

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 177

An Experiment of Different Similarity Measures on

Test Case Prioritization for Software Product Lines

Muhammad Sahak, Dayang N. A. Jawawi and Shahliza A. Halim
Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

muhammadbsahak@gmail.com

Abstract—Software product line (SPL) engineering paradigm

is commonly used to manage variability and commonalities of

business applications to satisfy a specific need or goal of a

particular market. However, due to time and space complexity,

combinatorial interaction testing (CIT) has been suggested to

reduce the size of test suites. Although CIT is known as a

promising approach to overcome these problems, there are still

issues such as combinatorial explosion of features, which drains

budget allocated for testing. Therefore, test case prioritization

(TCP) is preferred to gain a better result in terms of producing

an efficient detection of faults. Among prioritization techniques

used in regression testing is similarity-based test case

prioritization. Similarity-based test case prioritization

rearranges test cases through calculation of distance between

test cases using similarity measures. Result from the use of

similarity measures in test case prioritization contributes to a

much better testing process. This paper provides a comparison

of selected similarity measures to investigate the feasibility and

suitability of similarity measures to be used in SPL through

experimentation. Jaccard, Hamming, Jaro-Winkler, Cosine

similarity, Counting, and Sorensein distances have been chosen

as similarity measures in this study. The result showed Jaro-

Winkler as the best similarity measure with an 84.96% Average

Percentage of Faults Detected (APFD) value across eight feature

models. The study offers insights on similarity measures in SPL

context. Further, the paper concludes with suggestions on room

for improvement, which could be achieved through

experimentation and comparison studies.

Index Terms—Similarity-based; Similarity Measure;

Software Product Line Testing; Test Case Prioritization.

I. INTRODUCTION

Software Product Line (SPL) engineering is founded on the

concept of reusability of products from the same family,

which can be systematically reused either as common assets

or only shared by a subset of the family [1]. Many software

organizations modify their development process from single

system to SPL to take advantage of reduction of time, cost,

and effort to market, while significantly increases the quality

of the derived products. SPL can be shown in graphical

fashion using Feature Model (FM), which describes inter-

relationships between features. FM helps in modelling

commonalities and variability of all products within a product

family for product derivation process, which is known as

configuration process. In this process, a selection of desirable

features from FM to be developed for final application only

allows a valid combination of features to be formed, which is

known as configuration [2]. One of common quality

assurance measures in SPLs is SPL testing. The difference

between testing a single system and SPL is a single system

only considers a single product at a time, whereas SPL

considers entire SPL products to be tested. Due to this, SPL

needs a systematic testing process due to commonalities and

variabilities of features. SPL testing process struggles with

complexity when the number of configurations (products)

increases exponentially as the number of features grows

linearly, which is known as combinatorial explosion.

Resources allocated for SPL testing might be exhausted

before testing completes and the faults might be left

undetected. Thus, this prompts the need for a new method to

overcome these challenges. A promising method to deal with

these challenges comprises regression testing which is

capable of reducing the number of test artifacts in single

system either through minimization, selection, or

prioritization [15]. Test case prioritization (TCP) is chosen to

overcome SPL testing challenges as it considers best

sequence of test cases to be tested, which may help in

reducing the effort of testing.

Moreover, TCP has been adapted in recent SPL works in

[1], [2], [3], and [6]. TCP based on similarity measures is no

stranger in test case prioritization method as indicated in [3],

[6], and [12]. This approach, known as similarity-based

prioritization aims to reorder test cases in terms of

dissimilarity values for an SPL configuration to achieve a

certain criteria. A graphic depiction of a similarity-based

prioritization approach is shown in Figure 1. Similarity-based

measures work on the assumption that most dissimilar test

cases will generate most dissimilar configurations, which

could produce more errors compared to similar ones [3].

Similarity values of a configuration are between zero and one,

with zero indicating the configuration as similar, whereas one

indicating the configuration as completely different, although

this varies according to similarity measures’ formula.

Typically, the input for an SPL similarity-based approach is

a set of sampled configurations which is generated either

through a domain expert or a sampling algorithm that

undergoes combinatorial interaction testing (CIT) such as

ICPL, AETG, CASA, and Chavtal, which is also known as

test case selection.

The remainder of the paper is organized as follows. Section

II summarizes related works on similarity measures in test

case prioritization. Section III states the background in SPL

testing. Section IV includes experimental process and results

based on similarity measures, which are presented and

illustrated. Section V includes discussion based on the

experiment’s results. Section VI deliberates threat to validity.

Finally, Section VII draws conclusions and future work.

Journal of Telecommunication, Electronic and Computer Engineering

178 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Figure 1: Similarity-based prioritization approach

II. RELATED WORKS

In previous studies, various researchers have applied

similarity measures in a single system testing process. This

includes the work by Ledru et al. [36], which have

investigated the use of string distances in test case

prioritization and determined the best type of string distances

through comparing four classical string distance metrics. The

result obtained is a string distance that is feasible to be used.

The researchers reported Manhattan distance as the best

choice to be used for prioritization purpose. Another work in

single system is an empirical study performed on the effects

of different similarity measures used for test case

prioritization by Wang et al. [37]. The work evaluated the

effects of six similarity measures on two similarity-based test

case prioritization algorithms. The results obtained by their

statistical analysis showed that Euclidian distance is more

efficient in finding defects than other similarity measures.

Moreover, Cohen et al. [38] carried out a comparison of

several string distance metrics in name-matching tasks and

concluded that Jaro-Winkler is a fast distance metric in

calculation.

Another work by Choi et al. [22] gathered 76 distance

measures and binary similarity measures for classification

according to hierarchical clustering and performed a study

their relationships. Their study provided more insights on

various similarity measures that have yet to be used in SPL

domain. Furthermore, work by Bilenko and Yurveyvich, [23]

discussed similarity functions’ importance in learning

problem and suggested the creation of a function that can

adapt to a particular domain as a suitable area to be

researched.

In SPL, there is a rising number of contributions in

similarity-based prioritization. Among the work done using

similarity-based prioritization technique is by Henard et al.

[3]. The work proposed a combination of similarity heuristics

and search-based approaches to prioritize test suites. The

results indicated that two most dissimilar test cases will

generate a higher fault detection rate than similar ones since

the former ones are more likely to cover more features than

the rest, which leads to more faults detected. Moreover, work

by Sanchez et al. [10] conducted a comparison of test case

prioritization criteria by dividing the approaches inside TCP

to five categories. The categories consist of dissimilarity

measures with Jaccard distance selected to be used as

dissimilarity prioritization criteria’s representative. The

experiment investigated whether prioritization criteria

presented are effective at improving the rate of early fault

detection of SPL test suites, and whether the criteria are able

to improve current fault detection rate. The work indicated

significant differences in the rate of early fault detection

provided by different prioritization criteria.

Another work by Devroey et al. [28] carried out an

investigation on dissimilarity-based test generation for SPL

behavior model and utilized similarity measures such as

Hamming, Jaccard, Dice, Anti-dice, and Levenstein. They

concluded that Hamming Distance and Jaccard distance as

the most efficient similarity measures. More recently, another

work by Al-hajjaji et al. [6] proposed a similarity-based

prioritization approach to improve early rate of fault detection

and interactive coverage between features. The work utilized

Hamming distance as a similarity measure and compared it

with a default order of sampling algorithms such as ICPL,

CASA, and Chavtal, as well as, random order of test suites.

Results obtained through their experimentation showed that

Hamming distance improved the default order of

configuration and indicated current sampling algorithm—

default order is already suitable for testing, while

modification indeed had improved the result of experiment.

Moreover, test suites generated by sampling algorithm are

commonly ordered by using a similarity-based prioritization

algorithm. The algorithm helps to decide test cases’ new

placements in a prioritized test suite to achieve a desired goal.

In single system, various works have been done to improve

prioritization algorithms such as [14], [35], and [32]. Fang et

al. [35] provided a new technique for test case prioritization

through an empirical study based on farthest-first ordered

sequence (FOS) algorithm and greed-aided-clustering (GOS)

algorithm. Their work concluded that their technique was

able to find bugs and increased fault detection rate.

Furthermore, nearest neighbor algorithm is regarded as the

most suitable algorithm for a large dimensionality of data and

efficient in generating a low computational overhead [32].

Another work by Wang et al. [37] investigated the effects of

similarity measures on two similarity-based algorithms—

ART-based prioritization algorithm (ART) and global

similarity-based prioritization algorithm. The study

concluded Euclidian distance might be a better choice to be

used in test case prioritization. In SPL, various types of

prioritization algorithms have been used in SPL including [3],

[6], and [10]. Work by Henard et al. [3] incorporated local

maximum prioritization and global maximum prioritization

algorithms to bypass combinatorial explosion in SPL.

Whereas, Sanchez et al. [10] used a local maximum

prioritization in their work to investigate the best type of test

case prioritization technique. On the other hand, Al-Hajjaji et

al. [6] proposed an all-yes-config algorithm, which is

typically used in Linux community to select the most number

of features in a product as the first one to be tested in a

prioritized test suite.

Based on the studies analyzed, to the best of the authors’

knowledge, there is no extensive comparison on similarity

measures carried out by researchers in the past on test case

prioritization for SPL. Thus, the current study is motivated to

conduct an empirical study to investigate various types of

similarity measures, in the context of white-box testing in test

case prioritization.

An Experiment of Different Similarity Measures on Test Case Prioritization for Software Product Lines

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 179

III. BACKGROUND

A. Feature Model

The usage of Feature Model (FM) is commonly used in

SPL as a visual representation to describe features that exist

along with their relationship between each other. Feature

modelling was first introduced by Kang [29] in Feature-

Oriented Domain Analysis (FODA), which has been utilized

widely in SPL since it supports SPL’s development life cycle.

Figure 2 shows an Electronic Shopping FM consisting of

eight features with their relationships. The relationships that

exist in the FM are as follows:

i. Mandatory - Catalogue is required as a child feature of

E-shop.

ii. Optional - Search that is optional to it—is a parent

node.

iii. Or - at least Bank Transfer or Credit Card must be

selected.

iv. Alternative - High or Standard must be selected.

v. Require - if Credit Card exists, High must be selected.

vi. Exclude - A and B cannot exist in the same product.

Both Require and Exclude are known as Cross Tree

Constraint relationships. Based on FM, test case selection

process using Combinatorial Interaction Testing (CIT) will

select a valid combination of features which is known as

configuration.

Figure 2: Feature model Electronic Shopping [10]

B. Combinatorial Interaction Testing

The challenge of SPL testing gets more complex when a

large number of features are involved, which contributes to a

higher number of products, thus, requiring a high testing

effort. This is unfeasible in SPL testing. Thus, CIT has been

proposed to reduce the number of products to a considerable

amount comprising the most relevant products [6, 10]. The

most relevant set of products or known as test cases is a subset

of a large number of test cases. A subset which consists the

most features and relationships are most welcomed as it

consists the most faults to be revealed.

 Existing works using CIT variation include pairwise

testing (two-wise) in SPL [4, 24, 25, 26]. Pairwise testing

generate possible valid combinations of features in a product.

In SPL, the generation of configuration is done by using a

sampling algorithm such as ICPL, Chavtal, CASA, and

AETG [2, 6]. However, even after CIT has been performed,

the number of test cases generated are still substantially high.

Thus, TCP is recommended by many researchers to be used

as it rearranges best sequence of test cases with maximum

coverage to detect all faults present in a test suite.

C. Test Case Prioritization

Testing all test cases in a real SPL environment is

considered as unfeasible due to limited testing time and cost.

Thus, TCP is a preferable approach to be used in SPL. TCP

rearranges test cases, which covers the most interaction

between features to be prioritized first. TCP works under the

assumption that most faults are triggered by the most different

products, which consequently contributes to low testing effort

and fast market release. To achieve a high rate of fault

detection, a few selection criteria have been proposed by

Sanchez et al. [10] such as Cyclomatic Complexity (CC),

Cross Tree Constraint Ratio (CTCR), or a similarity-based

prioritization that relies on product similarity from a test suite

to determine the new order of product to be tested. The

common concept of TCP is to achieve a faster rate of fault

detection and a higher coverage. In this study, the authors

focus on similarity criteria that have been established in

existing works. SPL products will be ordered based on their

similarity value ranging from zero to one, with zero denoting

two products that are completely similar whereas one

denoting two products that are completely different from each

other.

D. Similarity Measure

The usage of similarity measures in TCP for SPL is

described in this section. The authors selected six types of

similarity measures, which have been considered as the best

or most suitable similarity measures to be used in TCP based

on existing works [3, 6, 16, 22]. The rationale of selecting six

similarity measures in this study is because the authors are

motivated to explore various types of similarity measures.

The TCP starts by utilizing products generated by a sampling

algorithm such as ICPL. The authors also show the

calculation for six products and the order of products in a test

suite. Further, the authors use a local maximum prioritization

algorithm in order to avoid biasness. The algorithm allows the

authors to determine the order of products by firstly selecting

two more dissimilar products (i.e. products with the highest

distance between them) and add them to a prioritization list.

Secondly, the process of selecting products with the next

highest distance is continued until all products have been

added to the list. The list represents the order of products to

be tested [1]. An example of an original order of an electronic

shop’s products in a test suite are shown next. The authors

only selected six products and their respective calculation to

save space in the paper.

Product 1 = {E-Shop, Catalogue, Payment, Bank Transfer,

Security, High}

Product 2 = {E-Shop, Catalogue, Payment, Bank Transfer,

Security, Standard}

Product 3 = {E-Shop, Catalogue, Payment, Credit Card,

Security, High}

Product 4 = {E-Shop, Catalogue, Payment, Bank Transfer,

Credit Card, Security, High}

Product 5 = {E-Shop, Catalogue, Payment, Bank Transfer,

Security, High, Search}

Product 6 = {E-Shop, Catalogue, Payment, Bank Transfer,

Security, Standard, Search}

1) Jaccard Distance

Jaccard Distance = (1 -
|𝑃𝑎 ∩ 𝑃𝑏|

|𝑃𝑎 ∪ 𝑃𝑏|
) (1)

Journal of Telecommunication, Electronic and Computer Engineering

180 e-ISSN: 2289-8131 Vol. 9 No. 3-4

where: pa ∩ 𝑝b = Common features between Product A and B

 pa ∪ 𝑝b = Total features between Product A and B

Distance among test cases using Jaccard distance is shown

on Table 1 and example of calculation is shown below.

(P1 versus P2) = 1 - (5/7) = 0.286

Table 1
Jaccard distance

Product P1 P2 P3 P4 P5 P6

P1 0.0 0.286 0.286 0.143 0.143 0.375
P2 0.286 0.0. 0.5 0.375 0.375 0.143

P3 0.286 0.5 0.0 0.143 0.375 0.444

P4 0.143 0.375 0.143 0.0 0.25 0.444
P5 0.143 0.375 0.375 0.25 0.0 0.25

P6 0.375 0.143 0.444 0.444 0.25 0.0

Order of products in test suite: P6, P3, P5, P2, P4, P1

2) Hamming Distance

Hamming Distance (pa, pb, F) = 1 -
 |𝑝a ∩ pb| + |(F\pa) ∩(F\pb)|

|𝐹|
 (2)

where: pa ∩ 𝑝b = Common features between Product A and B
(F\pa) ∩ (F\pb) = Features that do not exist between

Product A and B

F = Total number of features in test suite

Distance among test cases using Hamming distance is

shown on Table 2 and example of calculation is shown below.

(P1 versus P2) = 1 – ((5 + 2)/ 9) = 0.22

Table 2

Hamming distance

Order of products in test suite: P6, P3, P5, P2, P4, P1

3) Jaro-Winkler

𝐽𝑎𝑟𝑜 − 𝑊𝑖𝑛𝑘𝑙𝑒𝑟(𝑡,𝑇−1)= [Jaro (t, 𝑇𝑖−1) +
𝑝′

10
 * (1-Jaro (t,t)] (3)

The first part of Jaro-Winkler is used to calculate Jaro

distance, whereas, the second part of Jaro-Winkler is used as

an extension to give a weight into a prefix character in the

strings.

𝑑𝑗=
1

3
(

𝑚

𝑠1
+

𝑚

𝑠2
+

𝑚−𝑡

𝑚
) (4)

where: m = Count of maximum number of matching

characters in the same order

 𝑠1 = Length of the first product

 𝑠2 = Length of the second product

 t = Half number of transposition of characters in

strings

Whereas the second part of Winkler is given by:

𝑑𝑗𝑤= 𝑑𝑗 + (ℓp(1-𝑑𝑗)) (5)

where: ℓ = Length of common prefix at the start of string, up

to a maximum of four characters.

p = Standard weight used in Jaro-Winkler, p=0.1.

Distance among test cases is using Jaro-Winkler is shown

on Table 3 and example of calculation is shown below.

(P1 versus P2) = 0.066

Jaro distance = 1/3 (5/6 + 5/6 + 5/5) = 0.89

Jaro-Winkler = 0.89 + ((4 x 0.1)(1-0.89)) = 0.934

0.066 = 1 – 0.934

Table 3

Jaro-Winkler

Product P1 P2 P3 P4 P5 P6

P1 0.0 0.066 0.066 0.15 0.03 0.091

P2 0.066 0.0 0.077 0.046 0.046 0.03
P3 0.066 0.077 0.0 0.035 0.106 0.178

P4 0.15 0.046 0.035 0.0 0.091 0.115

P5 0.03 0.046 0.106 0.091 0.0 0.057
P6 0.091 0.03 0.178 0.115 0.057 0.0

Order of products in test suite: P6, P3, P5, P4, P2, P1

4) Cosine Similarity

(6)

where: A = Vector A

B = Vector B

||A|| = Magnitude of vector A

||B|| = Magnitude of vector B

There are two other formula used to calculate Vector (Dot

Product) and Magnitude of product:

(7)

(8)

The authors use Term Frequency (TF) to calculate the

number of occurrences of features inside a product.

Typically, TF value will be available as a Frequency of

Occurrence Vector (FOV). However, in SPL, features will

not generate two or more times from a similar product. Thus,

the TF is modified to a Binary Occurrence of Vector (BOV).

An example of the difference between Binary and Frequency

using “Apple” is shown as follows.

Binary Occurrence Vector of “apple”

1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0

Product P1 P2 P3 P4 P5 P6

P1 0.0 0.222 0.222 0.222 0.222 0.333

P2 0.222 0.0 0.222 0.333 0.333 0.111

P3 0.222 0.222 0.0 0.111 0.333 0.444

P4 0.222 0.333 0.111 0.0 0.222 0.333

P5 0.222 0.333 0.333 0.222 0.0 0.222

P6 0.333 0.111 0.444 0.333 0.222 0.0

An Experiment of Different Similarity Measures on Test Case Prioritization for Software Product Lines

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 181

Frequency of Occurrence Vector of “apple”

1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0

Product features:

BOV :

Distance among test cases is using Cosine Similarity is

shown on Table 4 and example of calculation is shown below.

(P1 versus P2) = 0.167

Dot Product = 5

Magnitude of Product A = √6

Magnitude of Product B = √6

Magnitude of product A and B = √6 * √6 = 6

Dot Product / product of magnitude of A and B = 5/6 = 0.8333

1 – 0.8333 = 0.167

Table 4

Cosine Similarity

Product P1 P2 P3 P4 P5 P6

P1 0.0 0.167 0.167 0.074 0.074 0.228

P2 0.167 0.0 0.333 0.228 0.228 0.074

P3 0.167 0.333 0.0 0.074 0.074 0.383

P4 0.074 0.228 0.074 0.0 0.143 0.283

P5 0.074 0.228 0.074 0.143 0.0 0.143

P6 0.228 0.074 0.383 0.283 0.143 0.0

Order of products in test suite: P6, P3, P2, P4, P5, P1

5) Counting function

(𝑃𝑎, 𝑃𝑏) = 1 −
𝑐

((ℓ𝑎 + ℓ𝑏)/2)
 (9)

where: c = Common features of Product A and B

ℓa= Length of product A

ℓb = Length of product B

Distance among test cases is using Counting Function is

shown on Table 5 and example of calculation is shown below.

(P1 versus P2) = 0.167

Counting function = 1 – (5 / ((6+6)/2))

 = 0.167

Table 5

Counting Function

Product P1 P2 P3 P4 P5 P6

P1 0.0 0.167 0.167 0.077 0.077 0.231

P2 0.167 0.0 0.333 0.231 0.231 0.077

P3 0.167 0.333 0.0 0.077 0.231 0.385
P4 0.077 0.231 0.077 0.0 0.142 0.286

P5 0.077 0.231 0.231 0.142 0.0 0.286

P6 0.231 0.077 0.385 0.286 0.286 0.0

Order of products in test suite: P6, P3, P2, P4, P5, P1

6) Sorensein Similarity

(𝑃𝑎, 𝑃𝑏) = 1 −
2𝑐

ℓ𝑎 + ℓ𝑏
 (10)

where: c = Common features of Product A and B

ℓa= Length of product A

ℓb = Length of product B

Distance among test cases is using Sorensein Similarity is

shown on Table 6 and example of calculation is shown below.

(P1 versus P2) = 0.167

Sorensein = 1 – (2(5) / (6+6))

1 – 0.833 = 0.167

Table 6

Sorensein Similarity

Product P1 P2 P3 P4 P5 P6

P1 0.0 0.167 0.167 0.077 0.077 0.231

P2 0.167 0.0 0.333 0.231 0.231 0.077

P3 0.167 0.333 0.0 0.077 0.231 0.385

P4 0.077 0.231 0.077 0.0 0.142 0.286

P5 0.077 0.231 0.231 0.142 0.0 0.286

P6 0.231 0.077 0.385 0.286 0.286 0.0

Order of products in test suite: P6, P3, P2, P4, P5, P1

IV. EXPERIMENT AND RESULTS

In this section, the authors evaluate six similarity measures

described in section III by comparing their effectiveness

towards existing SPL feature models by using sampling

algorithm ICPL (T=2), since it is the fastest algorithm

available in the market (6). The objective is to conduct an

experimental study on similarity measures on TCP for SPL.

In order to achieve this objective, the authors provide three

research questions as follows:

RQ1: What is the best similarity measure to be used in

TCP in terms of rate of fault detection?

RQ2: Is the ordering of features based on similarity

measures inside SPL product contributes to a better

result?

RQ3: What factors contribute to a better result for TCP

based on similarity measures?

A. Experimental Settings

In order to evaluate the comparison of similarity measures

highlighted in section III, the authors used prototype

developed by Sanchez et al. [10]. The prototype provides an

integration of existing tools such as SPLCAT tool for

generation of configuration and prioritization process. The

authors utilized six similarity measures and evaluated each of

the similarity measure on existing feature models on SPLOT

repository. The experimentation was performed using

Windows 8.1 equipped with Intel Core I5-3337U 1.8GHz

with 6GB of RAM.

1) Feature Models

The authors implemented their similarity measures on real

feature models taken from SPLOT repository that houses a

wide range of features, from 40 to 300 features. The feature

range was selected as some of benchmarked feature models

within the range have been used in existing works [6], [10].

Based on Table 7, the authors classified feature models into

three groups. Small for feature models of below than 50

features, while medium for feature models between 50 to 100

features, and large for feature models of more than 100

a b c d e f g h

1 1 1 1 1 1 1 1

Journal of Telecommunication, Electronic and Computer Engineering

182 e-ISSN: 2289-8131 Vol. 9 No. 3-4

features. Details such as generated product, CTCR, and

number of faults used in experiment are shown below:

Table 7

Feature Models details

Feature Model Features
Generated

products
CTCR Faults

Web portal 43 19 25% 4
Video Player 71 18 0% 4

Car Selection 72 24 31% 4

Go Phone 77 14 14% 4
Model

Transformation
88 28 0% 8

Battle of tanks 144 484 0% 12
Printers 172 129 0% 16

Electronic

Shopping
290 24 11% 28

2) Fault generation and evaluation metric

This work utilized a fault simulator as appeared in Bagueri

et al. [31], comprising two to four features of interaction fault.

The fault simulator has been used in existing SPL works to

investigate the effectiveness of TCP technique [6], [10]. Two

to four features’ interactions are chosen due to practical

application in a real SPL testing [31]. Typically, the general

assumption of faults is that faults are distributed equally

among features in a product, however, some researchers have

argued that faults may be detected where they have not been

unexpected [6]. Despite this, the best way to test SPL is by

sticking to the assumption that there are equally distributed

faults in features compared to focusing on certain features.

3) The authors utilized Average Percentage of Fault

Detected (APFD) as an evaluation metric in order to

investigate the rate of faults detected by similarity

measures [27].

APFD metric evaluates the effectiveness of prioritization

by calculating the average number of faults exposed based on

their index position in a prioritized test suite. A higher APFD

indicates a more effective similarity measure in detecting

faults. The equation of APFD metric is as follows:

(11)

where T = test suite

n = Test cases

TFi = Position of the first test case exposing fault

m = Number of faults exposed by test suite

Table 8

Test suite and faults detected

Test/Faults F1 F2 F3 F4 F5

T1 x x

T2 x x

T3 x x x x
T4 x

Example of APFD calculation:

= (1 - (1 + 1 + 1 + 1 + 3) / 4 x 5) + 1/(2x4)

= 0.78 (Based on ordering T3, T2, T4, T1)

B. Experimental Setup

Based on Figure 3, the authors operate four phases in their

experiment. First, four-wise interaction faults are generated

based on feature models selected using fault generator.

Second, valid combination of features are generated using

SPLCAT tool with sampling algorithm ICPL (T=2). Third,

similarity of generated products are calculated using six

similarity measures, and subsequently prioritized according

to their distance with product having the highest distance will

be placed on top of prioritization list. Any value obtained that

is not between zero and one is considered as an error from the

algorithm. Fourth, prioritized products are evaluated by fault

simulation and rate of faults detected is calculated by using

APFD. The authors iterate the steps for ten times to gain a

balanced result.

Figure 3: Phases of evaluation experiment

V. DISCUSSION

The result of evaluation is shown in Table 9. The average

result of APFD for all eight feature models ranges from 79%

to 85%. Jaro-Winkler has the highest average APFD value of

84.96%, followed by Cosine (84.32%), third, Counting

function (83.73%), fourth, Sorensein (83.73%), fifth,

Hamming distance (82.69%), and lastly, Jaccard distance

(79.4%). Jaro-Winkler achieved the highest APFD value

across seven feature models. Other than that, across three

feature models, it achieved similar score as Hamming

distance and Cosine similarity as shown in bold in Table 9.

The results help the authors to answer RQ1, whereby Jaro-

Winkler is the best similarity measure to be used to increase

the rate of fault detection of proposed TCP for SPL technique.

On the other hand, Jaccard distance scored much lower APFD

value on most feature models compared to the rest of

similarity measures. Despite that, Jaccard distance achieved

the highest APFD value for model transformation feature

model. From the results, a small feature model tends to have

similar APFD result across different similarity measures.

This is because small feature model typically produces less

diversity of test cases.

Furthermore, Sorensein and Counting function similarity

measures achieved identical results across all feature models.

This occurred as they comprise similar formula, but with

different ways of calculating similarity. This problem can be

solved by adjusting the current similarity measure formula to

fit SPL domain. For example, commonalities and variabilities

concepts can be adjusted using Winkler formula from Jaro-

Winkler. Winkler extension increases the weight of prefix in

strings, which is represented by common features of a product

in SPL. By doing this, similarity value will vary, which will

provide an accurate result and easier ranking process of

products. The formula greatly benefits testers in order to

diversify similar distance values among test cases. Current

technique will choose the first product they discover in

determining the ranking of a product. The flexibility of the

Jaro-Winkler formula is suitable for SPL concept, which will

allow it to handle commonalities and variabilities in a

systematic approach. This answers the second RQ2. Finally,

based on the Figure 4. Jaro-Winkler achieved the steepest

curve and detected 100% of faults much earlier than other

similarity measures, utilizing only 70% of test suite for

An Experiment of Different Similarity Measures on Test Case Prioritization for Software Product Lines

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 183

Electronic Shopping compared to other similarity measures.

This shows that the rate of fault detection of Jaro-Winkler is

the best. Moreover, Jaro-Winkler was implemented across all

eight feature models—from small to large feature models,

available from SPLOT repository.

Table 9
APFD Result for eight feature models

Figure 4: APFD metrics for Electronic Shopping

Next, for RQ3, among the factors that contribute to a better

result based on similarity measure is how the product was

generated through sampling algorithm. For example, ICPL

may produce randomized products with valid combination of

features. This affects calculation of similarity measures

especially for similarity formula that considers the placement

of features. Another factor is the generation of faults,

whereby faults generated by fault simulator will yield

different result towards APFD value. Thus, realizing the

importance of real faults in case studies will greatly

contribute to a much better testing process.

VI. THREAT TO VALIDITY

In this section, the authors deliberate potential threats to

current study. Earlier, the authors did mention that this work

applied local maximum prioritization to prioritize test suite.

The algorithm selects two products with the furthest distance

between them since it is assumed to contain the most different

feature between each other. Each TCP technique has its own

algorithm to help in determining prioritization ranking in

order to contribute to a much better prioritization process [6].

In this study, a local maximum prioritization was chosen as it

has been used by many researchers in TCP field [3],[10].

 Moreover, not all of the faults were detected by similarity

measures. This is due to the absence of real faults data which

are required. Fault generator utilized in the experimentation

simulated error based on the interaction of features inside a

product. This problem has been highlighted by many

researchers, attributing it to a lack of real data with real faults

[6], [10]. However, the current work aimed to investigate the

rate of faults detection by similarity measures, not the number

of faults detected. Additionally, the assumption of equally

distributed faults is much better for testing process compared

to non-idealized idea without facts. Another threat to validity

is an uncertainty nature of SPL testing that produces a

different result after each run. However, this problem was

solved in the experiment by executing multiple runs.

VII. CONCLUSION AND FUTURE WORK

As a conclusion, this study provides a comparison of

similarity measures across eight benchmark case studies used

by other researchers. The work extends the prototype

0

0.2

0.4

0.6

0.8

1

1.2

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Jaccard Hamming Jaro-Winkler Cosine Counting Function Sorensein

Feature Model
Test
Suite

Size

No. of

features

Faults

Detected

APFD

Jaccard
Distance

Hamming
Distance

Jaro-
Winkler

Cosine
Similarity

Counting
Function

Sorensein

Web portal 19 43 4/4 85.83 95.83 95.83 95.83 92.5 92.5

Video Player 18 71 4/4 89.17 94.17 94.17 94.17 94.17 94.17

Car Selection 24 72 4/4 49 54 54 52 52 52

Go Phone 14 77 4/4 75 75 91.6 91.6 87.5 87.5

Model Transformation 28 88 7/8 77.01 76.43 75.86 74 77.01 77.01

Battle of tanks 484 144 11/12 83.6 83.78 84.81 84.46 84.46 84.46

Printers 129 172 15/16 95.39 95.43 95.76 95.62 94.86 94.86

Electronic Shopping 24 290 25/28 84.23 86.84 87.61 86.86 87.3 87.3

Average APFD 79.90 82.69 84.96 84.32 83.73 83.73

Journal of Telecommunication, Electronic and Computer Engineering

184 e-ISSN: 2289-8131 Vol. 9 No. 3-4

developed by Sanchez et al. [10]. The results show that Jaro-

Winkler achieved the best result as a similarity measure. This

opens up improvement opportunities through similarity

measure’s flexibility of formula to suit various domains

especially SPL’s general concept in commonalities and

variabilities. This will subsequently influence testing process

in terms of the ordering of products and features within a test

suite.

For future work, the authors are determined to extend the

experiment on real industrial case studies with real faults and

with similar similarity measures. Furthermore, this study is

capable of increasing maximum fault interactions to six

features interactions since it will detect almost all faults [30].

The authors are also determined to explore the extension of

prioritization algorithm in order to enhance the ranking

process to be more efficient in terms of execution time.

Moreover, the authors will explore further on various

combination of existing similarity measures extensively such

as hybrid similarity measures in order to produce improved

APFD result as suggested by [38].

ACKNOWLEDGEMENTS

We are grateful for UTM scholarship to Author 1.

Furthermore, we express our gratitude profoundly to

Research University Grant (GUP), Universiti Teknologi

Malaysia (UTM) under Cost Centre No

Q.J130000.2528.15H44, for their financial support. Our

profound appreciation also goes to ERetSEL lab members for

their continuous support towards the completion of this paper.

REFERENCES

[1] X. Davier, G. Perrouin, M. Cordy, P. Schobbens, A. Legay, and P.

Heymans, “Towards statistical prioritization for software product lines

testing,” in Proc. of the Eighth Int. Workshop on Variability Modelling
of Software-Intensive Systems, 2014, pp. 10.

[2] A. Ensan, E. Bagheri, M. Asadi, D. Gasevic, and Y. Biletskiy, “Goal-

oriented test case selection and prioritization for product line feature
models,” in IEEE Eighth Int. Conf. on Information Technology: New

Generations (ITNG), 2011, 2011, pp. 291-298.

[3] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon, “Bypassing the combinatorial explosion: Using similarity to

generate and prioritize t-wise test configurations for software product

lines,” IEEE Trans. on Software Engineering, vol. 40, no. 7, pp. 650-
670, 2014.

[4] M. Johansen, Ø. Haugen, F. Fleurey, A. Eldegard, and T. Syversen.

“Generating better partial covering arrays by modeling weights on sub-
product lines,” in Model Driven Engineering Languages and Systems,

R. B. France, J. Kazmeier, R. Breu, and C. Atkinson, Eds. Berlin,

Heidelberg: Springer, 2012, pp. 269-284.
[5] R. Lachmann, S, Lity, S. Lischke, S. Beddig, S. Schulze, and I.

Schaefer, “Delta-oriented test case prioritization for integration testing

of software product lines,” in Proc. of the 19th Int. Conf. on Software
Product Line, 2015, pp. 81-90.

[6] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake,
“Similarity-based prioritization in software product-line testing,”

in Proc. of the 18th ACM International Software Product Line

Conference-Volume 1, 2014, pp. 197-206.
[7] Pohl, Klaus, and A. Metzger. “Software product line testing,”

Communications of the ACM, vol. 49, no. 12, pp. 78-81, 2006.

[8] P. Bielkowicz, P. Patel, and T. T. Tun, “Evaluating information
systems development methods: a new framework,” in Int. Conf. on

Object-Oriented Information Systems, 2002, pp. 311-322.

[9] J. Lee, S. Kang, and D. Lee, “A survey on software product line
testing,” in Proc. of the ACM 16th Int. Software Product Line

Conference-Volume 1, 2012, pp. 31-40.

[10] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés, “A comparison of test
case prioritization criteria for software product lines,” in 2014 IEEE

Seventh International Conference on Software Testing, Verification

and Validation (ICST), 2014, pp. 41-50.

[11] S. Yoo, and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67-120, 2012.

[12] A. Ahnassay, E. Bagheri, and D. Gasevic, Empirical Evaluation in
Software Product Line Engineering. Technical report, Tech. Rep. TR-

LS3-130084R4T, Laboratory for Systems, Software and Semantics,

Ryerson University, 2013.
[13] E. Engström, and P. Runeson, “Software product line testing–a

systematic mapping study,” Information and Software Technology,

vol. 53, no. 1, pp. 2-13, 2011,
[14] P. A. M. S. Neto, I. C. Machado, J. D. McGregor, E. S. Almeida, and

S. R. L. Meira. “A systematic mapping study of software product lines

testing,” Information and Software Technology, vol. 53, no. 5, pp. 407-
423. 2011.

[15] I. C. Machado, J. D. Mcgregor, and E.S. Almeida. “On strategies for

testing software product lines: A systematic literature
review,” Information and Software Technology, 2014, vol. 56, no. 10

pp.1183-1199, 2014.

[16] B. P. Lamancha, M. Polo, and M. Piattini, “Systematic review on
software product line testing,” in Int. Conf. on Software and Data

Technologies, 2010, pp. 58-71.

[17] I. C. Machado, J. D. McGregor, and E. S. Almeida. “Strategies for
testing products in software product lines,” ACM SIGSOFT Software

Engineering Notes, vol. 37, no. 6, pp. 1-8, 2012.

[18] L. Jin-Hua, L. Qiong, and L. Jing. “The w-model for testing software
product lines,” in Int. Symposium on Computer Science and

Computational Technology (ISCSCT'08), 2008, pp. 690-693.
[19] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.

John Wiley & Sons, 2011.

[20] T. Thomas, S. Apel, C. Kästner, I. Schaefer, and G. Saake. “A
classification and survey of analysis strategies for software product

lines,” ACM Computing Surveys (CSUR), vol. 47, no. 1, p. 6, 2014.

[21] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, “A first
systematic mapping study on combinatorial interaction testing for

software product lines,” in 2015 IEEE Eighth Int. Conf. on Software

Testing, Verification and Validation Workshops (ICSTW), 2015, pp. 1-
10.

[22] S.S. Choi, S. H. Cha, and Charles C. Tappert. “A survey of binary

similarity and distance measures,” Journal of Systemics, Cybernetics
and Informatics, vol. 8, no. 1, pp.43-48, 2010.

[23] M. Bilenko, “Learnable similarity functions and their applications to

clustering and record linkage,” in AAAI'04 Proceedings of the 19th
National Conference on Artificial Intelligence, 2004, pp. 981-982.

[24] S. Oster, F. Markert, and P. Ritter. “Automated incremental pairwise

testing of software product lines,” in Software Product Lines: Going
Beyond, J. Bosch, and J. Lee, Eds. Berlin, Heidelberg: Springer, 2010,

pp.196-210.

[25] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and Y. L. Traon,
“Pairwise testing for software product lines: comparison of two

approaches,” Software Quality Journal, vol. 20, no. 3-4, pp. 605-643,

2012.
[26] G. Perrouin,, S. Sen, J. Klein, B. Baudry, and Y. L. Traon, “Automated

and scalable t-wise test case generation strategies for software product

lines,” in 2010 Third Int. Conf. on Software Testing, Verification and

Validation (ICST), 2010, pp. 459-468.

[27] G. Rothermel, R. H. Untch, C.Chu, and M. J. Harrold. “Prioritizing test

cases for regression testing,” IEEE Trans. on Software Engineering,
vol. 27, no. 10, pp. 929-948, 2001.

[28] X. Devroey, G. Perrouin, A. Legay, P. Schobbens, and P. Heymans,

“Search-based similarity-driven behavioural SPL testing,” in Proc. of
the Tenth International Workshop on Variability Modelling of

Software-intensive Systems, 2016, pp. 89-96.

[29] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility

Study. No. CMU/SEI-90-TR-21. Carnegie-Mellon Univ. Pittsburgh Pa

Software Engineering Inst, 1990.
[30] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. “Software fault

interactions and implications for software testing,” IEEE Trans. on

Software Engineering, vol. 30, no. 6, pp.418-421, 2004.
[31] F. Ensan, E. Bagheri, and D. Gasevic, “Evolutionary search-based test

generation for software product line feature models,” in CAiSE, vol.

7328, 2012, pp. 613-628.
[32] M. Muja, and DG. Lowe, “Scalable nearest neighbor algorithms for

high dimensional data,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 36, no. 11, pp. 2227-2240, 2014.
[33] M. Kowal, S. Schulze, and I. Schaefer. “Towards efficient SPL testing

by variant reduction,” in Proc. of the 4th international workshop on
Variability & composition, 2013, pp. 1-6.

[34] H. Hemmati, and L. Briand, “An industrial investigation of similarity

measures for model-based test case selection,” in 2010 IEEE 21st Int.

An Experiment of Different Similarity Measures on Test Case Prioritization for Software Product Lines

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 185

Symposium on Software Reliability Engineering (ISSRE), 2010, pp.

141-150.

[35] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,” Software

Quality Journal, vol. 22, no. 2, pp. 335-361, 2014.

[36] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. “Prioritizing test
cases with string distances,” Automated Software Engineering, vol. 19,

no. 1, pp.65-95, 2012

[37] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be

optimal or not in test-case prioritization,” IEEE Trans. on Software

Engineering, vol. 42, no. 5 pp. 490-505, 2016.
[38] W. Cohen, P. Ravikumar, and S. Fienberg. “A comparison of string

metrics for matching names and records,” in KDD workshop on Data

Cleaning and Object Consolidation, 2003, pp. 73-78.

