

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 163

A Dynamic Reconfiguration Model of Web

Services in Service-Oriented Architecture

Rahmat Ilahi, Novia Admodisastro, Norhayati Mohd Ali and Abu Bakar Md. Sultan
Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

gs36028@student.upm.edu.my

Abstract—Service-Oriented Architecture (SOA) makes it

possible to build distributed systems with web services that can

be looked up, published and bound on the execution time across

the boundary of an organisation over the Internet. By using

standard interfaces and message-exchanging protocols,

developers are able to reuse existing web services and integrate

these individual services. Nevertheless, SOA must be able to

provide a way to cope with dynamic changes that may occur in

the system requirements and the environment in which the

system operates. The means is known as dynamic

reconfiguration that allows web services binding happens at

runtime by matching the functional as well as Quality of Service

(QoS) requirements to ensure dependable SOA systems. In the

paper, we introduce a dynamic reconfiguration of web services

model (DREWS) using middleware-based approach. The model

intended to handle functional and QoS requirements during

dynamic reconfiguration process and to provide an explicit

mechanism during pre-, in-, and post-adaptation stages. A self-

adaptive tool is developed based on the model to support the

dynamic reconfiguration process that allows minimum human

intervention.

Index Terms—Dynamic Reconfiguration; Middleware-based;

Service-Oriented Architecture; Web Service.

I. INTRODUCTION

Service-Oriented Architecture (SOA) enables the

development of flexible, efficient and evolving distributed

service-based systems [1]. SOA is defined as an approach to

develop service-based systems by integrating independent

Web Service (WS) [2, 3]. The WSs communications involve

simple data passing, or involve two or more WSs

coordinating some activities. Building the service-based

systems face an open and heterogeneous computing

environment, where numerous distributed WSs over the

Internet perform computation concurrently and

collaboratively. While, SOA concerns on service standards,

protocol standards, cross-enterprise application and the direct

interaction between service requestor and service provider,

the dynamic nature of the business environment requires

service-based systems to be highly reactive and adaptive [4].

Thus, a means to ensure the service-based systems capable

to be adapted to meet changing requirements is crucial. It is

also to ensure the systems could be adapted to the demands

of rapidly changing environments. Due to the systems have

to work in a large-scale open environment where the WSs are

subject to constant changes and variations. The WSs evolve

due to changes in structures, behaviour and policies. Despite

the WSs volatility, developers have to ensure the Quality of

Service (QoS) properties and to make intelligent use of new

WSs. Such changes can be identified, detected, and foreseen

in the service-based systems during monitoring of the

systems execution and its environment. In such a setting,

adaptation is necessary to modify service-based systems so as

to satisfy new requirements as dictated by the changes of the

environment.

Therefore, we have developed a dynamic reconfiguration

of WSs (DREWS) model using middleware-based approach

to ensure dependable SOA systems during runtime. The

model is intended to handle functional as well as QoS

requirements during dynamic reconfiguration process, and to

provide explicit mechanism during pre-, in-, and post-

adaptation stages. Then, a self-adaptive tool is developed

based on the model that allows less human intervention

during dynamic reconfiguration process.

This paper is organised as follows: Section II provides

some background of WSs dynamic reconfiguration in SOA;

Section III presents DREWS model; Section IV briefly

described DREWS support tool and the tool evaluation;

Section V presents evaluation of DREWS and its tool using

expert review, and finally, Section VI provides concluding

thoughts.

II. BACKGROUND

According to [5], the system needs to modify its structure

in runtime due to changes that occurs either due to expected

or unexpected situations. In a service-based system where it

is composed of a collection of WSs, the possibility of system

changes during runtime is higher because of several reasons,

such as due to the unavailability of WSs4 [6]. As a result, the

modification is inevitable and dynamic reconfiguration is

required to handle WS replacement. [7] stated that the

dynamic reconfiguration is performed due to several reasons

such as a WS that cannot accomplish its tasks due to

unreachability, business changes, violation of the service

level agreement (SLA) or a switch between different WSs’

versions.

In regards of different situations, that may request for

dynamic reconfiguration, the process may take place at three

different levels in a service-based system based on its

requirements as described by [8]: business level, service

composition level and infrastructure level. In business level

with the growing business needs and the expansion of

business areas, business processes may need to be

reconfigured. In addition, adaptation is also required when

some WSs are violating SLA between the service provider

and the service requester. In service composition level, the

system may need to change dynamically to stipulate new

requirements that derived from the business level or new

constraints from the WSs and the infrastructure level. Finally,

Journal of Telecommunication, Electronic and Computer Engineering

164 e-ISSN: 2289-8131 Vol. 9 No. 3-4

in infrastructure level, state of resources, such as networks

and processors, is considered by WSs execution engines to

ensure availability of the resources and energy consumption.

Dynamic reconfiguration at service composition level is

crucial because it has direct changes to the service-based

system structure during runtime [5]. The middleware is a

minimum communication abstraction layer that could

provide an efficient mechanism to handle flexible

composition and heterogeneous WSs and to supports the

specification of QoS-based execution properties and temporal

characteristics. The dynamic reconfiguration process at

service composition level inherited the WS adaptation

lifecycle that comprises of three stages: pre-adaptation, in-

adaptation and post-adaptation stages. Pre-adaptation stage

is also known as adaptation preparation stage where

environments and the WS’s attributes are prepared before

adaption process begins, for example selecting a new WS to

be used during service reconfiguration [9]. The in-adaptation

stage is where the adaptation process is actually being

performed, for example service reconfiguration. In this stage,

there are two prerequisites to fulfil before the adaptation

process is possible, first of all on-going processes have been

executed or terminated, and second, incoming processes have

been stopped [7]. These are to prevent failure operation

during the adaptation process.

During the in-adaptation stage the systems do not react to

any requests, this period is also known as the blackout period.

Thus, it is important to handle the blackout period to ensure

predictable processing time. The post-adaptation is the final

stage where the changes during adaptation process are being

verified to ensure all the changes can work appropriately. In

this stage, necessary actions are taken whenever the

adaptation process encounters any errors such as rollback

changes due to adaptation failure. Rollback is a mechanism

to ensure continuous WS availability by having an ability to

return to the previous WS6. In addition, restoration

mechanism is crucial to restore data or requests that exists in

the previous WS to the WS service after in-adaptation stage

is completed [6, 10].

The dynamic reconfiguration process is either executed

without any external human intervention (also known as self-

adaption) [11], or with human intervention (also known as

human-in-the-loop adaptation). In self-adaptation, all

adaptation steps, decision and actions are performed by the

service-based system autonomously. This also assumes that

all necessary mechanisms to handle adaptation strategies are

built into the system.

III. THE SOLUTION

DREWS is a middleware-based model to support dynamic

reconfiguration of WS. DREWS consists of three main

processes: Manage Adaptation Process (MAP), Selection

Process (SP) and Reconfiguration Process (RP). The three

processes are supported by Connection and Log Recorder

(CLR), a repository that holds reconfiguration data as shown

in Figure 1. The DREWS model underlies dynamic

reconfiguration process with the three main tasks: WS

selection, WS replacement, and WS verification. WS

selection is a task in pre-adaptation stage to validate a set of

WS candidates which provides similar functionalities and to

find the best WS among the WS candidates. The functional

aspect and QoS are primary concerns to further constrain and

select the best WS for a valid WS reconfiguration. WS

replacement is a task in in-adaptation stage to reconfigure the

existing WS by replacing and rerouting the WS with the WS

chosen during the WS selection. The chosen WS is either

provided by the same service provider of the previous WS or

by different service providers. Finally, WS verification is a

task in post-adaptation stage to verify the proper binding of

replacement WS to service-based systems.

Figure 1: The DREWS model

The following section discusses the DREWS three main

processes in details.

A. The Manage Adaptation Process (MAP)

MAP is responsible to communicate with a service-based

system that requests for dynamic reconfiguration service. The

MAP has two roles, first is to regulate tasks between entities

such as SP and RP, and second is to verify reconfiguration

status after the complete configuration of WS. The MAP is

interacting with SP and RP processes while performing tasks

of receiving adaptation request, receiving validation

feedback, verifying reconfiguration status and releasing web

service. Figure 2 illustrates the MAP.

Figure 2: The manage adaptation process (MAP)

The MAP has four steps as follows:

1) Receive adaptation request

A service-based system sends a reconfiguration request to

the MAP to conduct dynamic reconfiguration service. Each

request contains two inputs: service path and reconfiguration

request. Service path is a directory of service that contains

information related to WS current connectivity address, WS

functional requirements and QoS determined by the service

requester and WS candidates that represented by its WSDL

URL and log file. Reconfiguration request is an initial request

that hold value either Service Failure (SF) or Service

Upgrade (SU). Subsequently, MAP processes the request by

submitting WS candidate paths to the SP to perform WS

selection.

Manage Adaptation Process (MAP)

1. Receive adaptation

request

2. Receive Validation

feedback

3. Verify configuration

status
4. Release web service

Selection Process (SP) Reconfiguration Process (RP)

Connection & Log Record (CLR)

WS

Candidates
Selected

WS

Selected

WS Status

File

Path
WSDL

Requirement

WSDL

Name

WSDL

Info

A Dynamic Reconfiguration Model of Web Services in Service-Oriented Architecture

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 165

2) Receive validation feedback

The step is performed after receiving a validation feedback

from the SP that indicates a WS has been selected. The

feedback contains WSDL URL of the selected WS. Then,

MAP invokes the execution of RP. This invocation requires

WSDL URL of the chosen WS as an input to the RP in order

to replace the existing WS with the chosen WS.

3) Verify reconfiguration status

After WS has been reconfigured in RP, the MAP receives

a reconfiguration status from RP which indicates either

success or fail status. Based on the status, the selected WS

connectivity is checked to ensure that it is connected properly

to the service-based system.

4) Release web service

In this step, MAP releases system blocking and send

reconfiguration result status (success or fail) to the service-

based system. In the event of SU adaptation request status and

failed reconfiguration result, DREWS will rollback the

connection to the previous WS. However, in the condition of

SF adaptation request status and failed reconfiguration result,

DREWS will send failure status to notify service requester

and reconfiguration connection has to be manually inspected.

Finally, in the condition of SF or SU adaptation request and

success reconfiguration result, DREWS releases the

configured WS to the environment while system is running.

B. The Selection Process

SP is a crucial process to find and validate a suitable WS

replacement for dynamic reconfiguration. The new WS is

selected from a set of WS candidates registered in the CLR.

Dynamic service environments cause some difficulties in

service selection. Two important factors are considered, i.e.

functional requirement and QoS to find the suitable new WS

[12]. Functional requirement is a criterion related to WS

operation such as a WS to calculate shipment cost and others.

Meanwhile, QoS is a criterion to support WS in performing

its operations such as the ability of WS to respond during

peak hours in less than 0.5 second for calculating shipment

cost. The SP is conducted at the pre-adaptation stage of

dynamic reconfiguration process. SP consists of four main

steps described as follows (refers Figure 3):

Figure 3: The selection process (SP)

1) Get WS candidates

When receiving WS validation requests from MAP,

selection process starts to get information of the WS

candidates. This information is accessed from the CLR. The

WS candidates registered in the CLR areas are based from the

subscription agreements between service requester and

service provider.

2) Get WS requirements

The reconfiguration requirements are retrieved from the

CLR. The requirements that consist of functional and QoS

aspects are determined by service requester. This information

is maintained dynamically without affecting other

reconfiguration information such as WS candidates’

information.

3) Compare WS candidates and WS requirements

This is a crucial step in SP where WS candidates that

represented by WSDL file are compared with WS

requirements. There are two types of requirements which are

compared: functional requirements and QoS. The WS

candidates’ functionalities are expressed as WS operations in

WSDL files, while reconfiguration functional requirements

are established in requirement file by service requester. Each

of the operation is compared by using the information

retrieved from the files. If one of the required operation is not

being provided, the WS candidate will not be used. In

addition, DREWS considers four QoS criteria in choosing

WS replacement from the WS candidates. The QoS criteria

are service reputation, response time, availability, and

throughput. QoS information is included to the existing WS

candidates WSDL. Thus, DREWS has to extend the WSDL

file metadata files to include the QoS [13, 14]. The QoS

comparison starts after the functional requirements are

compared. Each of QoS criterion from extended attribute in

the WSDL file is compared with a minimum value from the

requirement file. The QoS value should be at least equal to

the value in the requirement file. If one of the QoS criteria is

not being fulfilled, the WS candidate is not going to be

considered as a replacement. The results of the comparison

may end with a list of possible WS for replacement. Thus,

total score of overall QoS values for each WS candidates is

calculated and prioritized in descending order (high to low)

to show its achievement.

4) Choose WS replacement

The step is to deliver the most suitable WS based on the

scoring values of the WS candidates. A WS with the highest

score is selected for reconfiguration process. Finally, the new

selected WS is sent to the MAP as the SP end result.

C. The Reconfiguration Process

The RP main purpose is to conduct service reconfiguration

during runtime. The process occurs during in-adaptation

stage which requires a support from CLR. RP consists of four

main steps described as follows (refers Figure 4):

Figure 4: The reconfiguration process (RP)

1) Get WS connection info

MAP passes an input to the RP that contains the URL of

the selected WS. The URL enables the RP to retrieve the

selected WS WSDL file. There are two types of information

utilised by RP from the WSDL: the WS URL and WS

operations.

Journal of Telecommunication, Electronic and Computer Engineering

166 e-ISSN: 2289-8131 Vol. 9 No. 3-4

2) Block incoming process

During reconfiguration, incoming requests to invoke the

existing WS are put on hold. This step is executed to prevent

operation failure during reconfiguration process. The

precondition to carry out this step is RP has to ensure all

ongoing processes inside the existing WS are completed or

terminated to prevent operation failures when the existing

WS is in blocking mode [10].

3) Backup existing connection

In this step, the existing WS connection is copied, backed-

up and stored into CLR. The purpose is to handle

reconfiguration failure status when upgrading service request

is submitted. This means the previous version of WS is still

available to be used as a temporary WS.

4) Update configuration file

The final step is to replace the existing connection

information that resides in the CLR by information that was

collected from the WSDL file of the new WS. After updating

the information, RP returns a reconfiguration status of either

success for success reconfiguration or fail to MAP for

reconfiguration failure.

D. The Connection & Log Recorder

The CLR is a repository that used by the DREWS to

retrieve and record the WSs information for reconfiguration

service purpose. The CLR stores list of WS candidate

specifications, WS configuration information, WS

requirements, and reconfiguration service history. The CLR

is located separately from the DREWS to ensure the service

requesters can manage the CLR dynamically without

affecting the DREWS main structure. There are five main

functions of the CLR.

1) Storing WS path file

This file is a parent file where it is used by DREWS to call

all other files stored in CLR.

2) Storing WS configuration information

WS configuration information resides in a service

configuration file with the aim to minimize connection

dependency between service-based system and WSs. The file

is updated by DREWS during the reconfiguration process.

3) Storing WS requirements

WS requirements that consist of functional requirement

and QoS is recorded in CLR. The information could be

updated anytime by the service requester without affecting

the WS operations.

4) Storing WS candidates

The CLR is used to store the WS candidates. When SP

started, the WS candidate file is going to be used to access

URL of the WS candidates.

5) Logging reconfiguration activities

The entire process of service reconfiguration is stored in a

log file. Both service requester and service provider are able

to access the file. This allows both of them to track the overall

reconfiguration activities and identify any problems if

occurred

E. The DREWS Attributes

DREWS has to supports two main attributes to perform

dynamic reconfiguration of WS. The following sections

discuss the DREWS attributes.

1) Functionalities Validation Attributes

WS WSDL XML file contains information about WS

parameter, data connectivity, binding, functionalities, and

message exchange protocol. It acts as an interface to invoke

WS from the service-based system. The main purposes of WS

WSDL during the dynamic reconfiguration service is to

support SP and RP processes in DREWS. One of the purposes

of a WSDL file is it is used to validate WS functionalities.

WS functionalities are represented by service operation in

WSDL. For example, in Figure 5, calculatePackage is the

operation to calculate the shipping cost. The validation is

conducted by comparing the WS operation name with the

functional requirements that have been set by service

requester. In this example, calculate is the keyword that has

been set by service requester in the requirement file.

Figure 5: WSDL functionality attribute example

2) QoS Validation Attributes

The WSDL file describes all information related to WS

functionalities, connectivity and messages exchange but does

not contain any information related to QoS. QoS attributes are

the crucial part in WS where it determines user satisfaction

when using the WS. Therefore, DREWS has included the

QoS attributes by extending WSDL file to include QoS

descriptions. There are four main QoS attributes that are

frequently considered in the WS selection as highlighted in

[13, 14]: service reputation, availability, response time, and

throughput. WSDL description is extended in this case to

helps service provider to provide QoS information of

provided WS and service requester could use this information

to validate and select WS. DREWS supports the four main

QoS attributes described as follows:

i. Service reputation. Reputation of WS is evaluated by

service requesters who previously used the WS. It

shows rating of the WS based on user experiences. The

higher value indicates good reputation service.

ii. Availability. The attribute is to ensure the WS is

available in their location or the WS is available when

required. WS with higher value attribute indicates a

better availability of service.

iii. Response time. Service requester must ensure that the

new WS response time is better or at least similar with

the existing WS. This attribute indicates a WS has

better response time when it has lower response time

value.

iv. Throughput. When selecting a new WS, the system

must be able to receive many requests for its operation

simultaneously without affecting the WS performance.

A Dynamic Reconfiguration Model of Web Services in Service-Oriented Architecture

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 167

This attribute indicates a WS has better throughput

when it has higher value.

The QoS attributes described in extended WSDL file are

specified by value, offered, unit and direction as follows:

i. Value. Value of QoS attribute are based on SLA

between service provider and service requester. The

value is represented using number, e.g. 6

ii. Offered. QoS attributes availability where the value is

either true or false.

iii. Unit. Measurement unit of QoS e.g. user/millisecond

iv. Direction. The direction of value, whether increasing

or decreasing. Each QoS has its specific direction, e.g.

for response time, the lower value (decreasing)

indicates WS has better response time.

Figure 6 shows an example of QoS attributes specification

of a WS. Finally, the four QoS total achievement is calculated

using the Equation (1) (refers Figure 7).

<qwsdl:criteria>

<responsetime value="10" Offered="true" unit="msec"

direction="decreasing" />
<throughput value="22" Offered="true" unit="user/sec"

direction="increasing"/>

<availability value="22" Offered="true" unit="%"
direction="increasing" />

<reputation value="22" Offered="true" unit="%"

direction="increasing"/>
</qwsdl:criteria>

Figure 6: QoS extension on WSDL example

QoS Achievement=(RTR/RT) + (T/TR) + (A/AR) + (R/RR) (1)

Legends:

RTR = Response Time Requirement, RRT = Response Time
T = Throughput, TR = Throughput Requirement

A = Availability, AR = Availability Requirement

R = Reputation, RR = Reputation Requirement

Figure 7: QoS achievement equation

IV. THE DREWS TOOL SUPPORT

In this section, the tool support underlying the DREWS

model is discussed. The tool is developed using JAVA

Enterprise Edition API and Apache CXF Open Source

Service Framework [15]. The tool consists of four main

components which provide dynamic reconfiguration service

executor feature and supported by a file repository (refers

Figure 8).

Figure 8: The DREWS tool architecture

The four components are described as follows:

i. Adaptation Manager (AM). A component to interact

with service-based system and WSs. This component

distributes, manages and monitors the overall dynamic

reconfiguration process.

ii. Service Selection Agent (SSA). A component to find

and validate the new most suitable WS to be adapted.

iii. Service Reconfiguration Agent (SRA). A component

to conduct reconfiguration service during runtime by

replacing existing WS with the new selected WS from

SSA.

iv. File Repository. A repository to store several different

files and specifications that include WS path

properties, WS candidates, WS requirements, service

configuration properties, and log file. The data in the

file repository support the entire process of the

DREWS model.

There are five store types in file repository to support

DREWS as shown in Figure 9 (as discussed in Section 3).

While Figure 10 shows the screenshot of the tool dynamic

reconfiguration logging window.

Figure 9: The DREWS file repository

Figure 10: The DREWS logging screen

V. EVALUATION

An expert review was an evaluation process involving

experts in providing reviews based on their expertise and

experience. Expert review is an evaluation approach by

allowing analysts to observe a system with more concern to

its functionalities, usability and performance [17]. In this

work, the evaluation involved five SOA experts from

industries to evaluate the effectiveness of the DREWS model

and its tool support. The experts have between 5 – 10 years

of experience. The expert evaluation process included a

number of steps: preparing review protocol, choosing experts,

inviting them to take place in the evaluation, evaluating the

model by using a scenario and lastly, preparing results of the

evaluation based on the feedback from questionnaire given to

the experts.

The objectives of the evaluation were:

i. to check the correctness of finding suitable WSs based

on functional and QoS requirements.

ii. to check the accuracy of error handling in dynamic

reconfiguration procss.

iii. to demonstrate the basic features of DREWS.

iv. to demonstrate the tool is able support automatic

Journal of Telecommunication, Electronic and Computer Engineering

168 e-ISSN: 2289-8131 Vol. 9 No. 3-4

reconfiguration during the runtime stage.

A. The Scenario

The Courier Online System (COS) is a service-based

system that handles courier shipment daily operations from

ordering shipment, checking shipment cost, tracking delivery

and various other courier services for their users. The COS

was composed by a number of possible independent WSs that

was available in the network that performed the desired

functionalities of the system. COS system choreographs and

coordinates three different services into a work flow to

establish the business processes: locating courier office,

calculating shipment cost and tracking courier (refers Table

1). In addition, the COS considered relevant QoS aspects in

delivering these services to their customers. The COS used

Apache CFX to interact with the DREWS tool that

independently separates the COS with WS dynamic

reconfiguration settings.

Table 1

COS web service descriptions

WS Description
QoS Requirements

RT. TP. A. Rep.

Office

locator

service

to helps customers

to find an office
location in each

state around country

10
msc

10
user/sec

80% 10 %

Pricing
delivery

service

to help customers to
calculate their

shipment cost.

22

msc

10

user/sec
22% 22 %

Tracking
service

to allows customers

to monitor their

shipping status by

inserting their
tracking id

70
msc

1000
user/sec

80% 60 %

B. Result and Discussion

In the review process the experts were given the COS

scenario and being requested to use the DREWS tool to

conduct dynamic reconfiguration of the COS’s WSs. The

scenario is divided into three stages pre-, in- and post-

adaptation stages where each stage a set of tasks is assigned

to the experts. For each of the tasks, two scenarios were

established to address success or failure situation. The results

were recorded that indicate whether both of the scenarios

were able to be handled by the tool or otherwise. The experts

were provided with a logging screen to understand status of

the given tasks.

In the pre-adaptation stage, first the experts encountered a

successful scenario where they were able to find the best WS

that fulfilled requested functionalities and QoS to carry out

the reconfiguration. Next, the experts encountered failure to

find a new suitable WS. The experts agreed the tool was able

to handle the failure by returning a useful error information

for their reference.

In the in-adaptation stage, all experts agreed the tool was

able to backed-up existing connections and block incoming

request before the WS reconfiguration started. During the

reconfiguration service, the tool was able to replace the

existing WS with the new selected WS that obtained from

pre-adaptation stage. After the process was completed, a

success status is returned. The experts also acknowledged the

tool able to control blackout time that enables dynamic

reconfiguration process being terminated when the

reconfiguration time was greater than blackout time. During

the failure situation, the experts agreed the tool could provide

meaningful error messages for their references and send

failure status to adaptation manager (AM).

Finally, in the post-adaptation stage, the experts agreed the

tool able to invoke the new WS connection and released it to

the real environment. Nevertheless, the expert agreed when

encountered with failure to fulfil service upgrade request the

tool was able to rollback connection to the prior WS. In

addition, the experts agreed the tool provides a sufficient

error handling mechanism to handle failure during invocation

either to fulfil service upgrade or service failure request.

In summary, the evaluation was conducted by allowing the

professional SOA developers to review DREWS tool. The

tool has successfully support dynamic reconfiguration of

COS WSs with minimal human intervention during runtime

without the need to restart the server. The overall results of

the expert reviews are shown in Table 2.

Table 2

Expert review results

Stage [1] Feature
Expert

1 2 3 4 5

Pre-

adaptation

Get WS
candidate

√ √ √ √ √

Get WS

requirement
√ √ √ √ √

Validate FR √ √ √ √ √
Validate QoS √ √ √ √ √

Get selected WS √ √ √ √ √
Sufficient error
handling

√ √ √ √ √

Pre-
adaptation

Backup existing

connection
√ √ √ √ √

Block Incoming

request
√ √ √ √ √

Replace WS
connection

√ √ √ √ √

Sufficient error

handling
√ √ √ √ √

Manage blackout

time
√ √ √ √ √

Pre-

adaptation

Validate new
WS connection

√ √ √ √ √

Rollback

mechanism
√ √ √ √ √

Sufficient error
handling

√ √ √ √ √

VI. RELATED WORKS

This section we analyse and compare DREWS with six

existing works that support dynamic reconfiguration of WS

in SOA. The related works are compared in using seven

characteristics discussed in [19] as shown in Table 3.

The comparison showed that existing middleware focused

on the partial part of the adaptation process. For example,

CoBRA [8] and SASSY [11] focused on the dynamic process

during in- and post-adaptation. Other works like LLAMA

[20], MLB [22] and iLAND [6] focused in pre- and in-

adaptation stages. While, the DREWS focuses in the process

occurring during pre-, in- and post-adaptation stages. The

selection process conducted during pre-adaptation stage

allows the system to select and get the best WS for

reconfiguration service-based on its requirements. This

selection helps to minimise error during the reconfiguration

process due to WS incompatibility.

The second comparison is service selection characteristic

indicates most of the middleware focused on functional

requirements during service replacement without paying

A Dynamic Reconfiguration Model of Web Services in Service-Oriented Architecture

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 169

attention to QoS requirements. LLAMA, MLB and iLAND

were three works that attempt to address both functional and

QoS requirements. In addition, these works including SASSY

provides a tool support to facilitate the replacement of WSs

with new most suitable WSs during runtime without human

intervention (also known as self-adaptation). As for DREWS,

it supports both functional and QoS requirements and

requires no human intervention for service replacement.

In the fourth comparison of fault service handling, LLAMA

and iLAND were capable of addressing multiple fault

services. For example, the feature to handle multiple fault

services allows LLAMA to prioritise the WS replacement

requests. For example, if there are more than one

reconfiguration requests, each of the request priority is

calculated and the utmost critical request is attended in

sequence. Other works such as CORBA, SOA with OSGi

[21], SASSY and MLB focused on single fault service.

In conducting WS reconfiguration, the DREWS adapts

SASSY concept to block incoming requests during the

reconfiguration process. It only allows the start of

reconfiguration process when all running operations inside

the WS have been executed [11]. This feature is adopted in

the DREWS to prevent operation failures during the service

reconfiguration process. For handling reconfiguration

failures, the DREWS adopts CoBRA rollback mechanism.

The rollback mechanism allows the DREWS to return to its

previous WSs connection when reconfiguration failure is

detected during the process [8]. This mechanism is only

applicable for service upgrade request. While, for service

failure request, the DREWS provides error handling by

recording the error messages for user’s reference.

Overall, this comparison proves that DREWS comes out

with improvement processes that help service-based system

to replace its WSs with a new most suitable WSs during

runtime without human intervention.

Table 3

Comparison of DREWS and existing related works by applying the characteristics of dynamic reconfiguration of WSs in SOA

Reviewed Works/

Features

LLAMA

[20]
CoBRA [8]

SOA with

OSGi [21]
SASSY [11]

MLB

[22]
iLAND [6] DREWS

Adaptation

stages

Pre-adaptation √ × × × √ √ √
In-adaptation √ √ √ √ √ √ √

Post-adaptation × √ × √ × × √

Service
selection

criteria

Functional
requirements

√ × × × √ √ √

QoS requirements √ × × × √ √ √

Automation
Self-adaptation √ × × √ √ √ √
Human-in-the-loop × √ √ × × × ×

Fault service
Single service × √ √ √ √ × √

Multiple services √ × × × × √ ×
Restoration management × √ × √ × × √

Rollback mechanism × √ × × × × √

Blackout handling × √ × × × √ √
Legend: ✓ Supported × Not supported

VII. CONCLUSION

This paper described DREWS, a middleware-based model

to improve the abilities of service-based system to replace or

reconfigure their WS during runtime. DREWS supports pre-,

in-, and post-adaptation stages of dynamic reconfiguration of

WS with three main processes and a repository. A tool

support underlying the DREWS is designed and developed

using Java technologies and Apache service framework. An

evaluation is conducted with SOA experts was conducted to

evaluate the effectiveness of the DREWS and its tool. The

expert review results were promising, as the empirical

validation has proven that DREWS supported the dynamic

reconfiguration process effectively and automatically. Next,

we plan to carry out DREWS second evaluation using an

experiment approach to measure its effectiveness compare to

another works.

ACKNOWLEDGMENT

The authors are grateful to Universiti Putra Malaysia and

the Ministry of Higher Education, Malaysia Government via

the FRGS grant for support of this research.

REFERENCES

[1] W. T. Tsai, M. Malek, C. Yinong, and F. Bastani. “Perspectives on

service-oriented computing and service-oriented system
engineering,” in 2006 Second IEEE International Symposium on

Service-Oriented System Engineering (SOSE'06), 2006, pp. 3-10.

[2] J. Fang and Y. Liu. “Research of dynamic SOA collaboration

architecture,” in 2009 WASE International Conference on Information

Engineering, 2009, pp. 471-474.
[3] Y. Chen, X. Li, L. Yi, D. Liu, L. Tang, and H. Yang. “A ten-year survey

of software architecture,” in 2010 IEEE International Conference on

Software Engineering and Service Sciences, 2010, pp. 729-733.
[4] V. Andrikopoulos, A. Bucchiarone , E. Di Nitto, R. Kazhamiakin , S.

Lane, V. Mazza, and I. Richardson. “Service Engineering,” in Service

Research Challenges and Solutions for The Future Internet, M. P.
Papazoglou, K. Pohl, M. Parkin, and A. Metzger, Eds. Berlin,

Heidelberg: Springer, 2010, pp. 271-337.

[5] M. G.Valls, I. R. Lopez, and L. F. Villar. “ILAND: An enhanced
middleware for real-time reconfiguration of service oriented distributed

real-time systems,” IEEE Trans. on Industrial Informatics, vol. 9, no.

1, pp. 228-236, 2013.
[6] J. L. Fiadeiro and A. Lopes. “A model for dynamic reconfiguration in

service-oriented architectures,” Software System Model Software &

Systems Modeling, vol. 12, no. 2, pp. 349-367, 2012.
[7] F. Irmert , T. Fischer, and K. Meyer-Wegener. “Runtime adaptation in

a service-oriented component model,” in Proceedings of the 2008

International Workshop on Software Engineering for Adaptive and
Self-managing Systems - SEAMS '08, 2008, pp. 97-104.

[8] F. André, E. Daubert, and G.Gauvrit. “Distribution and self-adaptation

of a framework for dynamic adaptation of services,” in The Sixth
International Conference on Internet and Web Applications and

Services (ICIW), St. Maarten,Netherlands Antilles, 2011, pp. 16-21.

[9] S. Shrivastava and A. Sharma. “An approach for qos based fault

reconfiguration in service oriented architecture,” in 2013 International

Conference On Information Systems and Computer Networks (ISCON),

2013, pp. 180-184..
[10] H. Gomaa, & K. Hashimoto. “Dynamic self-adaptation for distributed

service-oriented transactions,” in 2012 ICSE Workshop On Software

Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012,
pp. 11-20.

[11] M. P. Romay, L. Fernández-Sanz, and D. Rodríguez, “A systematic

review of self-adaptation in service-oriented architectures,” in The

Journal of Telecommunication, Electronic and Computer Engineering

170 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Sixth International Conference on Software Engineering Advances,
Barcelona, Spain, 2011, pp. 1-7.

[12] Y. Gong , L. Huang, F. Jiang, and K. Han. “An approach to web service

dynamic replacement,” International Journal of Grid and Distributed
Computing, vol. 7, no. 1, pp.1-12, 2014.

[13] V. Agarwal and P. Jalote. “From specification to adaptation: An

integrated qos-driven approach for dynamic adaptation of web service
compositions,” in 2010 IEEE International Conference On Web

Services (ICWS), 2010, pp. 275-282.

[14] H. Gao and H. Miao. “A quantitative model-based selection of web
service reconfiguration,” in 2013 14th ACIS International Conference

on Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 2013, pp. 365-371.
[15] Apache CXF, Apache CXF: An open-source services framework,

Available at http://cxf.apache.org/, 2016.

[16] D. Sjoeberg, J. Hannay, O. Hansen , V. Kampenes, A. Karahasanovic,
N. Liborg, and A. Rekdal. “A survey of controlled experiments in

software engineering,” IEEE Transactions on Software Engineering

IIEEE Trans. Software Eng., vol. 31, no. 9, pp. 733-753, 2005.

[17] B. Soufi. “Survey and expert evaluation for e-banking,” in
International Conference on Human Interface and the Management of

Information, 2013, pp. 375-382.

[18] R. Ilahi, N. Admodisastro, N. Mohd. Ali, and A. B. Sultan. “Dynamic
reconfiguration of web service in service-oriented architecture,” in

Proc. of the Int. Conf. on Computational Science and Engineering

(ICCSE), Center of Excellence in Semantic Agents (COESA), 2016,
pp. 165-170.

[19] K. Lin, M. Panahi, and Y. Zhang. “The design of an intelligent

accountability architecture,” in Proceedings of the IEEE Int. Conf. on
E-Business Engi.(ICEBE'07), 2007, pp. 157-164.

[20] H. Lv, W.Liu, and H. Zhang. “The application and research of a

dynamic architecture for service based on SOA,” in Proceedings of the
2009 International Conference on Information Engineering and

Computer Science, 2009, pp. 1-4.

[21] V. Krishnamurthy and C. Babu. “Dynamically reconfiguring services
in soa applications: a pattern-based approach,” in EuroPLoP '12

Proceedings of the 17th European Conference on Pattern Languages

of Programs, Irsee, Germany, 2012, pp. 1-13.

