x 0.1)(1-0.89)) = 0.934 

0.066 = 1 – 0.934 

 

Table 3 

Jaro-Winkler 
 

Product P1 P2 P3 P4 P5 P6 

P1 0.0 0.066 0.066 0.15 0.03 0.091 

P2 0.066 0.0 0.077 0.046 0.046 0.03 
P3 0.066 0.077 0.0 0.035 0.106 0.178 

P4 0.15 0.046 0.035 0.0 0.091 0.115 

P5 0.03 0.046 0.106 0.091 0.0 0.057 
P6 0.091 0.03 0.178 0.115 0.057 0.0 

 

Order of products in test suite: P6, P3, P5, P4, P2, P1 

 

4) Cosine Similarity  

 

 
(6) 

 

where:   A = Vector A  

B = Vector B 

||A|| = Magnitude of vector A 

||B|| = Magnitude of vector B 

 

There are two other formula used to calculate Vector (Dot 

Product) and Magnitude of product: 

 

 

(7) 

 
(8) 

 

The authors use Term Frequency (TF) to calculate the 

number of occurrences of features inside a product. 

Typically, TF value will be available as a Frequency of 

Occurrence Vector (FOV). However, in SPL, features will 

not generate two or more times from a similar product. Thus, 

the TF is modified to a Binary Occurrence of Vector (BOV). 

An example of the difference between Binary and Frequency 

using “Apple” is shown as follows. 

Binary Occurrence Vector of “apple” 

1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0 

Product P1 P2 P3 P4 P5 P6 

P1 0.0 0.222 0.222 0.222 0.222 0.333 

P2 0.222 0.0 0.222 0.333 0.333 0.111 

P3 0.222 0.222 0.0 0.111 0.333 0.444 

P4 0.222 0.333 0.111 0.0 0.222 0.333 

P5 0.222 0.333 0.333 0.222 0.0 0.222 

P6 0.333 0.111 0.444 0.333 0.222 0.0 
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Frequency of Occurrence Vector of “apple” 

1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0 

 

Product features: 

BOV : 

 

Distance among test cases is using Cosine Similarity is 

shown on Table 4 and example of calculation is shown below. 

 

(P1 versus P2) = 0.167 

 

Dot Product = 5 

Magnitude of Product A = √6 

Magnitude of Product B = √6 

Magnitude of product A and B = √6 * √6 = 6 

Dot Product / product of magnitude of A and B = 5/6 = 0.8333 

1 – 0.8333 = 0.167 
 

Table 4 

Cosine Similarity 
 

Product  P1 P2 P3 P4 P5 P6 

P1 0.0 0.167 0.167 0.074 0.074 0.228 

P2 0.167 0.0 0.333 0.228 0.228 0.074 

P3 0.167 0.333 0.0 0.074 0.074 0.383 

P4 0.074 0.228 0.074 0.0 0.143 0.283 

P5 0.074 0.228 0.074 0.143 0.0 0.143 

P6 0.228 0.074 0.383 0.283 0.143 0.0 

 

Order of products in test suite: P6, P3, P2, P4, P5, P1 

 

5) Counting function 

 

(𝑃𝑎, 𝑃𝑏) = 1 −
𝑐

((ℓ𝑎 + ℓ𝑏)/2)
 (9) 

 

where: c = Common features of Product A and B 

ℓa= Length of product A 

ℓb = Length of product B 

 

Distance among test cases is using Counting Function is 

shown on Table 5 and example of calculation is shown below. 

 

(P1 versus P2) = 0.167 

 

Counting function = 1 – (5 / ((6+6)/2)) 

 = 0.167 
 

Table 5  

Counting Function 

 

Product P1 P2 P3 P4 P5 P6 

P1 0.0 0.167 0.167 0.077 0.077 0.231 

P2 0.167 0.0 0.333 0.231 0.231 0.077 

P3 0.167 0.333 0.0 0.077 0.231 0.385 
P4 0.077 0.231 0.077 0.0 0.142 0.286 

P5 0.077 0.231 0.231 0.142 0.0 0.286 

P6 0.231 0.077 0.385 0.286 0.286 0.0 

 

Order of products in test suite: P6, P3, P2, P4, P5, P1 

 

6) Sorensein Similarity 

 

(𝑃𝑎, 𝑃𝑏) = 1 −
2𝑐

ℓ𝑎 + ℓ𝑏
 (10) 

 

where: c = Common features of Product A and B 

ℓa= Length of product A 

ℓb = Length of product B 

 

Distance among test cases is using Sorensein Similarity is 

shown on Table 6 and example of calculation is shown below. 

 

(P1 versus P2) = 0.167 

 

Sorensein = 1 – (2(5) / (6+6)) 

1 – 0.833  = 0.167 
 

Table 6  

Sorensein Similarity 
 

Product P1 P2 P3 P4 P5 P6 

P1 0.0 0.167 0.167 0.077 0.077 0.231 

P2 0.167 0.0 0.333 0.231 0.231 0.077 

P3 0.167 0.333 0.0 0.077 0.231 0.385 

P4 0.077 0.231 0.077 0.0 0.142 0.286 

P5 0.077 0.231 0.231 0.142 0.0 0.286 

P6 0.231 0.077 0.385 0.286 0.286 0.0 

 

Order of products in test suite: P6, P3, P2, P4, P5, P1 

 

IV. EXPERIMENT AND RESULTS 

 

In this section, the authors evaluate six similarity measures 

described in section III by comparing their effectiveness 

towards existing SPL feature models by using sampling 

algorithm ICPL (T=2), since it is the fastest algorithm 

available in the market (6). The objective is to conduct an 

experimental study on similarity measures on TCP for SPL. 

In order to achieve this objective, the authors provide three 

research questions as follows: 

RQ1:  What is the best similarity measure to be used in 

TCP in terms of rate of fault detection? 

RQ2: Is the ordering of features based on similarity 

measures inside SPL product contributes to a better 

result? 

RQ3:  What factors contribute to a better result for TCP 

based on similarity measures? 

 

A. Experimental Settings 

In order to evaluate the comparison of similarity measures 

highlighted in section III, the authors used prototype 

developed by Sanchez et al. [10]. The prototype provides an 

integration of existing tools such as SPLCAT tool for 

generation of configuration and prioritization process. The 

authors utilized six similarity measures and evaluated each of 

the similarity measure on existing feature models on SPLOT 

repository. The experimentation was performed using 

Windows 8.1 equipped with Intel Core I5-3337U 1.8GHz 

with 6GB of RAM. 

 

1) Feature Models 

The authors implemented their similarity measures on real 

feature models taken from SPLOT repository that houses a 

wide range of features, from 40 to 300 features. The feature 

range was selected as some of benchmarked feature models 

within the range have been used in existing works [6], [10]. 

Based on Table 7, the authors classified feature models into 

three groups. Small for feature models of below than 50 

features, while medium for feature models between 50 to 100 

features, and large for feature models of more than 100 

a b c d e f g h 

1 1 1 1 1 1 1 1 
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features. Details such as generated product, CTCR, and 

number of faults used in experiment are shown below: 
 

Table 7 

Feature Models details 
 

Feature Model Features 
Generated 

products 
CTCR Faults 

Web portal 43 19 25% 4 
Video Player 71 18 0% 4 

Car Selection 72 24 31% 4 

Go Phone 77 14 14% 4 
Model 

Transformation 
88 28 0% 8 

Battle of tanks 144 484 0% 12 
Printers 172 129 0% 16 

Electronic 

Shopping 
290 24 11% 28 

 

2) Fault generation and evaluation metric 

This work utilized a fault simulator as appeared in Bagueri 

et al. [31], comprising two to four features of interaction fault. 

The fault simulator has been used in existing SPL works to 

investigate the effectiveness of TCP technique [6], [10]. Two 

to four features’ interactions are chosen due to practical 

application in a real SPL testing [31]. Typically, the general 

assumption of faults is that faults are distributed equally 

among features in a product, however, some researchers have 

argued that faults may be detected where they have not been 

unexpected [6]. Despite this, the best way to test SPL is by 

sticking to the assumption that there are equally distributed 

faults in features compared to focusing on certain features.  

 

3) The authors utilized Average Percentage of Fault 

Detected (APFD) as an evaluation metric in order to 

investigate the rate of faults detected by similarity 

measures [27].  

APFD metric evaluates the effectiveness of prioritization 

by calculating the average number of faults exposed based on 

their index position in a prioritized test suite. A higher APFD 

indicates a more effective similarity measure in detecting 

faults. The equation of APFD metric is as follows: 

 

 
(11) 

 

where T = test suite  

n = Test cases 

TFi = Position of the first test case exposing fault 

m = Number of faults exposed by test suite 

 
Table 8 

Test suite and faults detected 

 

Test/Faults F1 F2 F3 F4 F5 

T1 x x    

T2 x  x   

T3 x x x x  
T4     x 

 

Example of APFD calculation:  

 

= (1 - (1 + 1 + 1 + 1 + 3) / 4 x 5) + 1/(2x4) 

= 0.78 (Based on ordering T3, T2, T4, T1) 

 

B. Experimental Setup  

Based on Figure 3, the authors operate four phases in their 

experiment. First, four-wise interaction faults are generated 

based on feature models selected using fault generator. 

Second, valid combination of features are generated using 

SPLCAT tool with sampling algorithm ICPL (T=2). Third, 

similarity of generated products are calculated using six 

similarity measures, and subsequently prioritized according 

to their distance with product having the highest distance will 

be placed on top of prioritization list. Any value obtained that 

is not between zero and one is considered as an error from the 

algorithm. Fourth, prioritized products are evaluated by fault 

simulation and rate of faults detected is calculated by using 

APFD. The authors iterate the steps for ten times to gain a 

balanced result.  

 

 
 

Figure 3: Phases of evaluation experiment 

 

V. DISCUSSION 

 

The result of evaluation is shown in Table 9. The average 

result of APFD for all eight feature models ranges from 79% 

to 85%. Jaro-Winkler has the highest average APFD value of 

84.96%, followed by Cosine (84.32%), third, Counting 

function (83.73%), fourth, Sorensein (83.73%), fifth, 

Hamming distance (82.69%), and lastly, Jaccard distance 

(79.4%). Jaro-Winkler achieved the highest APFD value 

across seven feature models. Other than that, across three 

feature models, it achieved similar score as Hamming 

distance and Cosine similarity as shown in bold in Table 9. 

The results help the authors to answer RQ1, whereby Jaro-

Winkler is the best similarity measure to be used to increase 

the rate of fault detection of proposed TCP for SPL technique. 

On the other hand, Jaccard distance scored much lower APFD 

value on most feature models compared to the rest of 

similarity measures. Despite that, Jaccard distance achieved 

the highest APFD value for model transformation feature 

model. From the results, a small feature model tends to have 

similar APFD result across different similarity measures. 

This is because small feature model typically produces less 

diversity of test cases. 

Furthermore, Sorensein and Counting function similarity 

measures achieved identical results across all feature models. 

This occurred as they comprise similar formula, but with 

different ways of calculating similarity. This problem can be 

solved by adjusting the current similarity measure formula to 

fit SPL domain. For example, commonalities and variabilities 

concepts can be adjusted using Winkler formula from Jaro-

Winkler. Winkler extension increases the weight of prefix in 

strings, which is represented by common features of a product 

in SPL. By doing this, similarity value will vary, which will 

provide an accurate result and easier ranking process of 

products. The formula greatly benefits testers in order to 

diversify similar distance values among test cases. Current 

technique will choose the first product they discover in 

determining the ranking of a product. The flexibility of the 

Jaro-Winkler formula is suitable for SPL concept, which will 

allow it to handle commonalities and variabilities in a 

systematic approach. This answers the second RQ2. Finally, 

based on the Figure 4. Jaro-Winkler achieved the steepest 

curve and detected 100% of faults much earlier than other 

similarity measures, utilizing only 70% of test suite for 
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Electronic Shopping compared to other similarity measures. 

This shows that the rate of fault detection of Jaro-Winkler is 

the best. Moreover, Jaro-Winkler was implemented across all 

eight feature models—from small to large feature models, 

available from SPLOT repository. 

 

Table 9 
APFD Result for eight feature models 

 

 

 
 

Figure 4: APFD metrics for Electronic Shopping 

 

Next, for RQ3, among the factors that contribute to a better 

result based on similarity measure is how the product was 

generated through sampling algorithm. For example, ICPL 

may produce randomized products with valid combination of 

features. This affects calculation of similarity measures 

especially for similarity formula that considers the placement 

of features. Another factor is the generation of faults, 

whereby faults generated by fault simulator will yield 

different result towards APFD value. Thus, realizing the 

importance of real faults in case studies will greatly 

contribute to a much better testing process.  

 

VI. THREAT TO VALIDITY 

 

In this section, the authors deliberate potential threats to 

current study. Earlier, the authors did mention that this work 

applied local maximum prioritization to prioritize test suite. 

The algorithm selects two products with the furthest distance 

between them since it is assumed to contain the most different 

feature between each other. Each TCP technique has its own 

algorithm to help in determining prioritization ranking in 

order to contribute to a much better prioritization process [6]. 

In this study, a local maximum prioritization was chosen as it 

has been used by many researchers in TCP field [3],[10].  

 Moreover, not all of the faults were detected by similarity 

measures. This is due to the absence of real faults data which 

are required. Fault generator utilized in the experimentation 

simulated error based on the interaction of features inside a 

product. This problem has been highlighted by many 

researchers, attributing it to a lack of real data with real faults 

[6], [10]. However, the current work aimed to investigate the 

rate of faults detection by similarity measures, not the number 

of faults detected. Additionally, the assumption of equally 

distributed faults is much better for testing process compared 

to non-idealized idea without facts. Another threat to validity 

is an uncertainty nature of SPL testing that produces a 

different result after each run. However, this problem was 

solved in the experiment by executing multiple runs. 

 

VII. CONCLUSION AND FUTURE WORK 

 

As a conclusion, this study provides a comparison of 

similarity measures across eight benchmark case studies used 

by other researchers. The work extends the prototype 

0
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1.2

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Jaccard Hamming Jaro-Winkler Cosine Counting Function Sorensein

Feature Model 
Test 
Suite 

Size 

No. of 

features 

Faults 

Detected 

APFD 

Jaccard 
Distance 

Hamming 
Distance 

Jaro-
Winkler 

Cosine 
Similarity 

Counting 
Function 

Sorensein 

Web portal 19 43 4/4 85.83 95.83 95.83 95.83 92.5 92.5 

Video Player 18 71 4/4 89.17 94.17 94.17 94.17 94.17 94.17 

Car Selection 24 72 4/4 49 54 54 52 52 52 

Go Phone 14 77 4/4 75 75 91.6 91.6 87.5 87.5 

Model Transformation 28 88 7/8 77.01 76.43 75.86 74 77.01 77.01 

Battle of tanks 484 144 11/12 83.6 83.78 84.81 84.46 84.46 84.46 

Printers 129 172 15/16 95.39 95.43 95.76 95.62 94.86 94.86 

Electronic Shopping 24 290 25/28 84.23 86.84 87.61 86.86 87.3 87.3 

Average APFD 79.90 82.69 84.96 84.32 83.73 83.73 



Journal of Telecommunication, Electronic and Computer Engineering 

184 e-ISSN: 2289-8131   Vol. 9 No. 3-4  

developed by Sanchez et al. [10]. The results show that Jaro-

Winkler achieved the best result as a similarity measure. This 

opens up improvement opportunities through similarity 

measure’s flexibility of formula to suit various domains 

especially SPL’s general concept in commonalities and 

variabilities. This will subsequently influence testing process 

in terms of the ordering of products and features within a test 

suite.  

For future work, the authors are determined to extend the 

experiment on real industrial case studies with real faults and 

with similar similarity measures. Furthermore, this study is 

capable of increasing maximum fault interactions to six 

features interactions since it will detect almost all faults [30]. 

The authors are also determined to explore the extension of 

prioritization algorithm in order to enhance the ranking 

process to be more efficient in terms of execution time. 

Moreover, the authors will explore further on various 

combination of existing similarity measures extensively such 

as hybrid similarity measures in order to produce improved 

APFD result as suggested by [38]. 
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