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Abstract—With the expansion of the Internet, Internet of 

Things (IoT) gains lots of interest from industries and academia. 

IoT applications enable human-to-device and device-to-device 

interactions. For a successful deployment of IoT systems and 

services, software reliability is a very important requirement for 

IoT to ensure that data/messages have been received and 

performed properly in a timely manner. The concurrent 

connections of embedded sensors and actuators are non-

deterministic in nature which makes testing insufficient to 

guarantee program correctness. In contrast, model checking 

techniques explore the entire behavior of a system under test 

(SUT) in brute-force and systematic manner. It investigates each 

reachable state for different thread schedules. Recent model 

checking techniques have been applied directly to networked 

programs. This paper reviews model checking techniques for 

networked applications and presents their strengths and 

limitations. A preliminary proposal for model checking of 

networked applications that addresses the identified gap is 

presented. 

 

Index Terms—Cache-Based Approach; Internet of Things 

Applications; Network Model Checking; Software Reliability. 

 

I. INTRODUCTION 

 

With the expansion of the Internet, the Internet of Things 

(IoT) gains lots of interest from industries and academia. IoT 

projections suggest that, by 2020, there will be 50 billion 

connected devices and $19 trillion opportunity into the IoT 

industry [1]. IoT represents a worldwide network of uniquely 

addressable inter-connected smart objects such as sensing and 

actuating devices that provide ability to share information 

across multiple platforms in order to enable innovative 

applications [2]. 

According to Lee and Lee [3], there are five essential IoT 

technologies for deployment of successful IoT-based 

products and services. These technologies are radio 

frequency identification (RFID), wireless sensor networks 

(WSN), middleware, cloud computing, and IoT application 

software. All these technologies involve with hardware and 

software communicating each other via network and the 

Internet. For instance, the middleware allows the mobile 

devices to perform communication and input/output with 

sensors and actuators. It hides details of different 

technologies of those smart objects. 

Figure 1 illustrates typical IoT architecture using 

middleware that hides details of different technologies 

implemented by smart objects. The Internet provides 

uniquely addressable inter-connected points to the objects, 

and it is the central point for communication. The 

communication protocols such as TCP/IP, UDP and HTTP 

are used for communication amongst mobile devices, the 

Internet, middleware, and smart controller. Other protocols 

like 6LoWPAN, Z-Wave, and ZigBee used for 

communicating between the smart controller and smart 

objects. Smart homes for instance, light bulbs, light switches, 

water heaters, solar panels, motion sensors, window/door 

sensors can be programmed to connect with each other to the 

smart controller and from the smart controller to the Internet 

so that they can share information and assist home users in 

undertaking operational tasks such as turning off the lights in 

a house from a smart phone. 

 

 
 

Figure 1: Typical IoT architecture via middleware 

 

The reliability of IoT applications is one of the concerns for 

successful IoT deployment as described in [3]. The 

applications enable human-to-device and device-to-device 

interactions, and they need to ensure that data/messages have 

been received and performed properly in a timely manner. 

Software testing [4] is one of the common practices to 

ensure the reliability of IoT applications, however, is 

depended on systematic guess and how well the software 

testers know about the system under test (SUT). The 

concurrent connections of wireless embedded sensors and 

actuators to the middleware are non-deterministic in nature. 

The interleaving between threads increases the challenges to 

software testers. In addition, setting up an environment and 

instrumenting the SUT are time consuming and expensive. 

Model checking [4, 5], on the other hand, is one of the 

formal verification methods for ensuring the reliability of 

critical software system. It explores the entire behavior of a 

SUT in brute-force and systematic manner and investigating 

each reachable state for different thread schedules. Recent 

model checking techniques [6-8] have been applied to 

network programs. The goal of this work is therefore to 

review model checking techniques for networked 

applications and how these techniques can help with the 

development of reliable applications for IoT ecosystems.  

This article is organized as follows: Section II provides the 

fundamental background to model checking techniques and 

the model checker tool; Section III describes the problems of 

model checking network applications and review its current 

works; Section IV proposes initial work toward verification 

of IoT application. Finally, the conclusion of the article is 

provided in Section V. 
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II. BACKGROUND 

 

Software testing depends on systematic guess and how well 

the software testers know about the SUT. The concurrent 

connections of wireless embedded sensors and actuators to 

the middleware are non-deterministic in nature. The 

interleaving between threads increases the challenges to 

software testers. In addition, setting up an environment and 

instrumenting the SUT are time consuming and expensive. 

Software model checking, on the other hand, is one of the 

formal verification techniques, which is used to verify 

software system. This technique conducts an exhaustive 

search of all possible system states and, if encountered an 

error, it provides “counterexample” which tells us where the 

root of the bug is. The “counterexample” is the faulty trace 

that provides the important clues for fixing the problem. 

In this section, we introduce the concept of software model 

checking and the model checker tool called Java PathFinder 

(JPF) and its extension for verifying network applications. 

 

A. Model Checking 

Model checking [4, 5] is one of the formal verification 

techniques that exhaustively checks for property violations in 

concurrent system. It explores all possible system states in 

brute-force and systematic manner. There are two major 

advantages of model checking over the other formal 

verification techniques. First, it is fully automatic. This means 

that model checking does not require any user supervision to 

control the input during the design simulation. Second, it 

provides “counterexample” when the given model does not 

satisfy the given properties. Counterexample is like a bug 

trace, which is import clues to fix the problem. 

According to [9], the model checking problem can be stated 

as below: 

 

M, s |=f (1) 

 
where M is a Kripke structure (i.e., state-transition graph) and 

f is a formula of temporal logic (i.e., the specification). The 

problem is to find all states s of M such that M, s |= f. 

The system model is formally described as Kripke structure 

or transition system (TS), and the system properties are 

generally expressed in temporal logic. When the state of TS 

satisfies with the property, the model checking continues to 

the next state until the error is found. It proceeds until the end 

state. If the error is found, it produces the counterexample that 

gives important clue to fix the error. Model checking explores 

the entire state-space of the concurrent systems. The basic 

search algorithms are depth-first-search (DFS) and breath-

first-search (BFS). These two search algorithms involve 

backtracking the state inside the programs. The example of 

backtracking is explained in section B later in the article. 

Modern model checkers [10-18] have been applied directly 

to the actual implementation of the programs, written in 

standard programming languages such as C or Java. These 

tools help programmers to detect errors during the 

implementation phase. An example of model checker tool 

that model check real programs is Java PathFinder [14], 

which we will focus on in the rest of the article. 

 

B. Java PathFinder 

Java PathFinder or JPF [14] is a verification and testing 

environment tool for Java. It is an explicit-state model 

checker that verifies Java programs for concurrency defects, 

runtime analysis, and generation of test cases depending on 

how the user configures the verification properties as input. 

By default, JPF can check for deadlocks, race conditions, and 

unhandled exceptions (including Java assert expression). The 

tool is developed by NASA Aimes Research Center and 

became an open-source project in 2005. 

Figure 2 illustrates the overall architecture of JPF. The tool 

requires the Java bytecodes (*.class) and its requirements 

(*.jpf) as its inputs, and it produces a report of the verification 

result as an output. 

 

 
 

Figure: 2. Java PathFinder architecture 

 

JPF is written in Java so it is executed on top of Java Virtual 

Machine or we call it host JVM, and the Java program under 

test is executed on top of JPF, which is running a customized 

JVM for model checking purpose or we call it as JPFjvm. The 

different is that JPFjvm involves backtracking; while host JVM 

does not involve backtracking.  

As mentioned earlier, model checker requires backtracking 

the SUT. To illustrate this, let’s look at the example of how 

JPFjvm and host JVM executes the program as shown in 

Figure 3. Figure 3 is an example Java program that computes 

the two random variables a and b. The program starts with the 

initialization of Random class with value of 42. The integer 

variable a and b are initialized and given “.nextInt()” method 

with value of 2 and 3, respectively. Variable c does 

computation as shown in line 9. Finally, the program prints 

out the result of c. 

 

 
 

Figure 3:. Simple Java program using random class 

 

Figure 4 (a) indicates the execution graph on host JVM, and 

Figure 4 (b) shows the execution graph of the program on 

JPFjvm. The octagon, single circle, and double circle 

represents the start state, reachable state, and end-state, 

respectively. Notice that in (a) the program executes on host-

JVM. It does not involve backtracking thus the program does 

not cause any error. However, in (b), the JPF executes the 

program in all possible ways until it finds the error state. 



Towards Model Checking of Network Applications for IoT System Development 

 e-ISSN: 2289-8131   Vol. 9 No. 3-4 145 

 
Figure 4: Execution graph by (a) host-JVM and (b) JPFjvm 

There are two main distinct strategies of JPF tool, the jpf-

core and the extensibility of the jpf-core, that make JPF tool 

becomes the most useful model checker for finding bugs in 

concurrent Java programs. 

The jpf-core consists of two main components such as the 

custom Virtual Machine or (JPFjvm) and the search. Jpf-core 

is a customized Java Virtual Machine (JPFjvm). It is a JVM 

which mean it allows Java program to execute, but this 

JPFjvm executes program differently from the host-JVM. 

The host-JVM executes only one path of the program at a 

time; while JPFjvm explores all the possible reachable system 

states of the program. 

First, the search (default is depth-first-search) component 

inside the jpf-core represents the program states as a directed 

graph where the nodes represent its states and edges denote 

transitions (or choices). The choice generator creates the next 

successor state of the current state, and the search goes 

through the state one by one in a non-deterministic manner. 

If the current state does not have any successor state, the 

search backtracks to the previous visited state and explores 

the next unvisited states. By following this policy, the JPF 

theoretically explores all the possible system behavior of the 

program. The jpf-core produces a report that leads to the bug 

if there is a bug found inside the concurrent program. 

Second, JPF allows the extensibility of its core to tackle 

different model checking problems. The jpf-core provides 

listeners, little “plugin”, that let the user closely monitor all 

the actions by JPF such as executing single instructions, 

creating objects, reaching a new program state, and many 

more. Listeners are the most important extension mechanism 

of JPF. They provide a way to observe, interact with, and 

extend JPF execution with classes. Since listeners are 

dynamically configured at runtime, they do not require any 

modification to the jpf-core. Listeners are executed at the 

same level as JPF, so there is hardly any limit of what the user 

can do with them. 

Finally, JPF is not able to backtrack native code such as 

system calls, input/output (I/O) that effects the host 

environment, accessing database, and network. For such 

cases, JPF provides model classes that simulate the native 

codes. All model classes must be developed and written in 

Java. Model classes can call native peer classes that run on 

the host-JVM to execute native methods such as network I/O. 

 

III. MODEL CHECKING NETWORKED APPLICATIONS 

 

Model checking explores the entire behavior of a SUT in 

brute-force and systematic manner and investigating each 

reachable state for different thread schedules. The SUT 

involves backtracking by the model checker tool. The 

problem happens when model check network programs. The 

SUT may repeat sending messages (I/O operations) to the 

external processes, however, the external processes, which 

are not under control of the model checker, cannot 

synchronize with the backtracking of SUT; therefore, the 

synchronization causes the direct communication between 

the SUT and external processes to fail. 

The current approaches such as cache-based [19-22] and 

centralization [7], [23-27] have been applied to model check 

network programs. Below sections describe details and 

current works of cache-based and centralization, respectively. 

 

A. Cache-Based Approach 

The concept of cache-based [19-22] approach is to model 

check a single process inside the model checker and runs all 

the other processes externally in their native environment. A 

process is a self-contained execution environment and has 

their own resources such as memory, CPU time, and I/O 

devices, whereas threads run within a process and share the 

process runtime resources. In cache-based, the SUT and 

“peers” denote the single process inside model checker and 

the external processes, respectively. The SUT executed by the 

model checker is subjected to backtracking, while external 

processes run normally. 

The main challenge of this approach is the synchronization 

between the SUT and its peers since the SUT is subjected to 

backtracking by the model checker, and the model checker 

does not have any control of its peers. During model checking 

SUT, the SUT may resend data which might interrupt the 

correct behavior of the peers, and the peers may not send the 

correct data back to the SUT. A special cache layer has been 

developed to solve these problems. Existing cache-based 

techniques [19-22] address this problem by introducing a 

special cache layer between the SUT and its peers for state 

synchronization. 

Figure 5 illustrates the overall architecture for cache-based 

approach for model checking network applications. The 

model checker executes the SUT in exhaustive ways making 

the repeated requests. The special cache layer intercepts all 

the communications between the SUT and its peers. It 

represents the state of communication at different points in 

time. After the SUT backtrack, the data previously received 

by the SUT is responded by the cache when requested again. 

If the SUT resend the same data that previously in the cache, 

the data is not sent again over the network; instead, the data 

is compared to the data in the cache storage.  
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Figure 5: Overal architecture of cache-based approach 

 

Initial work by Artho et al. [19, 20] proposes a solution for 

model checking network applications by developing a special 

caching layer for steam-based input/output (I/O). They 

introduce the idea of I/O caching via deterministic 

communication. We can refer it as linear-time cache. The 

solution works if the I/O operations of the SUT always 

produce the same data stream regardless of the non-

deterministic of the thread schedules. The communication 

between the SUT and its environment must be independence 

of the thread scheduling. For instance, the client sends a 

sequence of characters to the server, the server supposes to 

send the same sequence of the characters back to the client, 

regardless of the thread schedules. If it is not the case, the 

behavior of the communication resource would be undefined. 

The later work extends the idea of caching I/O 

communication traces to a wider range of applications by 

developing communication model that allows diverging 

communication traces between different schedules [21]. This 

concept is called branching-time cache. It allows for non-

deterministic caching traces between the SUT and the peers, 

but it does not allow non-determinism within the peers. For 

this approach, the SUT at least can send different data from 

the previous observed ones. 

To allow the non-determinism in peers, the proposed work 

in [22] combines a cache layer with process checkpointing 

[28]. Process checkpointing environment can run, pause, 

replay the peers at any point in time. During model checking 

of SUT, checkpointing idea can be incorporated when the 

SUT requires the synchronization of data from the peers, at 

that points, checkpointing can play and replay the peers’ 

states accordingly to the requests from the SUT. By doing 

this, this concept gives a broader range of model checking 

network applications. 

Cache-based techniques have been implemented into JPF 

extension called “net-iocache” [6]. This extension executes 

on top of jpf-core, and extra codes have been developed to 

control the behavior of the processes; for example, the control 

codes of executing sever process first before starting the 

client process. Sebih et. al [8] later extends net-iocache to 

verify network applications based on UDP protocols. The 

initial of their proposed work assumes that the 

communication packets can be lost, duplicated, and 

reordered. It is challenging to verify UDP-based applications 

due the unreliable connection; therefore, the authors simulate 

the behavior of the applications according to their 

requirements. However, they have added UDP support to net-

iocache and successfully simulated UDP’s unreliability by 

systematically generating combinations of packet lost, 

duplication, and reordering. Table 1 provides the summary of 

cache-based approach, its strengths and weaknesses, as well 

as the types of protocol supported for model checking. 

 

Table 1 
Model checking networked applications based on cache techniques 

 
Cache-Based Approach 

Techniques Protocol Tool Strength Weakness 

Linear-time 

cache [20] 
TCP/IP 

net-

iocache 

• Covers all I/O 

operations. 

• Complete 

execution 

semantics for 

steam. 

• Non-

deterministic 

of messages. 

• Very strict 

requirement. 

Branching-

time cache 

[21] 

TCP/IP 
net-

iocache 

• Covers more 

broader range of 

applications. 

• Allows SUT to 

send and accept 

different 

requests. 

• Still 

deterministic 

peers. 

Cache with 

process 

checkpointi

ng [22] 

TCP/IP 
net-

iocache 

• Covers more 

broader range of 

applications. 

• Allows non-

deterministic 

peers. 

• Involves play 

and replay 

peers so the 

response 

may error 

prune. 

Extension 

of cache-

based for 

UDP [8] 

UDP 
net-

iocache 

• Covers 

modeling class 

of 

DatagramSocke

t in Java 

• Simulating 

UDP 

behavior 

which is not 

so practical 

in real 

applications. 

 

B. Centralization Approach 

The concept of centralization techniques is to model check 

all processes within a model checker [7], [23]–[27]. These 

techniques can be applied at SUT level, OS level, and model 

checker level. Figure 6 shows the overall architecture of 

applied centralization techniques: (a) SUT level; (b) OS level; 

(c) Model checker level. At the SUT level, the processes are 

transformed into one main process. So, each process is 

mapped into a thread, and the model checker verifies the main 

process. Whereas the centralization can be applied at OS 

level. This technique does not involve transforming the SUT, 

instead, all the processes are running on top of virtualization 

tool, and model checker tool is extended to capture the state 

of the virtualization tool for state-space exploration. Finally, 

the model checker level aims to develop the model checker 

that can capture multiple processes within the tool itself. 

 

 
 

Figure 6 Overall architecture of applied centralization approach 
 

1) Centralization at SUT level 

The centralization approach can be applied at the SUT 

level. To achieve this, the processes are transformed into one 

main process; therefore, each process is mapped into a thread, 

and the model checker verifies the main process. 

The main challenges of SUT level centralization are: how 

the techniques can map processes into threads, how to 

represent communications between transformed processes 

(local threads), how the start and end process semantics, and 

how to separate static functions and types between local 

threads. The related works that have been proposed to address 

some of the above issues are discussed below.  

Initial work from Stoller and Liu [23] applied centralization 

technique at SUT level. They propose the concept of 
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transforming processes into a single process by replacing 

remote method invocation (RMIs) with the local ones that 

simulate RMIs. In addition, Stoller and Liu develop 

CentralizedThread class that extends Thread and initialize an 

instance of field type integer to denote process id. By doing 

this, they can map each process into a thread, and each thread 

communicate with each other via the simulated local RMIs. 

Later work from Artho and Garoche [24] provides a more 

accurate transformation of processes into a single process, 

and they also address some of the limitations of previous 

work by Stoller and Liu. In contrast to previous work, Artho 

and Garoche perform bytecode instrumentation which is 

applicable to systems compatible with newer version of Java 

and, in addition, their technique is also applicable to 

applications that use sockets for communication.  

Ma et. al [27] also propose technique for SUT level 

centralization. Their work extends the work from Artho and 

Garoche and addresses some of its limitations. They describe 

the techniques of handling class confliction by renaming 

classes that have identical names but have different bytecode. 

Ma et. al approach presents a way to terminate all processes 

by killing all their related threads. 

Finally, the SUT level centralization has been proposed by 

Barlas and Bultan [25]. They are mainly focusing on 

environment generation by introducing a framework called 

Netstub. The Netstub API requires users to manually develop 

on how the environment should be generated to accommodate 

the SUT during model checking. In addition, Netstub also 

allows model checking a process at a time. The Netstub 

environment can generate network events which are 

perceived by the SUT. 

 

2) Centralization at OS level 

In centralization at the OS level, the processes are running 

on a virtualization tool; therefore, this approach does not 

require transforming the SUT. This approach requires the 

extension of model checker’s scope to capture the state of the 

virtualization tool. 

The major challenges for this technique is the state space 

explosion. Since the SUT processes are running on top of 

virtualization tool and model checker must cover all the 

processes including virtualization tool processes, this will 

lead to exponential growth of states.  

Nekagawa et al. [26] develop a model checking framework 

based on this approach. Their proposed framework can 

execute very close to the actual model checking execution 

environment. They combine the user-mode Linux and the 

GNU debugger (GDB) to save and restore the entire Linux 

state. GBD can support several programming languages 

including Java. Processes are running on virtualization tool 

and once non-determinism is detected within a process, the 

state of the OS and any possible execution paths are computed 

and explored by the tool. 

 

3) Centralization at Model checker level 

Recent centralization approach has been implemented at 

model checker level by initial work from Shafiei and Mehlitz 

[7]. They develop multi-process JVM for JPF which allows 

model checking of distributed Java applications. To address 

the problems of class confliction, static functions and static 

fields, the new multi-process in JPF modifies the class loaders 

in JPF. The processes are mapped as a group of threads. 

During the initialization, each new thread is created by the 

SUT automatically. To capture scheduling points inside JPF, 

the new communication models have been developed based 

on network API calls. This technique has been implemented 

into JPF extension called “jpf-nas”. 

The major challenges with centralization at model checker 

level are managing the state-space within model checker, 

modeling internal communication between local threads, and 

possible covering of language API and classes. Table 2 

summarizes the centralization approach, and some of their 

strengths and weaknesses.  

 
Table 2 

Model checking networked applications based on centralization techniques 
 

Centralization Approach 

Techniques Protocol Tool Strength Weakness 

SUT Level 

[23]–[25], 

[27] 

TCP/IP 

RMI 

Expect to 

integrate 

with 

Bandera, 

JPF 

• Covers all 

errors 

including 

network 

states. 

• Involves SUT 

transformation 

• Separate static 

functions and 

fields 

OS Level 

[26] 
TCP/IP 

SBUML 

and GDB 

• Does not 

require SUT 

transformati

on. 

• Covers some 

errors in the 

processes.  

• Exponential 

state-space 

explosion 

Model 

checker 

level [7] 

TCP/IP jpf-nas 

• Automatic 

load network 

applications 

and 

verification.  

• Does not 

involve SUT 

transformati

on. 

• Does not 

support UDP. 

• Managing 

state-space and 

communicatio

n within the 

tool. 

 

C. Summary 

The cache-based techniques verify one process at a time, 

while letting the rest of processes run externally in their native 

implementation. The SUT is subjected to backtracking that 

brings the challenges of state synchronization between the 

SUT and its peer processes. First, Linear-time cache can 

handle network applications that the request and response 

have the same sequence of data regardless the thread 

schedules, if not otherwise, the behavior of the 

communication will fail. Second, branching-time cache can 

let the SUT send different messages to their peers. However, 

it does not address the non-determinism of peers. Third, the 

checkpointing with cache allows the non-determinism in 

peers. Finally, cache-based techniques have been extended to 

handle UDP protocol. It is implemented on top of JPF 

extension called “net-iocache”.  

In contrast, the concept of centralization techniques is to 

model check all processes within a model checker tool. The 

techniques can be applied at the SUT level, OS level, and 

model checker level. At the SUT level, the proposed works 

show the techniques of transforming processes into threads, 

how to handle class confliction, initialize and shutdown 

semantics, and how the local threads can communicate 

between each other. At the OS level, the model checker 

captures the entire Linux state if it detects any non-

determinism within a process. Finally, at the model checker 

level, the work develops the multi-process JVM for JPF. The 

technique customizes the class loader within JPF to enable of 

loading local threads without any confliction of types, static 

functions, and fields. The internal communication between 

local threads has also been supported in JPF. 

In summary, the cache-based approach model checks one 

process at a time, in which this technique can scale better than 
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centralization approach. However, it may miss some errors 

since cache-based does not cover all the network 

communication. In contrast, centralization approach covers 

all the errors since all the processes are under control of 

model checker. Therefore, we intend to propose a hybrid 

approach which combines the centralization and cache-based 

techniques to support verification of IoT applications. 

 

IV. PROPOSED WORK 

 

Our preliminary proposal for model checking of networked 

applications is illustrated in Figure 7. It combines the 

centralization and cache-based approaches for verifying IoT 

applications. We are going to utilize the existing JPF 

extensions such as jpf-nas and net-iocache. Jpf-nas allows 

multi-process JVM for verifying processes within a model 

checker, and the net-iocache provides a special cache layer 

for state synchronization between the SUT and the peers. 

Therefore, our initial work will modify the cache layer for 

state synchronization between jpf-nas and the peers. It is 

expected that proposed work will be able to model check 

wider range of IoT applications. 

 

 
 

Figure 7 Architectural design of the hybrid technique by extending JPF 

model checker 

 

V. CONCLUSION AND FUTURE WORKS 

 

The reliability of IoT applications is one of the concerns for 

successful IoT deployment. The applications enable human-

to-device and device-to-device interactions, and they need to 

ensure that data/messages have been received and performed 

properly in a timely manner. In this paper, we presented a 

review on the existing techniques of model checking network 

applications. We analyzed the architectural design of the 

techniques and discussed their strengths and limitations. The 

limitations such as the interactions between the JPF model 

checker with peer processes, which haven’t studied before. 

Finally, our future work concentrates on developing JPF 

extension that combines centralization and cache-based for 

verification of IoT applications. 
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