

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 123

The Study of Code Reviews based on Software

Maintainability in Open Source Projects

Aziz Nanthaamornphong and Thanyarat Kitpanich
Department of Information and Communications Technology, Faculty of Technology and Environment,

Prince of Songkla University, Phuket Campus, Phuket, Thailand.

aziz.n@phuket.psu.ac.th

Abstract—Recently, open source software (OSS) applications

have been widely adopting. However, the OSS projects have

problems in the software quality, such as security and

maintainability. Generally, software engineers focus on the

software maintainability because this quality attribute can

reduce the cost and increase the productivity of software

development. To better understand how the OSS developers

improve the source code based on a software maintenance

perspective; this research aims to investigate how the developers

are interested in the maintainability under the peer code review

of the OSS projects. We analyzed whether the code authors

changed their code based on the code review's comments related

to maintenance issues by examining two OSS projects. We found

that the OSS developer community tends to pay more attention

to software maintainability. Finally, we expect that this research

will increase the empirical evidence about the quality of OSS

projects, particularly maintainability.

Index Terms—Code Review; Open Source Software; Software

Engineering; Software Maintenance.

I. INTRODUCTION

Currently, commercial organizations and government

agencies have been adopting the open source software (OSS)

to their works widely because the OSS is developed by

software engineers who are the experts and have various

experiences for software system development. So, the OSS is

quite popular and reliable regarding functionality’s

corrections, and it helps to reduce the cost of software

investment. However, a previous research [1] found that the

main problem of OSS development is the lacks of the

systematic process or procedure and formal documents

related to the system development such as requirements,

designs, testing and so on. As all of above causes, some OSS

projects have poor code quality [2], especially the software

security and software maintainability.

Software maintainability is one of the key success factors

of software development because most developers have to

spend time around 40%-50% of the software development

life cycle to find defects and errors during a software

development process or after product delivery [3]. Also, they

must pay the maintenance cost for 40%-80% (average 60%)

[4]. Many OSS projects specify the ways to improve the

development process and to solve the problems of software

quality [5]. For example, the changed code must be approved

through a process of analyzing code written (review) by a

teammate or reviewers who do not develop the source code

by themselves. For this procedure, it is called “Peer code

review” or “Modern code review.”

Peer code review is the key part of a software development

process because this method is widely accepted for the

software engineers in software quality assurance practices

[6]. Also, the important thing of the peer code review is the

comments taken from the reviewers. These comments can

point to bugs or defects in the source code, suggest better

alternatives of solving problems to make the developers

improve the software quality, help developers submit a higher

quality changed code, and improve the author’s development

skills, including standardizing the source code in order to help

everyone be able to read and understand how the system

works. However, some comments may contain incorrect

information and provide comments that are not related to

software quality improvement.

According to the existing literature related code reviews in

OSS projects, we found that it has currently no research

studying whether the OSS developers pay attention to

software maintainability under the peer code review in the

OSS project. To investigate how the OSS developers are

interested in the software’s maintainability, we analyzed the

comments given by code reviewers with these following

objectives: 1) to study the relationship between code review

comments related to maintainability and the source code

improvement based on the obtained comments and 2) to

examine the comments related to the five sub-characteristics

of software maintainability (modularity reusability

analyzability modifiability and testability), which were

addressed by code authors. In this research, we analyzed the

review comments from two OSS projects, including Eclipse

(https://eclipse.org/) and Qt (https://www.qt.io/).

We expect that the results of this research can provide the

empirical evidence about the software quality in the OSS

projects to the software engineering research community.

Additionally, the results will be the guidance for software

developers to realize the importance of software

maintainability before modifying the source code.

The remainder of this paper is organized as follows.

Section II provides background concepts related to this work.

Section III presents related work. Section IV describes the

research methodology. Section V shows the study results,

Section VI draws conclusions and describes plans for the

future work.

II. BACKGROUND

This section describes the background regarding the code

review in OSS projects and software maintainability.

A. Peer code review in the OSS project

The OSS is the software, which allows users or developers

access to the code repository to modify or improve the source

code [7]. As of this reason, the software engineering

Journal of Telecommunication, Electronic and Computer Engineering

124 e-ISSN: 2289-8131 Vol. 9 No. 3-4

community in the OSS projects uses the peer code review to

increase the software reliably. Many OSS projects have

adopted code review tools, e.g., Gerrit [8], ReviewBoard [9]

as the media of communication and knowledge exchange

about software development. The key objective of peer code

review techniques is to ensure that the changed code can

decrease bugs or defects and has no effect on maintenance in

the long term.

In this research, we analyzed the comments from the code

review tool, called Gerrit that is integrated with Git. Gerrit

provides the services for the code review procedure along

with the storage of data related to reviews’ comments of many

OSS projects. Figure 1 shows the Gerrit code review process,

including the following steps. First, the developer (code

author) sends a code review request to the Gerrit system.

Next, the reviewer(s) reviews the code and provides

comments. Then, the code author who sent the request reads

the given comment(s). Lastly, the code author modifies the

code, but all comments may not be modified. Note: this

process repeats until the changes have been approved.

Figure 1: The overview of peer code review process in Gerrit

B. Software Maintainability

In this research, we focus on the maintainability, which is

one of key software quality attributes to increase the software

quality and reduce the expense of maintenance. ISO/IEC

25010 provides the definition of software maintainability as

“the degree of effectiveness and efficiency with which a

product or system can be modified to improve it, correct it or

adapt it to changes in the environment, and in requirements”

[10]. We mentioned ISO/IEC 25010 because this standard is

the global standard of software products paid attention by the

global business organization that concentrates on the systems

and software quality requirements and the evaluation.

Additionally, software maintainability has sub-

characteristics, which impact on maintenance directly or

indirectly.

ISO/IEC 25010 also defines the sub-characteristics of

maintainability in five characteristics as follows:

i. Modularity – “Degree to which a system or computer

program is composed of discrete components such that

a change to one component has minimal impact on

other components.”

ii. Reusability – “Degree to which an asset can be used in

more than one system, or in building other assets.”

iii. Analyzability – “Degree of effectiveness and

efficiency with which it is possible to assess the impact

on a product or system of an intended change to one or

more of its parts, or to diagnose a product for

deficiencies or causes of failures, or to identify parts to

be modified.”

iv. Modifiability – “Degree to which a product or system

can be effectively and efficiently modified without

introducing defects or degrading existing product

quality.”

v. Testability – “Degree of effectiveness and efficiency

with which test criteria can be established for a system,

product or component and tests can be performed to

determine whether those criteria have been met.”

We use all above five sub-characteristics as the initial

keyword set in this research to find the comments related to

software maintenance.

III. RELATED WORKS

This section describes the previous studies that related to

our work.

Because several OSS projects have easily accessible

resources, so many researchers studied the OSS projects in

various aspects. Rigby et al. [11-12] examined code review

practices in OSS development, e.g., study of practices in the

Apache project [13]. Baysal et al. [14] investigated the factors

affecting on rejections of program bug fixes (patch) in the

WebKit project. Tao et al. [15] presented the guidance to help

developers to solve defects of code to be accepted by code

reviewers. They investigated patch-rejection in Eclipse and

Mozilla.

Bosu et al. [16] analyzed 1.5 million review comments

from five Microsoft projects that were taken by the code

review tool, called CodeFlow. The researchers classified the

useful comments to help the developers to be able to modify

the source code according to the given comments. In Jacek et

al. [17] work, they analyzed the comments through

CodeFlow. The results indicated that least 50% of all

comments related to the long-term code maintainability.

Moreover, we found that most of the existing studies

focused on the software quality and maintenance by finding

the defects during software development, or investigated

code quality by examining project management regarding

faults/bugs reports [18]. Several studies reported the causes

of poor code, one of them is code smell. Code smell is code

in the software that may cause flaws or degrade code quality

[19], which may have the direct impact on software

maintainability [20-21].

IV. RESEARCH METHODOLOGY

This research aims to analyze the comments made during

the code review process by using a text mining technique. The

main procedure consists of two parts as follows.

A. Mining Code Review Repositories

In this study, we have examined the accessible data

repository related to the comments of OSS projects. We chose

to study the Gerrit code review repository with embedded Qt

and Eclipse data. The main reason for selecting these OSS

projects because both projects are still under heavy

development recently. They are also the projects that have

gained attention and popularity in the study field of software

engineering research [15, 22-24].

Figure 2 shows the process for mining code review

repositories, which include the following steps: First, we

reviewed the existing literature related to the Gerrit and code

review (e.g., a Gerrit database structure, a review process in

OSS projects). Next, we explored the OSS projects

The Study of Code Reviews based on Software Maintainability in Open Source Projects

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 125

maintained in Gerrit for selecting OSS projects that allow us

to retrieve comments data from reviews. Finally, we collected

code review data from the OSS projects. The obtained

datasets were stored in MySQL.

Figure 2: The review’s comment mining process

To query and manage comments data retrieved from the

OSS projects, we developed a JAVA application that can pull

the data maintained in the Gerrit system. The queries were

performed from the Qt and Eclipse comments made during

2012 to 2016 via REST API provided by Gerrit and then the

pulled data was stored in the local database (MySQL), which

Gerrit returns the results as JavaScript Object Notation

(JSON). Figure 3 illustrates an overview of the data retrieving

process.

Figure 3: The overview of data retrieving process

Based on the data retrieving process, we maintained

following data in our database:

i. Id – the unique number for each data entry

ii. Patch_number – the number of patch

iii. Created_on – the review request’s date

iv. Uploader – the uploader id (Gerrit’s user name)

v. Author – the code author

vi. Reviewer – the reviewer id (Gerrit’s user name)

vii. File – the review requested file name

viii. Line – the number of changed code

ix. Message – the comment message

x. Kind – the status of changed code, such as ‘Trivial

Rebase’, ‘No Code Change’ or ‘Rework’

Here, we show some comments that we pulled from the

Eclipse project.

“Another possibility is to get isValidThread to call

isCurrentThread(), then the isValidThread can be updated to

another implementation if desired without code duplication.”

“Please add a similar test to

IndexCPPBindingResolutionTest where the first two lines are

in the header file and the third line is in the source file.”

B. Analyzing a dataset

Once we obtained the datasets of reviews, we analyzed the

data by using a text mining technique shown in Figure 4. The

detail of each step will be described as follows:

Figure 4: The data analysis process

1) Keyword list building

We built a set of keywords from ISO/IEC 25010 with a

‘maintainability’ characteristic, which consists of following

sub-characteristics: modularity, reusability, analyzability,

modifiability, and testability. Initially, we performed the

analysis on these five keywords since these keywords were

defined by the global standard. Typically, the words in a

sentence from the reviewer’s comments might not match with

our specified keywords. Therefore, the words are classified

into a group of synonyms with each keyword by matching

these English words from Word-net software [25] and

English dictionaries databases (e.g., “change,” “adjust,” and

“alter” are synonyms of “modify”).

2) Data cleaning

This step involves converting all words to lowercase and

removing unnecessary messages such as stop-word,

whitespace, numbers and programming-language special

character, and splitting multi-word (e.g., the comment

identifier “bindingResolution” would be divided into

“binding” and “Resolution”). We used R software, which is a

statistical program embedded with a text mining (tm) package

to clean the data and transform words into the common root

(Stemming) to reduce the processing time for keyword

searching. To ensure that the cleaned data can be used for the

next step, we inspected the validity of review’s comments

throughout the cleaned data.

3) Comment retrieval

In this step, we developed Structured Query Language

(SQL) scripts to query comment messages, which contain the

defined keywords. Then, the queried comments were stored

in the database. The examples of SQL commands are shown

as follows.

Journal of Telecommunication, Electronic and Computer Engineering

126 e-ISSN: 2289-8131 Vol. 9 No. 3-4

SELECT * FROM comment_detail_eclipse WHERE massage

LIKE "%modify%" OR massage LIKE "% correct %" OR

massage LIKE "% alter %" OR massage LIKE "% adjust %"

OR massage LIKE "% qualify%"

SELECT * FROM comment_detail_eclipse WHERE massage

LIKE "% analyze %" OR massage LIKE "% diagnose %" OR

massage LIKE "% delineate %" OR massage LIKE "%
anatomize %"

4) Unrelated comment removal

We removed the comments that the code authors did not

change the code having maintenance based comments

obtained from the reviewer. To remove these comments, we

analyzed the responses of code authors and the status of

changed code.

V. RESULTS AND DISCUSSION

Based on our research objectives (described in Section I),

we report the results of the analysis for each objective as

follows.

A. The relationship between code review comments

related to maintainability and the source code

improvement based on the obtained comments

We have analyzed the comments from two OSS projects

from 2012–2016. The Qt and Eclipse projects had a total of

309,396 and 115,896 comments respectively. In this research,

we investigated the comments related to five types of

maintainability. The result from keyword queries showed the

total number of comments related to the maintainability from

Qt and Eclipse projects of 29,840 and 27,527 respectively

(8.9% and 25.75% in Figure 5).

Figure 5: Rate of comments are related to maintainability and
comments are not related to maintainability

Figure 6 shows the ratio of comments that the source code

has been changed based on the maintenance reason each year.

The analysis in Figure 6 suggests that the number of source

code changes related to five maintenance sub-characteristics

in the span of five years (2012–2016) period of Eclipse and

Qt projects are 21.15% and 10.73% on average. In these two

projects, the number of comments that the source code has

been changed based on the maintenance reason is considered

moderately low compared to all the maintenance comments

from the reviewers.

Figure 6: The use of comments to modify code

Although the number of changed code from the

maintenance reason is low, the study of OSS development

trends shows that the developers in the OSS community have

paid more attention to the maintenance. From the

observation, the number of changed code from the

maintenance comments have been increasing since 2012 and

The Study of Code Reviews based on Software Maintainability in Open Source Projects

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 127

continuing to grow up in the future as seen in Figure 7.

Following this trend, we believe that more software change

or modification can increase the complexity and risk for

errors and defects in the software system. In addition, long-

term system tests and software maintenance can be affected.

From the observation, the modifiability and testability graphs

of two projects show that the developers tend to change more

source code.

Additionally, we analyzed these results using a correlation

analysis to find the relationship between the data year period

and the number of comments on the code change based on the

given maintenance reason from two projects. The Pearson’s

Correlation Coefficient of Eclipse and Qt projects are 0.895

and 0.887 respectively, which illustrate that the relationship

between the data year period and the number of comments on

the code change, based on the maintenance reason, are strong

and going in the same direction. This implies that when the

number of years increased, the number of comments related

to the maintenance of the software also increased.

Figure 7: Comments on Sub-characteristics

We also examined the time that the reviewers reviewed the

code during the course of their workdays. Figure 8 and 9 show

boxplots that describe the distribution of the number of

comments related to maintainability, per day of the week,

over the span of five years (2012-2016) of Eclipse and Qt

projects, respectively. It is not surprising that the number of

comments given on business days (Monday, Tuesday,

Wednesday, Thursday, and Friday) was greater than the

comments given on the weekend. This evidence may imply

that the reviewers in OSS projects work on business days in

the commercial software development team manner.

Figure 8: Number of comments related to the maintainability per day of

the week in the span of 5 years (2012-2016) of Eclipse

Figure 9: Number of comments related to the maintainability per day of

the week in the span of 5 years (2012-2016) of Qt

With a t-test analysis, we found that there is no statistical

difference among business days, but there is a statistically

significant difference between the comments on Saturday and

Sunday. Thus, this evidence may indicate that the reviewers

frequently reviewed the code during the workday instead of

doing it on the weekend.

B. The comments related sub-characteristics of software

maintainability which were addressed by code authors

We found that the code authors paid special attention to the

testability related comments with the highest percentages of

addressed comments in both Eclipse (49.1%) and Qt (46.7%)

projects (shown in Figure 10). As a result, in our opinion, the

Journal of Telecommunication, Electronic and Computer Engineering

128 e-ISSN: 2289-8131 Vol. 9 No. 3-4

code authors might place emphasis on the testability since it

can test persistence and quality in the system, such as whether

the execution of a program can execute three billion

instructions per second. The popular secondary sub-

characteristic that the code authors have paid attention to is

‘modifiability’ in both two projects. The possible explanation

here is that the code authors are likely to improve software

quality or mitigate defects. Table 1 shows the number of

comments related to each sub-characteristic.

Table 1

Addressed comments related to sub-characteristics

Sub-characteristics
Number of comments

Eclipse Qt

Testability 2,859 1,496
Modifiability 1,961 1,163

Modularity 768 354

Reusability 230 188
Analyzability 3 1

Figure 10: The percentages of addressed comments related to sub-
characteristics

Based on the findings, we identify the limitations of this

study as follows. First, as we studied only two OSS projects,

the results of this study may not be generalized to all OSS

projects because each OSS project may have a different

review process and diverse experiences of developers.

However, we believe that the results of this study provide a

useful idea for other similar studies on the quality of OSS

projects. Second, we only utilized the R program to process

data. To use other text mining applications may return

different results. Finally, the data selection process might

introduce bias problems because each author manually read

half the total number of comments. We attempted to reduce

bias by reviewing excluded comments together several times

till we ensured that those comments were neither related to

maintainability nor useful.

VI. CONCLUSIONS AND FUTURE WORKS

This research aims to analyze the comments in the Eclipse

and Qt projects under the code review process. The analytical

results suggested that the number of changed based on the

maintenance reason is pretty small when we compared to all

of the comments. However, the developers in the OSS

community tend to improve the quality of source code more

in our study. This trend could be observed from the increasing

number of changed code based on the comments related to

software maintenance each year.

We suggest that the OSS developers should focus on

software maintenance to prevent the impact of code

modifications during software development and facilitate

future maintenance, which can reduce time and costs in the

software development process.

In the future, we plan to increase the number of keywords

from the existing initial keyword set. The main five sub-

characteristics of maintainability can be used to find new

additional keywords by applied a Latent Dirichlet Allocation

(LDA) technique, which is an algorithm for discovering the

hidden topics in a large document of texts. Building a set of

keywords is more evidence to analyze the comments related

to maintenance.

We hope that this research can be a path to find additional

features related to the software maintenance capabilities

found in existing OSS projects. In addition, the future

research can increase the empirical evidence to cover the

definition of “maintainability," including the study of other

OSS projects with a longer period of research time in order to

receive more accurate code reviewers’ trends and comments.

However, the information presented in this paper is sufficient

to guide the development and improvement of the quality in

OSS.

REFERENCES

[1] V. Tiwari, and R.K. Pandey, “Open source software and reliability

metrics,” The International Journal of Advanced Research in

Computer and Communication Engineering, vol. 1, no. 10, pp. 808-

815, Dec. 2012.
[2] I. Stamelos, L. Angelis, A. Oikonomou and G. L. Bleris, “Code quality

analysis in open source software development,” Information Systems

Journal, vol. 12, no. 1, pp. 43-60, Jan. 2002.
[3] G. S. Walia and J. C. Carver, “Using error information to improve

software quality,” in Proceedings of the IEEE 24th International

Symposium on Software Reliability Engineering Workshops (ISSREW),
2013, pp. 107.

[4] R. L. Glass, “Frequently forgotten fundamental facts about software

engineering,” IEEE Software, vol. 18, no. 3, pp. 112-111, May 2001.
[5] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of

open source software development: Apache and Mozill,” Transactions

on Software Engineering and Methodology, vol. 11, no. 3, pp. 309–
346, Jul. 2002.

[6] R. Baker, “Code reviews enhance software quality,” in Proceedings of

the ACM/IEEE 19th International Conference on Software
Engineering (ICSE), 1997, pp. 570–571.

[7] “What is free software?” Available at https://www.gnu.org/

philosophy/free-sw.html. [Accessed: 12-Jun-2017].
[8] “Gerrit.” Available at http://code.google.com/p/gerrit/. [Accessed: 12-

Jun-2017].
[9] “Review board.” Available at https://www.reviewboard.org/.

[Accessed: 12-Jun-2017].

[10] ISO/IEC 25010, Systems and Software Quality Requirements and
Evaluation (SQuaRE). ISO/IEC 25010, ed. IEC, 2011.

[11] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German, “Open

source peer review–lessons and recommendations for closed source,”
IEEE Software, pp. 56-61, Nov. 2012.

[12] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer

review on open source software projects,” in Proceedings of the
ACM/IEEE 33rd International Conference on Software Engineering

(ICSE), 2011, pp. 541–550.

[13] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in

Proceedings of the ACM/IEEE 30th International Conference on

Software Engineering (ICSE), 2008, pp. 541–550.
[14] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The

influence of non-technical factors on code review,” in Proceeding of

the IEEE 20th Working Conference on Reverse Engineering (WCRE),
2013, pp. 122-131.

[15] Y. Tao, D. Han, and S. Kim , “Writing acceptable patches: an empirical

study of open source project patches,” in Proceeding of the IEEE 30th
International Conference on Software Maintenance and Evolution

(ICSME), 2014, pp. 271-280.

[16] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: an empirical study at Microsoft,” in Proceedings of the

ACM/IEEE 12th Working Conference on Mining Software

Repositoriesd (MSR), 2015, pp. 146-156.

The Study of Code Reviews based on Software Maintainability in Open Source Projects

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 129

[17] J. Czerwonka, M. Greiler and J.Tilford, “Code reviews do not find bugs
: how the current code review best practice slows us down,” in

Proceedings of the ACM/IEEE 37th International Conference on

Software Engineering (ICSE), 2015, pp. 27-28.
[18] R. Rana and M. Staron, “When do software issues and bugs get

reported in large open source software project?,” in Proceedings of the

25th International Conference on Software Measurement (IWSM),
2015, pp. 1-14.

[19] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.
[20] B. C. Wagey, B. Hendradjaya and M. S. Mardiyanto, “A proposal of

software maintainability model using code smell measurement,” in

Proceedings of the 2nd International Conference on Data and Software
Engineering (ICoDSE), 2015, pp. 25-30.

[21] A. Yamashita and S. Counsell, “Code smells as system-level indicators

of maintainability: An empirical study,” Journal of Systems and
Software, vol. 86, no. 10, pp.2639–2653, Oct. 2013.

[22] M. B. Zanjani, H. Kagdi and C. Bird. “Automatically recommending
peer reviewers in modern code review,” IEEE Transactions on

Software Engineering, vol. 42, no. 6, pp. 530-543, June 2016.

[23] K. Hamasaki, R. G. Kula, N. Yoshida, A. E. C. Cruz, K. Fujiwara, and
H. Iida, “Who does what during a code review?: datasets of OSS peer

review repositories,” in Proceedings of the 10th Working Conference

on Mining Software Repositories (MSR), 2013, pp. 49–52.
[24] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H.

Iida, and K. Matsumoto, “Who should review my code? A file location-

based code-reviewer recommendation approach for modern code
review,” in Proceeding of the 22nd International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2015, pp.

141-150.
[25] G. A. Miller, “Wordnet: A lexical database for English,”

Communications of the ACM, vol. 38, no. 11, pp. 39-41, Nov. 1995.

