

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 87

Enhanced Classification Tree Method for Modeling

Pairwise Testing

Easter Viviana Sandin and Radziah Mohamad

Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

eastersandin@gmail.com

Abstract—Software testing is one of the most important

activities to produce a high-quality system, which can increase

the trust level of users. There are many types of software testing.

One of those testing is called exhaustive testing. Exhaustive

testing is used to produce a test suite that will be used in other

testing types such as unit testing, system testing, integration

testing and also acceptance testing. However, exhaustive testing

is infeasible and will be time consuming. Therefore, the

combinatorial testing is proposed to solve the exhaustive testing

problem. There are many techniques of combinatorial testing.

The popular one is called pairwise testing. It also is known as

Allpairs or 2-way testing. It involves the interaction of 2

parameters. In order to perform the pairwise testing, there are

procedures that need to be fulfilled. The first procedure is

modeling of System Under Test (SUT). There are many models

that can be used to design the test suite for pairwise testing. In

this paper, the comparison for modeling of SUT in pairwise

testing is performed, and the enhancement of Classification Tree

Method is proposed. An example based on steps of proposed

model method is also provided.

Index Terms—Classification Tree Method; Modeling of SUT;

Pairwise Testing.

I. INTRODUCTION

Nowadays, intelligence technologies exist and grow as the

demand grows. They put their trust on those technologies. For

example, the web system such as food delivery website let

people order their meal through that website without going to

that restaurant. This alternative will save their time when

doing important work. For an embedded system such as the

airplane system requires 100% trust from customers as they

use to carry many lives in them. However, the question is,

how many people can put their trust on those technologies?

Therefore, software testing is one of the important activities

that should be performed in order to gain the software

trustworthy.

Software testing is one of the important testing phases in

Software Development Life Cycle. This phase is used to

ensure the developed software will serve the high quality to

users. It consists of black-box and white-box testing [1, 2].

Black box is focused on external behavior or functionality

and white box is focused on internal implementation of

software. In order to conduct the software testing, the test

cases should be prepared first. The traditional way to generate

the test cases is called exhaustive testing. Exhaustive testing

is infeasible and time consuming especially in large or

complex software system. Assume that the parameters are A,

B and C. The values are as stated; A= (a1, a2), B= (b1, b2,

b3), C= (c1, c2). The number of test cases generated through

this method will be 2x3x2= 12 tests. The popular issue of

exhaustive testing is high cost and time consuming [3].

Imagine if there are a large number of parameters and values,

it may generate about thousand test cases. Hence, one of the

popular test cases generation method was proposed to solve

this issue. It is called as Combinatorial Testing (CT).

CT is a black-box testing type [4, 5]. It can provide better

method for test cases generation. It can reduce the cost of

testing and save the testing time in order to increase its

effectiveness [4, 6, 7, 8, 9]. CT consists of one technique that

is called t-way testing. This technique is a popular research

area among researchers [7]. It needs all combinations of

values of t-parameter that is tested at least once. There are 6

of t-way testing, which are 1-way, 2-way, 3-way, 4-way, 5-

way and 6-way [10]. Among of these t-way, 2-way is the

wildly technique in CT problems [5, 11]. 2-way testing is

called as Pairwise Testing. It is used to decrease the number

of test cases or test suite generated, in which it considers all

interaction of at most two factors [12]. This means that they

detect the constraint or problem that exists between the

interactions of two parameters. The aim of this pairwise

testing is to cover every pair of options in testing. Every pair

of options must occur at least once and may occur more than

once [10]. The other advantages of pairwise testing are, it is

easy to manage and execute by testers [11].

In order to perform the pairwise testing, the first process is

modeling of System Under Test (SUT). It is referring to the

system that will be used for any operation such as software

testing. Modeling of SUT is an important activity in pairwise

testing since it is the fundamental of that testing [2, 8, 13, 14].

Each model of SUT should include the parameters, values,

interaction of parameter-value and constraints [2, 4, 8, 13, 15,

16]. Parameters may represent the configuration parameters

or user input parameters. The value indicates the values that

consist by each parameter. Interaction shows the relationship

between parameter and value. The constraint is conflict or

impossible or invalid combination of parameter-value [8, 17].

All of the constraints should be detected and exclude from the

list of generated test suite because they will cause the failure

of the software.

Although modeling of SUT is very important to pairwise

testing, there are fewer studies that had been conducted

related to this research area, especially in black-box approach

[6, 14]. In addition, there is no exactly the best modeling

method for pairwise testing. Hopefully, many future studies

will focus on this research area as the studies hold a high

responsibility to help the tester understand the modeling

concept.

This paper is written as follows: Section 2 explains the

related work. Section 3 presents the research methodology.

Section 4 shows the proposed work and Section 5 shows the

case study by using proposing work. Section 6 concludes the

study and mention the future work.

Journal of Telecommunication, Electronic and Computer Engineering

88 e-ISSN: 2289-8131 Vol. 9 No. 3-4

II. RELATED WORKS

There are many modeling that has been proposed by

researchers. Different tester will prepare the different

modeling methods. This is because the modeling is depending

on their understanding, experience and creativity [2, 8, 13,

15]. The modeling methods can be classified into four

categories, which are based on their inputs such as the

requirement or functional specification, UML design

artifacts, test scenario and source code [13]. The modeling

methods for specification based are Category-Partition

Method (CPM), Classification-Tree Method (CTM), Input

Parameter Modeling (IPM) and Input Space Modeling [13].

UML design artifact based consists of Activity Diagram and

Sequence Diagram. This study neglects the source code based

modeling methods because pairwise testing is related to

black-box testing only.

There are several modeling methods that had been

proposed in the selected studies. CPM is a method that

describes the parameters, values, interactions and constraints

in formal test specification. The parameters are assigned as

categories, while choices mean values. In [18], the author

stated it can be accomplished by using six steps; Analyze

specification, Partition the categories into choices, Determine

constraints among choices, Write and process test

specification, Evaluate generator output and lastly Transform

into test scripts. However, in this version of CPM, it cannot

cover the larger or complex software systems. Then [19] is

the latest study that proposed the enhancement of CPM. In

this study, CPM is performing the execution for behavior of

functional unit, which mean that the specification of large

software systems can be decomposed into functional units.

The second contribution of this study is by preparing the

checklist to detect mistakes. As we go through the study

selection, the studies about CPM is hard to find. Since there

is less number of documentation related to CPM, so this

method exposes the minimal knowledge about their working

model. Hence, this method may cause the lack of

understanding about this model. Besides, the current CPM is

still in manual modeling process.

As we go through this study, we found that CTM is more

attractive than other modeling methods as their related studies

is more feasible. This modeling method is improving ideas

from CPM as they proposed the hierarchical form or tree form

representation. This modeling process outperforms other

modeling methods in term of understandable, documentation

and easy to handle [14]. Not like CPM, CTM is suited for

automation as they offer the graphical notation. The basic

steps for CTM are the design of classification tree and the

definition of test cases [14, 17]. The Definition of constraint

step is added to CTM modeling [20]. It is used to define the

invalid combination of input. In 2013, the new method for

CTM was proposed [21]. Transformation of tree-structured to

non-structured has reduced the complexity of CTM as the

tester can directly define the parameters as parent node

without grouping them into any categories. This method is

supported by the latest study [7]. Although CTM is easier to

understand and has lower complexity, they did not provide

any checklist to detect any mistakes such as missing or

overlapping parameters and values, and so on.

On the other hand, IPM presents the information of SUT in

informal specification form. This matter causes the IPM

difficult to create. There are eight steps involved in this

method; Determine modeling approach, Identify parameters,

Identify values, Check if IPM complete, Document

constraints, Establish translation table, Add preselect test

cases and Check if there is more IPM [15]. The parameters,

values, interactions and constraints for this method are

presented in table form and expressed in natural language

(human-like language). This allows the tester to understand

the concept of IPM easier. However, when information of

SUT is expressed in natural language, it is more challenging

to convert the information to pairwise testing standard. They

also provide the checklist for detect mistakes.

Additionally, ISM is a modeling method that combines two

techniques, which are Input Structure Modeling and IPM.

Steps that should be followed by tester in performing the

modeling by using this method is as follow; Divide the

system into smaller systems (for larger software systems),

Model input space of each system and Generate test cases

using tools [6]. In second step, input structure modeling

should be performed first. It is derived into either flat or graph

techniques. The activity in this step is important especially

for XML type software or systems. Then, for information

about their SUT, it should be produced by conducting the

IPM. As can be seen, this method is quite complicated and

has high complexity because it needs to go through these two

different techniques.

Activity and sequence diagrams modeling method shows

the modeling process that is derived through the UML input

based. In Activity Diagram [22], the steps involve are Input:

UML Activity Diagram, Generate XMI files, CTDM parser

parses XMI files as per the pre-defined rules and Output:

CTDM model. Generally, these steps show that modeling

using Activity Diagram begins from the diagram and then

converted into model form. Besides, the study in [22] shows

the steps involve in Sequence Diagram. They are almost the

same as steps for Activity Diagram. The difference is in their

parser type. The UML based modeling methods seem to

reverse flows with specification based. This matter may

confuse the tester. The authors of selected studies also

mentioned that these modeling methods have high

complexity.

As previously mentioned, the modeling is a fundamental

test that should be done in order to ease the testing activities

for testers and developers. However, the research focuses on

the modeling method is also low. Therefore, this study is

going to focus on modeling for pairwise testing. Every

method has their advantages and also limitations. There is no

exactly the best modeling method that can be used by them.

Based on the advantages and limitations of existing modeling

methods, this study endeavor to enhance the classification

tree method (CTM) since it has lower complexity than other,

and also the documentation for it is easy to find. Hence, it is

flexible to be used by any level of users; either beginner or

expert.

III. RESEARCH METHODOLOGY

In order to execute the study for this paper, there are a few

flows that have been performed. It begins with conducting the

literature reviews by identifying the related modeling

methods for pairwise testing. There are some modeling

methods that have been found which are CPM, CTM, IPM,

ISM, Activity Diagram and Sequence Diagram. Then, this

study identifies the criteria to compare those existing

modeling methods. This paper refined the identified criteria

into a table, namely Table 1.

Enhanced Classification Tree Method for Modeling Pairwise Testing

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 89

Table 1
Comparison of modeling method

N
o

M
o
d

el
in

g

m
et

h
o
d

s

S
U

T
 d

es
cr

ip
ti

o
n

fo
rm

C
o
v

er
 l

ar
g

e
sy

st
em

C
h
ec

k
li

st

D
o

cu
m

en
ta

ti
o
n

/

R
ef

er
en

ce
s

U
n

d
er

st
an

d
ab

le

C
o

m
p

le
x

it
y

1 CPM
Test

specification
Yes Yes

Hard

to

find

High Medium

2 CTM
Hierarchical

form
Yes No

Easy

to

find

Medium Low

3 IPM
Informal

specification
- Yes

Hard

to

find

High Medium

4 ISM
Test

specification
Yes Yes

Hard

to

find

Low High

5
Activity

Diagram

UML

diagram

description

- No

Easy

to

find

Low High

6
Sequence

Diagram

UML

diagram

description

- No

Easy

to

find

Low High

Based on the Table 1, this study chooses the suitable model

to enhance to. The chosen model is CTM as it is covered

many criteria, such as covering a large system, easy to find

the related documentations or references, highly

understandable and low complexity. However, it does not

provide the checklist and also not so easy to understand.

Checklist criterion is important to consider because it will be

used to check any mistakes such as missing parameters and

values, overlap and so on. The checklist allows us to discover

incomplete or wrong SUT information before implementing

them into the test case generation approach. Besides, the

understandable criterion is an important standard that needs

to be fulfilled by CTM. Currently, the tester has to write the

SUT information directly into tree form. The expert tester

may not have any problems with that situation; however, it is

quite challenging for beginner or novice user. To cover the

weaknesses of this CTM, the concept in CPM and IPM can

be applied in the checklist and understandable criteria.

The next flow is in enhancing the model by adding the steps

in modeling process. This flow is as shown in the Section IV.

After proposing the enhancement process, this study then

applies it to the real case study, namely Pizza Option. It is as

shown in the Section V. Finally, the study compares the

proposed CTM with existing CTM. The summarization of

research methodology for this study is stated in the Figure 1.

IV. PROPOSED MODEL METHOD

The modeling for SUT is the fundamental of testing. This

activity is as a pre-process for pairwise testing. By

performing the modeling method for SUT, it can help to ease

the testing process for testers and developers. In pairwise

testing, the modeling method is used to manage the

information of SUT which are the parameters, values, and

constraints. The addition, update and deletion of that

information are more manageable through modeling process.

As mentioned in the previous section, the paper focuses on

CTM enhancement. In order to show the processes involve in

that enhanced modeling method, we use Systems Process

Engineering Meta-model (SPEM). Figure 2 shows the

enhanced modeling method that will be used in this research.

Figure 1: Research methodology for this study

Figure 2: Steps in enhanced model method

A. Check SUT Size

This step is to determine whether the SUT size for selected

case study is a large or small system. If it is large, then go to

the second step and if it is a small system, then proceed to the

third step.

B. Divide into Separate Test Object

If the case study is a large system, then it will be “chunked”

or divided into smaller modules. It is used to reduce the

difficulties in identifying the information about that case

study. This step also has been in the CPM and IPM. Hence,

through this step, this method can cover the large system

criteria.

C. Identify Parameters, Values and Constraints

This step is the compulsory action in the modeling of SUT

for pairwise testing. It is done on all modeling methods. In

our enhanced modeling method, that information will be

defined in formal specification form and more to natural

language. Through this way, the novice or beginner will

understand how to identify and derive the information of

SUT. Therefore, this step covers the understandable criteria

for modeling in pairwise testing.

Journal of Telecommunication, Electronic and Computer Engineering

90 e-ISSN: 2289-8131 Vol. 9 No. 3-4

D. Convert to Flat Tree Model Form

After deriving the information into formal specification

form, the next step is to convert them to flat tree model. There

are two main reasons why we choose to convert it to this flat

tree model form. Firstly, it will be easy to trace the

maintenance of SUT information. In order to add, update or

delete the parameters, values, and constraints, it can be seen

clearly in tree form. Besides, the flat tree model is easier to

convert to standard pairwise testing compared to formal

specification form. This matter has been proved when the flat

tree model is proposed. Hence, the complexity of this

modeling method is lower than other modeling methods.

E. Review Checklist

The checklist is used to avoid the missing parameters and

values and also to avoid the invalid parameters and values.

By having the checklist feature in this modeling method, all

of those problems can be overcome. This step has been stated

in CPM and also IPM. The checklist for our modeling method

is as stated in the Table 2.

Table 2
Checklist

No Problems Checked

1 Missing factors:

Left parameters

Left values

2 Overlap:

 2 parameters consist same values

3 Irrelevant factors:

 Parameter with no values

 Number of parameters<Number of values

4 Repeated factors:
 2 same values stated in a parameter

 Each parameter stated more than once

5 Irrelevant association of factors

F. Check Complete SUT

This is the step to check if the SUT modeling method for

the current case study is completed, before proceeding to the

next step. However, if the SUT modeling method is not yet

completed, the testers and developers can add, update or

delete the SUT information by performing it at step four.

G. Convert to Standard Pairwise Testing

The last step in our enhanced modeling method converts

the SUT flat tree model to standard pairwise testing. The

standard pairwise testing that is mentioned here is as the PICT

expressed in their standard pairwise testing. It is as stated in

Figure 3.

Figure 3: Standard pairwise testing

V. CASE STUDY

This section shows the example of how to conduct the

modeling of SUT by using proposed method. The case study

that will be used is Pizza Option. This case study refers to the

menu option that is provided to the customers in order to

order the pizza. There are five parameters involved; Pizza

type, Crust, Toppings, Size and Delivery. Each of those

parameters consists of their different values. There are some

false conditions exist, as stated below:

i. Vegetarian pizza type should not take roasted chicken

as their topping.

ii. Vegetarian pizza type should not take ground beef as

their topping.

iii. Meat lover pizza type should not take mushroom as their

topping.

All of these false conditions should be avoided from

occurring in the test generation process.

Step 1: Check SUT Size: Simple? Yes (If yes, skip step 3)

Step 3: Identify parameters, values and constraints. The

parameters, values and constraints for Pizza Option case

study is identify as stated in the Table 3.

Table 3
Parameters, values and constraints for Pizza Option

Parameters
 Values

1 2 3

A: Pizza type
Vegetarian

cheese
Meat lover

B: Crust Thin crust Extra thick
C: Toppings Roasted chicken Ground beef Mushroom

D: Size Large Medium Small

E: Delivery Eat in Take away

Invalid Combination: (A1, C1), (A1, C2), (A2, C3)

Step 4: Convert to Flat Tree Model Form. The flat tree

model for Pizza Option case study is defined as in the Figure

4.

Figure 4: Flat Tree Model for Pizza Option

Step 5: Review Checklist. In order to trace the mistakes that

might occur in this modeling process, the checklist need to be

performed. Table 4 shows the checklist review for Pizza

Option case study.

Parameter 1: Value 1, Value 2, Value 3
Parameter 2: Value 4, Value 5

Parameter 3: Value 6, Value 7, Value 8

Constraints1

Enhanced Classification Tree Method for Modeling Pairwise Testing

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 91

Table 4
Checklist for Pizza Option

No Problems Checked

1 Missing factors:

 Left parameters X

 Left values X

2 Overlap:

 2 parameters consist same values X

3 Irrelevant factors:

 Parameter with no values X

 Number of parameters<Number of values X

4 Repeated factors:
 2 same values stated in a parameter X

 Each parameter stated more than once X

5 Irrelevant association of factors X

Step 6: Check complete SUT: Yes, completed.

Step 7: Convert to standard Pairwise Testing. The standard

Pairwise Testing form for Pizza Option case study is stated in

the Figure 5.

Figure 5: Standard pairwise testing for Pizza Option

As shown in the example above, it is found that this

proposed modeling method can enhance the existing of CTM

in technically. The new feature of SUT information that has

been added is presented in table form, which is more to

natural language. This feature can ease the beginner to

understand how to use this modeling method. Besides, the

checklist feature also has been inserted in this modeling

method. By having this checklist, the missing of factors and

existing of the invalid factors can be avoided. Table 5 shows

the comparison between the existing CTM with the proposed

CTM.

Table 5

Comparison of CTM modeling method

N
o

M
o
d

el
in

g
 m

et
h

o
d

s

S
U

T
 d

es
cr

ip
ti

o
n

fo
rm

C
o
v

er
 l

ar
g

e
sy

st
em

C
h
ec

k
li

st

D
o

cu
m

en
ta

ti
o
n

/

R
ef

er
en

ce
s

U
n

d
er

st
an

d
ab

le

C
o

m
p

le
x

it
y

1
Proposed

CTM

Test

specification
Yes Yes

Easy

to

find

High Low

2 CTM
Hierarchical

form
Yes No

Easy

to

find

Medium Low

VI. CONCLUSION

Modeling method for SUT is a pre-process to generate the

test cases. Therefore, it is needed in the real software process

in order to help the developers by easing the test case

generation process, especially through documentation. This

study also performs the automated modeling for SUT. There

are many modeling methods that have been proposed by

researchers. Each of them has their own advantages and

weaknesses. In this study, the main aim is to enhance the

existing of CTM based on its weaknesses compares to other

existing modeling methods. CTM is chosen because it is easy

to handle or manage, and also understandable and

documentable. This reason makes CTM suitable for any level

of users; from beginner to expert. The steps in accomplishing

this proposed modeling method has been stated. An example,

namely Pizza Option was chosen as a sample to be conducted

in the proposed method. Then, as a result, it is found that this

method can cover the weaknesses of existing CTM; lack of

checklist. Besides, the objective of making this method

flexible to be used by any level of user also has been

achieved.

At the time of writing this paper, many other modeling

methods have matured enough to assist the users. They

provide many advantages that can be used to modeling SUT

for pairwise testing. However, due to the main constraint of

this study, which is time constraint, many other future works

should be taken into considerations. The first suggested future

work is through studying more papers about existing

modeling methods for pairwise testing. By doing this, a lot of

information that consist of strengths and weaknesses of the

methods can be found. In addition, preparing the paper about

automation of this proposed method also can be done. The

automated modeling can help the users as currently, there

only exist manual modeling.

ACKNOWLEDGMENT

We would like to thank Ministry of Higher Education

Malaysia (MOE) for sponsoring the research through the

FRGS grant with vote number 4F857 and Universiti

Teknologi Malaysia for providing the facilities and support

for the research.

REFERENCES

 S. K. Khalsa, and Y. Labicle, “An orchestrated survey of available

algorithms and tools for combinatorial testing,” in 25th IEEE

International Symposium on Software Reliability Engineering, ISSRE

2014, Naples, Italy, November 3-6, 2014, pp. 323–334.

 P. Satish, and K. Rangarajan, “A preliminary survey of combinatorial

test design modeling methods,” International Journal of Scientific &
Engineering Research, vol. 7, no. 7, pp. 1455-1459, Jul. 2016.

 P. Purohit, and Y. Khan, “An automated sequence model testing

(ASMT) for improved test case generation using cloud integration,”
International Journal of Computer Science and Information

Technologies, vol. 6, no. 1, 488-494, 2015.

 M. Brcic and D. Kalpic, “Combinatorial testing in software projects,”
in MIPRO, 2012 Proceedings of the 35th International Convention, pp.

1508–1513, 2012.

 L. P. Mudarakola and M. Padmaja, “The survey on artificial life
techniques for generating the test cases for combinatorial testing,”

International Journal of Research Studies in Computer Science and

Engineering (IJRSCSE). vol. 2, no. 6, pp. 19-26, June 2015.
 M. N. Borazjany, L. S. Ghandehari, Y. Lei, R. Kacker, and R. Kuhn,

“An input space modeling methodology for combinatorial testing,” in

2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2013, pp.372-381.

 T. Kitamura, A. Yamada, G. Hatayama, C. Artho, E. H. Choi, N. T. B.

Do, Y. Oiwa, and S. Sakuragi, “Combinatorial testing for tree-
structured test models with constraints,” in 2015 IEEE International

Conference on Software Quality, Reliability and Security, pp. 141-150,

2015.
 C. Nie, and H. Leung, “A survey of combinatorial testing,” ACM

Computing Surveys, vol. 43, no. 2, Jan. 2011.

List of parameters and values

pizza type: vegetarian cheese, meat lover
crust: thin crust, extra thick

toppings: roasted chicken, ground beef, mushroom

size: large, medium, small
delivery: eat in, take away

CONSTRAINTS
IF [pizza type] = “vegetarian cheese”

 THEN (NOT [topping] = “roasted chicken”);

IF [pizza type] = “vegetarian cheese”
 THEN (NOT [topping] = “ground beef”);

IF [pizza type] = “meat lover”

 THEN (NOT [topping] = “mushroom”);

Journal of Telecommunication, Electronic and Computer Engineering

92 e-ISSN: 2289-8131 Vol. 9 No. 3-4

 M. Patil, and P. J. Nikumbh, “Pair-wise testing using simulated
annealing,” Procedia Technology, vol. 4, pp. 778-782, 2012.

 D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to Combinatorial

Testing. London, UK: Chapman & Hall/CRC, London, 2013.
 J. Bach and P. J. Schroeder, “Pairwise testing-a best practice that isn’t,”

in Proceedings of the 22nd Pacific Northwest Software Quality

Conference, 2004, pp.180–196.
 L. Y. Xiang, A. R. A. Alsewari, and K. Z. Zamli, “Pairwise test suite

generator tool based on harmony search algorithm (HS-PTSGT),”

International Journal on Artificial Intelligence, vol. 2, Feb. 2015.
 S. Udai, “A literature survey on combinatorial testing,” International

Journal of Advanced Research in Computer Science and Software

Engineering, vol. 4, no. 4, pp. 932-936, Apr. 2014.
 G. Matthias, J. Wegener, and K. Grimm, “Test case design using

classification trees and the classification-tree editor CTE,” in

Proceedings of the 8th International Software Quality Week, vol. 95,
1995, pp. 30.

 G. Mats and J. Offutt, “Input parameter modeling for combination

strategies,” in Proceedings of the 25th Conference on IASTED
International Multi-Conference (SE‟07), ACTA Press, 2007, pp.255-

260.

 P. Satish, K. Sheeba, and K. Rangarajan, “Deriving combinatorial test
design model from UML activity diagram,” in 2013 IEEE Sixth

International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2013, pp. 331-337.

 P. M. Kruse, Enhanced Test Case Generation with the Classification

Tree Method. University of Berlin: Ph.D. Thesis, 2013.
 T. J. Ostrand, and M. J. Balcer, “The category-partition method for

specifying and generating functional tests,” Communications of the

ACM, vol. 32, no. 6, pp. 676-686, 1988.
 T. Y. Chen, P. L. Poonb, S. F. Tang and T. H. Tse, “On the

identification of categories and choices for specification-based test case

generation,” Information and Software Technology, vol. 46, no.13, pp.
887–898, 2004.

 P. M. Kruse and J. Wegener, “Test sequence generation from

classification trees,” in 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, 2012, pp. 539-548.

 T. B. Do, T. Kitamura, N. V. Tang, G. Hatayama, S. Sakuragi and H.

Ohsaki, “Constructing test cases for N-wise testing from tree-based test
models” in Proceedings of the Fourth Symposium on Information and

Communication Technology, 2013, pp. 275–284.

 P. Satish, A. Paul and K. Rangarajan, “Extracting the combinatorial test
parameters and values from UML sequence diagrams,” in IEEE

International Conference on Software Testing, Verification, and

Validation Workshops, 2014, pp. 88-97.

