

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 143

Towards Model Checking of Network Applications

for IoT System Development

Hing Ratana and Sharifah Mashita Syed Mohamad
School of Computer Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.

ratanahing@student.usm.my

Abstract—With the expansion of the Internet, Internet of

Things (IoT) gains lots of interest from industries and academia.

IoT applications enable human-to-device and device-to-device

interactions. For a successful deployment of IoT systems and

services, software reliability is a very important requirement for

IoT to ensure that data/messages have been received and

performed properly in a timely manner. The concurrent

connections of embedded sensors and actuators are non-

deterministic in nature which makes testing insufficient to

guarantee program correctness. In contrast, model checking

techniques explore the entire behavior of a system under test

(SUT) in brute-force and systematic manner. It investigates each

reachable state for different thread schedules. Recent model

checking techniques have been applied directly to networked

programs. This paper reviews model checking techniques for

networked applications and presents their strengths and

limitations. A preliminary proposal for model checking of

networked applications that addresses the identified gap is

presented.

Index Terms—Cache-Based Approach; Internet of Things

Applications; Network Model Checking; Software Reliability.

I. INTRODUCTION

With the expansion of the Internet, the Internet of Things

(IoT) gains lots of interest from industries and academia. IoT

projections suggest that, by 2020, there will be 50 billion

connected devices and $19 trillion opportunity into the IoT

industry [1]. IoT represents a worldwide network of uniquely

addressable inter-connected smart objects such as sensing and

actuating devices that provide ability to share information

across multiple platforms in order to enable innovative

applications [2].

According to Lee and Lee [3], there are five essential IoT

technologies for deployment of successful IoT-based

products and services. These technologies are radio

frequency identification (RFID), wireless sensor networks

(WSN), middleware, cloud computing, and IoT application

software. All these technologies involve with hardware and

software communicating each other via network and the

Internet. For instance, the middleware allows the mobile

devices to perform communication and input/output with

sensors and actuators. It hides details of different

technologies of those smart objects.

Figure 1 illustrates typical IoT architecture using

middleware that hides details of different technologies

implemented by smart objects. The Internet provides

uniquely addressable inter-connected points to the objects,

and it is the central point for communication. The

communication protocols such as TCP/IP, UDP and HTTP

are used for communication amongst mobile devices, the

Internet, middleware, and smart controller. Other protocols

like 6LoWPAN, Z-Wave, and ZigBee used for

communicating between the smart controller and smart

objects. Smart homes for instance, light bulbs, light switches,

water heaters, solar panels, motion sensors, window/door

sensors can be programmed to connect with each other to the

smart controller and from the smart controller to the Internet

so that they can share information and assist home users in

undertaking operational tasks such as turning off the lights in

a house from a smart phone.

Figure 1: Typical IoT architecture via middleware

The reliability of IoT applications is one of the concerns for

successful IoT deployment as described in [3]. The

applications enable human-to-device and device-to-device

interactions, and they need to ensure that data/messages have

been received and performed properly in a timely manner.

Software testing [4] is one of the common practices to

ensure the reliability of IoT applications, however, is

depended on systematic guess and how well the software

testers know about the system under test (SUT). The

concurrent connections of wireless embedded sensors and

actuators to the middleware are non-deterministic in nature.

The interleaving between threads increases the challenges to

software testers. In addition, setting up an environment and

instrumenting the SUT are time consuming and expensive.

Model checking [4, 5], on the other hand, is one of the

formal verification methods for ensuring the reliability of

critical software system. It explores the entire behavior of a

SUT in brute-force and systematic manner and investigating

each reachable state for different thread schedules. Recent

model checking techniques [6-8] have been applied to

network programs. The goal of this work is therefore to

review model checking techniques for networked

applications and how these techniques can help with the

development of reliable applications for IoT ecosystems.

This article is organized as follows: Section II provides the

fundamental background to model checking techniques and

the model checker tool; Section III describes the problems of

model checking network applications and review its current

works; Section IV proposes initial work toward verification

of IoT application. Finally, the conclusion of the article is

provided in Section V.

Journal of Telecommunication, Electronic and Computer Engineering

144 e-ISSN: 2289-8131 Vol. 9 No. 3-4

II. BACKGROUND

Software testing depends on systematic guess and how well

the software testers know about the SUT. The concurrent

connections of wireless embedded sensors and actuators to

the middleware are non-deterministic in nature. The

interleaving between threads increases the challenges to

software testers. In addition, setting up an environment and

instrumenting the SUT are time consuming and expensive.

Software model checking, on the other hand, is one of the

formal verification techniques, which is used to verify

software system. This technique conducts an exhaustive

search of all possible system states and, if encountered an

error, it provides “counterexample” which tells us where the

root of the bug is. The “counterexample” is the faulty trace

that provides the important clues for fixing the problem.

In this section, we introduce the concept of software model

checking and the model checker tool called Java PathFinder

(JPF) and its extension for verifying network applications.

A. Model Checking

Model checking [4, 5] is one of the formal verification

techniques that exhaustively checks for property violations in

concurrent system. It explores all possible system states in

brute-force and systematic manner. There are two major

advantages of model checking over the other formal

verification techniques. First, it is fully automatic. This means

that model checking does not require any user supervision to

control the input during the design simulation. Second, it

provides “counterexample” when the given model does not

satisfy the given properties. Counterexample is like a bug

trace, which is import clues to fix the problem.

According to [9], the model checking problem can be stated

as below:

M, s |=f (1)

where M is a Kripke structure (i.e., state-transition graph) and

f is a formula of temporal logic (i.e., the specification). The

problem is to find all states s of M such that M, s |= f.

The system model is formally described as Kripke structure

or transition system (TS), and the system properties are

generally expressed in temporal logic. When the state of TS

satisfies with the property, the model checking continues to

the next state until the error is found. It proceeds until the end

state. If the error is found, it produces the counterexample that

gives important clue to fix the error. Model checking explores

the entire state-space of the concurrent systems. The basic

search algorithms are depth-first-search (DFS) and breath-

first-search (BFS). These two search algorithms involve

backtracking the state inside the programs. The example of

backtracking is explained in section B later in the article.

Modern model checkers [10-18] have been applied directly

to the actual implementation of the programs, written in

standard programming languages such as C or Java. These

tools help programmers to detect errors during the

implementation phase. An example of model checker tool

that model check real programs is Java PathFinder [14],

which we will focus on in the rest of the article.

B. Java PathFinder

Java PathFinder or JPF [14] is a verification and testing

environment tool for Java. It is an explicit-state model

checker that verifies Java programs for concurrency defects,

runtime analysis, and generation of test cases depending on

how the user configures the verification properties as input.

By default, JPF can check for deadlocks, race conditions, and

unhandled exceptions (including Java assert expression). The

tool is developed by NASA Aimes Research Center and

became an open-source project in 2005.

Figure 2 illustrates the overall architecture of JPF. The tool

requires the Java bytecodes (*.class) and its requirements

(*.jpf) as its inputs, and it produces a report of the verification

result as an output.

Figure: 2. Java PathFinder architecture

JPF is written in Java so it is executed on top of Java Virtual

Machine or we call it host JVM, and the Java program under

test is executed on top of JPF, which is running a customized

JVM for model checking purpose or we call it as JPFjvm. The

different is that JPFjvm involves backtracking; while host JVM

does not involve backtracking.

As mentioned earlier, model checker requires backtracking

the SUT. To illustrate this, let’s look at the example of how

JPFjvm and host JVM executes the program as shown in

Figure 3. Figure 3 is an example Java program that computes

the two random variables a and b. The program starts with the

initialization of Random class with value of 42. The integer

variable a and b are initialized and given “.nextInt()” method

with value of 2 and 3, respectively. Variable c does

computation as shown in line 9. Finally, the program prints

out the result of c.

Figure 3:. Simple Java program using random class

Figure 4 (a) indicates the execution graph on host JVM, and

Figure 4 (b) shows the execution graph of the program on

JPFjvm. The octagon, single circle, and double circle

represents the start state, reachable state, and end-state,

respectively. Notice that in (a) the program executes on host-

JVM. It does not involve backtracking thus the program does

not cause any error. However, in (b), the JPF executes the

program in all possible ways until it finds the error state.

Towards Model Checking of Network Applications for IoT System Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 145

Figure 4: Execution graph by (a) host-JVM and (b) JPFjvm

There are two main distinct strategies of JPF tool, the jpf-

core and the extensibility of the jpf-core, that make JPF tool

becomes the most useful model checker for finding bugs in

concurrent Java programs.

The jpf-core consists of two main components such as the

custom Virtual Machine or (JPFjvm) and the search. Jpf-core

is a customized Java Virtual Machine (JPFjvm). It is a JVM

which mean it allows Java program to execute, but this

JPFjvm executes program differently from the host-JVM.

The host-JVM executes only one path of the program at a

time; while JPFjvm explores all the possible reachable system

states of the program.

First, the search (default is depth-first-search) component

inside the jpf-core represents the program states as a directed

graph where the nodes represent its states and edges denote

transitions (or choices). The choice generator creates the next

successor state of the current state, and the search goes

through the state one by one in a non-deterministic manner.

If the current state does not have any successor state, the

search backtracks to the previous visited state and explores

the next unvisited states. By following this policy, the JPF

theoretically explores all the possible system behavior of the

program. The jpf-core produces a report that leads to the bug

if there is a bug found inside the concurrent program.

Second, JPF allows the extensibility of its core to tackle

different model checking problems. The jpf-core provides

listeners, little “plugin”, that let the user closely monitor all

the actions by JPF such as executing single instructions,

creating objects, reaching a new program state, and many

more. Listeners are the most important extension mechanism

of JPF. They provide a way to observe, interact with, and

extend JPF execution with classes. Since listeners are

dynamically configured at runtime, they do not require any

modification to the jpf-core. Listeners are executed at the

same level as JPF, so there is hardly any limit of what the user

can do with them.

Finally, JPF is not able to backtrack native code such as

system calls, input/output (I/O) that effects the host

environment, accessing database, and network. For such

cases, JPF provides model classes that simulate the native

codes. All model classes must be developed and written in

Java. Model classes can call native peer classes that run on

the host-JVM to execute native methods such as network I/O.

III. MODEL CHECKING NETWORKED APPLICATIONS

Model checking explores the entire behavior of a SUT in

brute-force and systematic manner and investigating each

reachable state for different thread schedules. The SUT

involves backtracking by the model checker tool. The

problem happens when model check network programs. The

SUT may repeat sending messages (I/O operations) to the

external processes, however, the external processes, which

are not under control of the model checker, cannot

synchronize with the backtracking of SUT; therefore, the

synchronization causes the direct communication between

the SUT and external processes to fail.

The current approaches such as cache-based [19-22] and

centralization [7], [23-27] have been applied to model check

network programs. Below sections describe details and

current works of cache-based and centralization, respectively.

A. Cache-Based Approach

The concept of cache-based [19-22] approach is to model

check a single process inside the model checker and runs all

the other processes externally in their native environment. A

process is a self-contained execution environment and has

their own resources such as memory, CPU time, and I/O

devices, whereas threads run within a process and share the

process runtime resources. In cache-based, the SUT and

“peers” denote the single process inside model checker and

the external processes, respectively. The SUT executed by the

model checker is subjected to backtracking, while external

processes run normally.

The main challenge of this approach is the synchronization

between the SUT and its peers since the SUT is subjected to

backtracking by the model checker, and the model checker

does not have any control of its peers. During model checking

SUT, the SUT may resend data which might interrupt the

correct behavior of the peers, and the peers may not send the

correct data back to the SUT. A special cache layer has been

developed to solve these problems. Existing cache-based

techniques [19-22] address this problem by introducing a

special cache layer between the SUT and its peers for state

synchronization.

Figure 5 illustrates the overall architecture for cache-based

approach for model checking network applications. The

model checker executes the SUT in exhaustive ways making

the repeated requests. The special cache layer intercepts all

the communications between the SUT and its peers. It

represents the state of communication at different points in

time. After the SUT backtrack, the data previously received

by the SUT is responded by the cache when requested again.

If the SUT resend the same data that previously in the cache,

the data is not sent again over the network; instead, the data

is compared to the data in the cache storage.

Journal of Telecommunication, Electronic and Computer Engineering

146 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Figure 5: Overal architecture of cache-based approach

Initial work by Artho et al. [19, 20] proposes a solution for

model checking network applications by developing a special

caching layer for steam-based input/output (I/O). They

introduce the idea of I/O caching via deterministic

communication. We can refer it as linear-time cache. The

solution works if the I/O operations of the SUT always

produce the same data stream regardless of the non-

deterministic of the thread schedules. The communication

between the SUT and its environment must be independence

of the thread scheduling. For instance, the client sends a

sequence of characters to the server, the server supposes to

send the same sequence of the characters back to the client,

regardless of the thread schedules. If it is not the case, the

behavior of the communication resource would be undefined.

The later work extends the idea of caching I/O

communication traces to a wider range of applications by

developing communication model that allows diverging

communication traces between different schedules [21]. This

concept is called branching-time cache. It allows for non-

deterministic caching traces between the SUT and the peers,

but it does not allow non-determinism within the peers. For

this approach, the SUT at least can send different data from

the previous observed ones.

To allow the non-determinism in peers, the proposed work

in [22] combines a cache layer with process checkpointing

[28]. Process checkpointing environment can run, pause,

replay the peers at any point in time. During model checking

of SUT, checkpointing idea can be incorporated when the

SUT requires the synchronization of data from the peers, at

that points, checkpointing can play and replay the peers’

states accordingly to the requests from the SUT. By doing

this, this concept gives a broader range of model checking

network applications.

Cache-based techniques have been implemented into JPF

extension called “net-iocache” [6]. This extension executes

on top of jpf-core, and extra codes have been developed to

control the behavior of the processes; for example, the control

codes of executing sever process first before starting the

client process. Sebih et. al [8] later extends net-iocache to

verify network applications based on UDP protocols. The

initial of their proposed work assumes that the

communication packets can be lost, duplicated, and

reordered. It is challenging to verify UDP-based applications

due the unreliable connection; therefore, the authors simulate

the behavior of the applications according to their

requirements. However, they have added UDP support to net-

iocache and successfully simulated UDP’s unreliability by

systematically generating combinations of packet lost,

duplication, and reordering. Table 1 provides the summary of

cache-based approach, its strengths and weaknesses, as well

as the types of protocol supported for model checking.

Table 1
Model checking networked applications based on cache techniques

Cache-Based Approach

Techniques Protocol Tool Strength Weakness

Linear-time

cache [20]
TCP/IP

net-

iocache

• Covers all I/O

operations.

• Complete

execution

semantics for

steam.

• Non-

deterministic

of messages.

• Very strict

requirement.

Branching-

time cache

[21]

TCP/IP
net-

iocache

• Covers more

broader range of

applications.

• Allows SUT to

send and accept

different

requests.

• Still

deterministic

peers.

Cache with

process

checkpointi

ng [22]

TCP/IP
net-

iocache

• Covers more

broader range of

applications.

• Allows non-

deterministic

peers.

• Involves play

and replay

peers so the

response

may error

prune.

Extension

of cache-

based for

UDP [8]

UDP
net-

iocache

• Covers

modeling class

of

DatagramSocke

t in Java

• Simulating

UDP

behavior

which is not

so practical

in real

applications.

B. Centralization Approach

The concept of centralization techniques is to model check

all processes within a model checker [7], [23]–[27]. These

techniques can be applied at SUT level, OS level, and model

checker level. Figure 6 shows the overall architecture of

applied centralization techniques: (a) SUT level; (b) OS level;

(c) Model checker level. At the SUT level, the processes are

transformed into one main process. So, each process is

mapped into a thread, and the model checker verifies the main

process. Whereas the centralization can be applied at OS

level. This technique does not involve transforming the SUT,

instead, all the processes are running on top of virtualization

tool, and model checker tool is extended to capture the state

of the virtualization tool for state-space exploration. Finally,

the model checker level aims to develop the model checker

that can capture multiple processes within the tool itself.

Figure 6 Overall architecture of applied centralization approach

1) Centralization at SUT level

The centralization approach can be applied at the SUT

level. To achieve this, the processes are transformed into one

main process; therefore, each process is mapped into a thread,

and the model checker verifies the main process.

The main challenges of SUT level centralization are: how

the techniques can map processes into threads, how to

represent communications between transformed processes

(local threads), how the start and end process semantics, and

how to separate static functions and types between local

threads. The related works that have been proposed to address

some of the above issues are discussed below.

Initial work from Stoller and Liu [23] applied centralization

technique at SUT level. They propose the concept of

Towards Model Checking of Network Applications for IoT System Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 147

transforming processes into a single process by replacing

remote method invocation (RMIs) with the local ones that

simulate RMIs. In addition, Stoller and Liu develop

CentralizedThread class that extends Thread and initialize an

instance of field type integer to denote process id. By doing

this, they can map each process into a thread, and each thread

communicate with each other via the simulated local RMIs.

Later work from Artho and Garoche [24] provides a more

accurate transformation of processes into a single process,

and they also address some of the limitations of previous

work by Stoller and Liu. In contrast to previous work, Artho

and Garoche perform bytecode instrumentation which is

applicable to systems compatible with newer version of Java

and, in addition, their technique is also applicable to

applications that use sockets for communication.

Ma et. al [27] also propose technique for SUT level

centralization. Their work extends the work from Artho and

Garoche and addresses some of its limitations. They describe

the techniques of handling class confliction by renaming

classes that have identical names but have different bytecode.

Ma et. al approach presents a way to terminate all processes

by killing all their related threads.

Finally, the SUT level centralization has been proposed by

Barlas and Bultan [25]. They are mainly focusing on

environment generation by introducing a framework called

Netstub. The Netstub API requires users to manually develop

on how the environment should be generated to accommodate

the SUT during model checking. In addition, Netstub also

allows model checking a process at a time. The Netstub

environment can generate network events which are

perceived by the SUT.

2) Centralization at OS level

In centralization at the OS level, the processes are running

on a virtualization tool; therefore, this approach does not

require transforming the SUT. This approach requires the

extension of model checker’s scope to capture the state of the

virtualization tool.

The major challenges for this technique is the state space

explosion. Since the SUT processes are running on top of

virtualization tool and model checker must cover all the

processes including virtualization tool processes, this will

lead to exponential growth of states.

Nekagawa et al. [26] develop a model checking framework

based on this approach. Their proposed framework can

execute very close to the actual model checking execution

environment. They combine the user-mode Linux and the

GNU debugger (GDB) to save and restore the entire Linux

state. GBD can support several programming languages

including Java. Processes are running on virtualization tool

and once non-determinism is detected within a process, the

state of the OS and any possible execution paths are computed

and explored by the tool.

3) Centralization at Model checker level

Recent centralization approach has been implemented at

model checker level by initial work from Shafiei and Mehlitz

[7]. They develop multi-process JVM for JPF which allows

model checking of distributed Java applications. To address

the problems of class confliction, static functions and static

fields, the new multi-process in JPF modifies the class loaders

in JPF. The processes are mapped as a group of threads.

During the initialization, each new thread is created by the

SUT automatically. To capture scheduling points inside JPF,

the new communication models have been developed based

on network API calls. This technique has been implemented

into JPF extension called “jpf-nas”.

The major challenges with centralization at model checker

level are managing the state-space within model checker,

modeling internal communication between local threads, and

possible covering of language API and classes. Table 2

summarizes the centralization approach, and some of their

strengths and weaknesses.

Table 2

Model checking networked applications based on centralization techniques

Centralization Approach

Techniques Protocol Tool Strength Weakness

SUT Level

[23]–[25],

[27]

TCP/IP

RMI

Expect to

integrate

with

Bandera,

JPF

• Covers all

errors

including

network

states.

• Involves SUT

transformation

• Separate static

functions and

fields

OS Level

[26]
TCP/IP

SBUML

and GDB

• Does not

require SUT

transformati

on.

• Covers some

errors in the

processes.

• Exponential

state-space

explosion

Model

checker

level [7]

TCP/IP jpf-nas

• Automatic

load network

applications

and

verification.

• Does not

involve SUT

transformati

on.

• Does not

support UDP.

• Managing

state-space and

communicatio

n within the

tool.

C. Summary

The cache-based techniques verify one process at a time,

while letting the rest of processes run externally in their native

implementation. The SUT is subjected to backtracking that

brings the challenges of state synchronization between the

SUT and its peer processes. First, Linear-time cache can

handle network applications that the request and response

have the same sequence of data regardless the thread

schedules, if not otherwise, the behavior of the

communication will fail. Second, branching-time cache can

let the SUT send different messages to their peers. However,

it does not address the non-determinism of peers. Third, the

checkpointing with cache allows the non-determinism in

peers. Finally, cache-based techniques have been extended to

handle UDP protocol. It is implemented on top of JPF

extension called “net-iocache”.

In contrast, the concept of centralization techniques is to

model check all processes within a model checker tool. The

techniques can be applied at the SUT level, OS level, and

model checker level. At the SUT level, the proposed works

show the techniques of transforming processes into threads,

how to handle class confliction, initialize and shutdown

semantics, and how the local threads can communicate

between each other. At the OS level, the model checker

captures the entire Linux state if it detects any non-

determinism within a process. Finally, at the model checker

level, the work develops the multi-process JVM for JPF. The

technique customizes the class loader within JPF to enable of

loading local threads without any confliction of types, static

functions, and fields. The internal communication between

local threads has also been supported in JPF.

In summary, the cache-based approach model checks one

process at a time, in which this technique can scale better than

Journal of Telecommunication, Electronic and Computer Engineering

148 e-ISSN: 2289-8131 Vol. 9 No. 3-4

centralization approach. However, it may miss some errors

since cache-based does not cover all the network

communication. In contrast, centralization approach covers

all the errors since all the processes are under control of

model checker. Therefore, we intend to propose a hybrid

approach which combines the centralization and cache-based

techniques to support verification of IoT applications.

IV. PROPOSED WORK

Our preliminary proposal for model checking of networked

applications is illustrated in Figure 7. It combines the

centralization and cache-based approaches for verifying IoT

applications. We are going to utilize the existing JPF

extensions such as jpf-nas and net-iocache. Jpf-nas allows

multi-process JVM for verifying processes within a model

checker, and the net-iocache provides a special cache layer

for state synchronization between the SUT and the peers.

Therefore, our initial work will modify the cache layer for

state synchronization between jpf-nas and the peers. It is

expected that proposed work will be able to model check

wider range of IoT applications.

Figure 7 Architectural design of the hybrid technique by extending JPF

model checker

V. CONCLUSION AND FUTURE WORKS

The reliability of IoT applications is one of the concerns for

successful IoT deployment. The applications enable human-

to-device and device-to-device interactions, and they need to

ensure that data/messages have been received and performed

properly in a timely manner. In this paper, we presented a

review on the existing techniques of model checking network

applications. We analyzed the architectural design of the

techniques and discussed their strengths and limitations. The

limitations such as the interactions between the JPF model

checker with peer processes, which haven’t studied before.

Finally, our future work concentrates on developing JPF

extension that combines centralization and cache-based for

verification of IoT applications.

REFERENCES

[1] T. Priestley, “The internet of things is a fragmented $19 trillion roulette

gamble,” Forbes, 2015. Available at https://www.forbes.com/
sites/theopriestley/2015/10/05/the-internet-of-things-is-a-fragmented-

19-trillion-roulette-gamble/#6f7c579d29d9. [Accessed: 28-Feb-2017].

[2] B. L. Risteska Stojkoska and K. V. Trivodaliev, “A review of Internet

of Things for smart home: challenges and solutions,” J. Clean. Prod.,

vol. 140, pp. 1454–1464, Jan. 2017.

[3] I. Lee and K. Lee, “The Internet of Things (IoT): Applications,
investments, and challenges for enterprises,” Bus. Horiz., vol. 58, no.

4, pp. 431–440, Jul. 2015.

[4] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, Cambridge, 2008.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The

MIT Press, Cambridge, 1999.

[6] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, M. Yamamoto,
and K. Takahashi, “Modular software model checking for distributed

systems,” IEEE Trans. Softw. Eng., vol. 40, no. 5, pp. 483–501, May

2014.
[7] N. Shafiei, and P. Mehlitz, “Extending JPF to verify distributed

systems,” ACM SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp. 1–5,

Feb. 2014.
[8] N. Sebih, F. Weitl, C. Artho, M. Hagiya, Y. Tanabe, and M.

Yamamoto, “Software model checking of udp-based distributed

applications,” in 2014 Second International Symposium on Computing
and Networking, 2014, pp. 96–105.

[9] E. M. Clarke, “The birth of model checking,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5000

LNCS, pp. 1–26.

[10] P. Godefroid, “Model checking for programming languages using
verisoft,” in Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, 1997, pp. 174–

186.
[11] J. C. Corbett et al., “Bandera: extracting finite-state models from java

source code,” in Proceedings of the 22Nd International Conference on

Software Engineering, 2000, pp. 439–448.
[12] T. Ball, A. Podelski, and S. K. Rajamani, “Boolean and cartesian

abstraction for model checking C programs,” in Tools and Algorithms

for the Construction and Analysis of Systems, T. Margaria, and W. Yi,
Eds. Berlin, Heidelberg: Springer, 2001, pp. 268–283.

[13] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in Computer Aided
Verification, G. Berry, H. Comon, and A. Finkel, Eds. Berlin,

Heidelberg: Springer, 2001, pp. 260–264.

[14] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
checking programs,” Autom. Softw. Eng., vol. 10, no. 2, pp. 203–232,

2003.

[15] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
Verification of software components in C,” in Proceedings of the 25th

International Conference on Software Engineering, 2003, pp. 385–395.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
verification with BLAST,” in Model Checking Software, T. Ball and

S. K. Rajamani, Eds. Berlin, Heidelberg: Springer, 2003, pp. 235–239.

[17] C. Artho, C. Artho, A. Biere, P. Eugster, M. Baur, and B. Zweimüller,
“JNuke: efficient dynamic analysis for Java,” in Proc. CAV ’04, pp.

462-465, 2004.

[18] M. B. Dwyer, J. Hatcliff, M. Hoosier, and Robby, “Building your own
software model checker using the bogor extensible model checking

framework,” in Computer Aided Verification, K. Etessami and S. K.

Rajamani, Eds. Berlin, Heidelberg: Springer, 2005, pp. 148–152.
[19] C. Artho, B. Zweimüller, A. Biere, E. Shibayama, and S. Honiden,

“Efficient model checking of applications with input/output,” in

Computer Aided Systems Theory, R. Moreno-D’iaz, F. Pichler, and A.
Quesada-Arencibia, Eds. Berlin, Heidelberg: Springer, 2007, pp. 515–

522.

[20] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe, “Efficient
model checking of networked applications,” in 46th International

Conference Objects, Components, Models and Patterns Proceedings,

2008, vol. 11, pp. 22–40.

[21] C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M.

Yamamoto, “Cache-based model checking of networked applications:

from linear to branching time,” in 24th {IEEE/ACM} International
Conference on Automated Software Engineering, Auckland, New

Zealand, 2009, pp. 447–458.

[22] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, and M.
Yamamoto, “Model checking distributed systems by combining

caching and process checkpointing,” in 2011 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE
2011), 2011, pp. 103–112.

[23] S. D. Stoller and Y. A. Liu, “Transformations for model checking

distributed Java programs,” in SPIN ’01: Proceedings of the 8th
international SPIN workshop on Model checking of software, 2001.

[24] C. Artho and P.-L. Garoche, “Accurate centralization for applying

model checking on networked applications,” in 21st IEEE/ACM
International Conference on Automated Software Engineering

(ASE’06), 2006, pp. 177–188.

[25] E. Barlas and T. Bultan, “Netstub: a framework for verification of
distributed Java applications,” in Proceedings of the Twenty-second

IEEE/ACM International Conference on Automated Software

Engineering, 2007, pp. 24–33.
[26] Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya, and K. Kato,

“Model checking of multi-process applications using SBUML and
GDB,” in Proc. Workshop on Dependable Software: Tools and

Methods, 2005, pp. 215–220.

Towards Model Checking of Network Applications for IoT System Development

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 149

[27] L. Ma, C. Artho, and H. Sato, “Analyzing distributed Java applications
by automatic centralization,” in 2013 IEEE 37th Annual Computer

Software and Applications Conference Workshops, 2013, pp. 691–696.

[28] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent
checkpointing for cluster computations and the desktop,” in 2009 IEEE

International Symposium on Parallel & Distributed Processing, 2009,

pp. 1–12.

