

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 67

Hybrid Real-Time Task Scheduling Algorithm in

Overload Situation for Multiprocessor System

A. Hatami1,2, S. Chuprat2, H. Md Sarkan2 and N. Firdaus Mohd Azmi2

1Faculty of Computing, University of Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
2Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.

Amir.hatami.h@live.com

Abstract—Real-time systems are reactive systems which

should meet major constraints in scheduling tasks like time

limitation and resources allocation for scheduling the task

effectively when the system in overloaded condition. Failure of

system in scheduling tasks when system is overloaded can result

in catastrophic impacts. The goal of this research is to propose a

task scheduling algorithm that able to perform better than

traditional Earliest Deadline First (EDF) and minimize the

overall completion time when the system in overloaded

condition. The proposed scheduling algorithm is built based on

three new improved scheduling algorithms namely: (1) Hybrid

Particle Swarm Optimization (PSO) and Hybrid Invasive Weed

Optimization (HPIO), (2) Enhanced Initial Swarm (EIS), and (3)

Hybrid EDF, EIS and HPIO Optimization (HEDFPIO). The

author proves that more successful tasks is scheduled by using

HPIO in multiprocessor system in over loaded situation among

PSO and ACO. The author uses EIS algorithm in order to

improve local search in HPIO and have fair load balance among

processors. Finally the author presents a new hybrid algorithm

that combines HPIO, EIS and EDF which is called HEDFPIO,

It is observed that we could achieve higher successful ratio in

task scheduling and with shorter calculation time in overloaded

situation.

Index Terms—Enhanced Initial Swarm; Hybrid; Invasive

Weed Optimization; Particle Swarm Optimization Overload.

I. INTRODUCTION

A real-time scheduling system contains scheduler, clock and

processor. Tasks are assigned to the processors and it will be

executed in a specific time and specified deadline by the

characteristic of the scheduling algorithm. There are many

scheduling techniques and the interest is to find the most

optimum algorithms. In this paper, it is presented the hybrid

algorithms which uses best part of the selected optimal

algorithms and finally analyses the performance of the newly

introduced hybrid algorithms.

One of these optimal algorithms is Particle Swarm

Optimization (PSO) which is based on swarm intelligence.

This algorithm simulates the behavior of individual particle

in a group to optimize the survival of species. One of the most

advantages of PSO is its robustness in controlling parameters

and its high computational efficiency [1].

Invasive Weed Optimization (IWO) is a stochastic

algorithm that simulates the behavior of weeds. Also this

algorithm is presented by Mehrabian and Lucas [2]. IWO has

shown successful results in many fields and solved many

problems such as optimization and tuning of a robust

controller [2].

In this paper, it is shows that HPIO achieves better results

by increasing the number of successful scheduled task and

decreasing calculation time. The author could achieve better

result in comparison with other algorithms that will be

reviewed in this paper such as Earliest Deadline First (EDF),

Ant Colony Optimization (ACO), Particle Swarm

Optimization (PSO) and Invasive Weed Optimization (IWO)

in overloaded situation. Also for this study the author

implements and tests all algorithms with both uniprocessor

and multiprocessor system. The author uses a method to have

fair load balance among the processor to have better CPU

utilization and improve local search in PSO and IWO. As

illustrated in graphs of experiment shows that new presented

algorithms have better performance by increasing successful

tasks with improved calculation time.

The author considers using homogenous processors to

compare the performance of the algorithms with previous

research. By using homogenous processors, rate of all the

tasks will be same in identical processor. Also, there is no

constraint on requested time since the tasks model is based on

sporadic model.

II. RELATED WORKS

This research is categorized in three main parts. The first

part author studies the current suggested solution by ACO,

PSO and IWO in uniprocessor. In second part, the author

checks the best fair load balance algorithm to combine the

output with multiprocessor systems and enhance initial

swarm to avoid HPIO getting trapped in local search. And in

the final part, author checks the feasibility of improved task

scheduling by Earliest Deadline First algorithm.

Shah and Kotecha [3, 5], and Shah et al. [4] have used ACO

and EDF algorithm and introduced a Hybrid algorithm that

performs very well in comparison with normal EDF

algorithm. The suggested adaptive framework is using EDF

algorithm in “under load” situation and when system is

“overloaded”, it switches to the ACO algorithm for

scheduling the tasks. “When a system is assigned to schedule

an amount of task which is more than the available system

resource can handle is called overloaded situation”.

Therefore, execution of tasks will depend on the

pheromone value laid on each scheduled task and heuristic

function. The Adaptive ACO framework schedules tasks in

lesser execution time when compared to normal ACO and

EDF in overload situation. The weakness of adaptive

framework is observed when the number of the tasks is

increased ACO algorithm, adaptive framework requires more

time to calculate which does not make good candidate for

real-time task scheduling systems.

Karimi [6] used particle swarm optimization for task

scheduling in Grid computing. PSO is considered as a

Journal of Telecommunication, Electronic and Computer Engineering

68 e-ISSN: 2289-8131 Vol. 9 No. 3-4

population based stochastic optimization method that

simulates the behaviors of bird flocking [7]. In this method,

the best result will be calculated based on “follow the bird

which is nearest to the food”.

Karimi [6] used PSO to have better result in task scheduling

by repeating same method until better result is found. In PSO

model all the possible scenario which is helping to solve the

problem is considered as a bird or particle. Each particle has

a fitness value which is calculated by fitness function. In PSO

model it is needed to define a problem space and all particle

fly through the problem space. Each particle has a velocity

which will be recalculated in iteration. Velocity will be

calculated to follow the current optimum particle.

PSO algorithm has set of random particles that are created

and then an optimal particle will be selected in each iteration.

Two parameters play an important role in PSO algorithm

which is called pBest and gBest. pBest or Personal best is

considered as best fitness which has achieved and gBest or

neighborhood best position which is tracked by the particle

swam optimizer, pBest and gBest are those which are

obtained so far by any particle in the population [8].

Karimi’s [6] project design is in grid computing, the

challenge for the author was assigning tasks to the resource

and the problem arises when the system is overloaded.

Therefore, Maryam used PSO algorithm to reduce execution

time and utilize maximum resource. PSO is performing fast

enough; she was looking for an algorithm to have fair

destitute in Grid system. She used few algorithms which were

benchmarked in many researches. These algorithms are

Opportunistic Load Balancing (OLB), Min-min, Max-min

and Discrete Particle Swarm Optimization (DPSO).

The outcome of the mentioned research was HDPSO which

was combination of Min-Min and DPSO which could achieve

better results when compared to other algorithms like OLB,

Max-min and DPSO. Max-min heuristic is efficient only

when most of the jobs arriving to the grid system are shortest

[8].

Ghalenoei et al. [9] introduced a novel swarm base

optimization algorithm which is inspired from Invasive Weed

Optimization. (IWO) to do task scheduling of unmanned

aerial vehicles (UAVs). The authors compared the result of

IWO with Genetic Algorithms (GA) that is based on the

simulation of result. In this experiment, IWO obtains better

performance in comparison with GA.

According to Mehrabain and Lucas [2], IWO has three

main parts. These parts are initialization, reproduction and

spatial dispersal. In the first step, sample population is created

based on initial seeds randomly. In second part, each

individual seed is growing and it is allowed to reproduce new

seeds and linearly depending on their own. In third part, the

generated seeds are being randomly scattered with a normal

distribution over the search space. The meaning of

distribution is equal to the location of parent plant, but

standard deviation (SD), σ, will be reduced from a specified

initial value, σ_initial, to the final value, σ_final, according to

Equation (1).

σ𝑖𝑡𝑒𝑟 =
(iter𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)𝑛

(iter𝑚𝑎𝑥)
𝑛

(σ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − σ𝑓𝑖𝑛𝑎𝑙) + σ𝑓𝑖𝑛𝑎𝑙 (1)

where σ_iter is the standard deviation at the present step, and

σ_initial,σ_final, iter_(max) (maximum number of

iterations), and n (modulation index) are other parameters.

This nonlinear modification has shown satisfactory

performance in many simulations [2]. This assumption means

the seeds will be randomly distributed such that they lie close

to the parent plant [10]

In next step, each weed allows to produce seeds and spreads

them as mentioned in previous steps. Then all the seeds and

their parents are ranked based on their fitness function. After

that those seeds which are having lesser fitness are eliminated

from the list. This method is based on “survival of the fittest”

idea [11] (a common concept in evolutionary algorithms)

gives a chance to plants with lower fitness to reproduce, and

if their off springs have good fitness, they can survive in their

offspring’s existence [2].

Finally, if maximum number of iteration has been reached

then the result is considered as best fitness and nearest to

optimal result.

Table 1
IWO parameters

Symbol Quantity Value

𝑁0 Number of initial population 10

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum number of iterations 400

dim Problem dimension 18

𝑃𝑚𝑎𝑥 Maximum number of plant 40

𝑆𝑚𝑎𝑥 Maximum number of seeds 3

𝑆𝑚𝑖𝑛 Minimum number of seeds 1

n Nonlinear modulation index 3

𝜎𝑖𝑛𝑖𝑡 Initial value of standard deviation 1

𝜎𝑓𝑖𝑛𝑎𝑙 Final value of standard deviation 0.008

Ghalenoei et al. [9] follows all the mentioned steps to

design his framework but he used different spatial dispersal

module. His module designed to random selection of solution

from a neighboring hypercube in the discrete space of

solutions around the plant with a normal distribution. The

sample of his pseudo code is provided for your reference.

Please refer to Table 1 for parameters which have been used

and Figure 1 regarding IWO pseudo code.

Figure 1: Pseudo-code of HPIO

Ghalenoei et al. [9] compared his results with various

algorithms such as ACO, PSO and IWO. But IWO could

achieve better result.

III. HYBRID PSO WITH IWO (HPI)

As it was mentioned before, the objective of this research

was to improve minimum time cost and the author plans to

achieve it by combining PSO and IWO and use their strengths

to introduce a new algorithm. PSO could schedule tasks very

Hybrid Real-Time Task Scheduling Algorithm in Overload Situation for Multiprocessor System

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 69

fast and accurate [6, 12] and IWO could have better result in

comparison with PSO [9] but IWO algorithm requires more

time to reproduce and eliminate seeds with lower fitness. In

this research the author proves that, by using new algorithm

we can schedule more tasks when compared to PSO and take

lesser time in comparison with IWO.

In our experiment, we create HPI algorithm based on

Figure 3. The main difference in this algorithm with IWO is

the way particle is created and the particles which are

eliminated are with less fitness. We created more initial

particle in the initial sample and then truncate them in each

iteration. Therefore, search space has become bigger to find

the best order of the task scheduling. This makes the

algorithm work faster than the IWO as it is not required to

generate sample particle again. Removing sample in each

iteration is based on the truncate value.

Truncate process will be continuous until swarm size

becomes greater than truncate value. By creating bigger

initial population, we could achieve optimal result in

comparison with previous results of PSO and IWO in shorter

time as shown in Figure 2. Optimal result means we can have

more successful tasks scheduled in comparison with other

algorithms. In Figure 2, point “Z” in graph is consider as an

optimal result.

Figure 2: Calculation time changes based on seeds (particle) number

Meanwhile, Figure 3 shows the pseudo code of HPIO. In

Line 1 and 2, swarm sample will be created and store in

swarm list then in line 3 and 4 fitness value of each swarm

will be calculated. From line 5 to 16, pBest and gBest will be

calculated. In line 16, new voracity will be calculated and

replace in system according to equation2 and after that in line

17 new locations will be evaluated based on equation3 and

apply in line 18. Then fitness is calculated accordingly in line

19. In line 20 to 22. The parameter used in HPIO algorithm is

mentioned in Table 2 which is based on the trial and error

experiment and best parameter selected for Table 2.

𝑣𝑒𝑙𝑖
𝛼+1 = 𝜔𝑣𝑒𝑙𝑖

𝛼 + 𝑐1𝑅1 ∗ (𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝛼) + 𝑐2𝑅2

∗ (𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝛼)

(2)

𝐿𝑜𝑐𝑖
𝛼+1 = 𝐿𝑜𝑐𝑖

𝛼 + 𝐿𝑜𝑐𝑖
𝛼+1 (3)

𝜔 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝑇
×𝑡 (4)

Figure 3: Pseudo code of HPIO

Table 2

Parameters of HPIO algorithm

Parameter Description

Swarm Size 60

Number of initial population same as number of tasks
Maximum Number of iteration 10

Problem Dimension 2

self-recognition coefficient (C1) 2
Social coefficient (C2) 2

W_UPPERBOUND 1.0

W_LOWERBOUND 0.0
Truncate population 2

IV. USING EIS IN HPIO ALGORITHM

Below pseudo code illustrates the EIS algorithm that we

used to have fair load balance in multiprocessor system and

improve the local search in HPIO algorithm. The author

expects to have better load balance after using EIS algorithm

in the output result. As part of experiment we are using EIS

in multiprocessor and compared the output with other

algorithm such as ACO and PSO. Please refer to Figure 4 for

more information.

EIS algorithms has been customized in order to receive list

of the tasks as input and then based on number of processor

rearrange them to have almost same task work load among all

the processors. The EIS works better by queuing shorter

execution time of tasks for scheduling and by having lower

complexity it enhances the initial particles and improve the

result.

Journal of Telecommunication, Electronic and Computer Engineering

70 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Figure 4: Pseudo-code of EIS

V. HYBRID EDF, EIS AND HPIO

The final research design framework is as shown in Figure

5. In order to improve calculation time, we tried hybrid EDF

and HPIO. As shown below, if a task set has ability to be

scheduled then it will be scheduled by using EDF otherwise

it will be scheduled using HPIO. Based on EDF general

schedulable formula, a task set which a set of “n” independent

real-time tasks {τ_1,τ_2,…,τ_n,} is schedulable if and only if

the total utilization of the task sets less than or equal to 2.

Generate

sample task

Sample data (Task)

Start

Task analyzer (EIS)

END

Task Analyzer Environment

Scheduling Environment

Data Source Collection

Scheduled tasks

HPIO
EDF

[2 .. 4]

Processors
Tasks set

Tasks set
Tasks set

Tasks set

Tasks set
Tasks set

check schedule

ability

Yes

No

Figure 5: Hybrid HPIO, EIS and EDF

In equation 5, “U” shows the total utilization of the task

sets and Ci represents execution time of task τ_i, and Ti will

be period of task τ_i. Those task sets have a condition to be

scheduled by the EDF and will be sent to EDF algorithm and

remaining task will proceed to schedule by HPIO.

U = ∑
Ci

Ti

𝑛

𝑖=1

 (5)

VI. RESULT AND DISCUSSION

A. Compare ACO and HPIO in uniprocessor

The author performs task generation for testing purpose

according to previous studies. He selects a set of random tasks

which contains 7, 14, 20, 25, 35, 50, 75, 100, 150, 200, 300,

350, 500, 750, 1000, 1500 and 2000 task sets to create similar

condition for previous algorithms and proposed algorithm.

In part A, the author performs task scheduling for all the

task sets and based on the Figure 6 it shows number of

successful task in uniprocessor by using HPIO, PSO and

ACO. As it can be observed in most of the cases HPIO could

schedule more tasks in comparison with ACO and PSO

algorithms. Based on Figure 6, in task set 150,300 and 350

ACO could schedule more task than HPIO and PSO. Table 3,

shows the data related to timing each algorithm requires to

finish the calculation. ACO performs better that other

algorithms but in terms of calculation time, ACO takes more

time than PSO and HPIO which is not acceptable in real-time

scheduling systems. HPIO could schedule 525 tasks while

ACO scheduled 485 tasks and PSO scheduled 461 tasks.

HPIO improved the result to 8% in comparison with ACO

and 14% improvement in comparison with PSO.

Figure 6: Successful Scheduled Tasks for ACO, PSO and HPIO in

uniprocessor

Table 3

Calculation time for ACO, PSO and HPIO in uniprocessor

B. Enhanced HPIO by EIS Algorithm in Multiprocessor

Figure 7 shows total successful tasks using three algorithms

Hybrid Real-Time Task Scheduling Algorithm in Overload Situation for Multiprocessor System

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 71

of HPIO-EIS and PSO-EIS and ACO-EIS in uniprocessor,

dual, triple and quad processor. As illustrated HPIO could

schedule more tasks in comparison with PSO and ACO

algorithm in all processors. In this experiment for

uniprocessor we did not use EIS algorithm but for dual, triple

and quad processor EIS is combined with HPIO, PSO and

ACO. Based on result it is observed that by increase in

number of processors and using EIS we could achieve more

successful tasks. Total number of tasks as input is 7076.

Based on Figure 7, HPIO-EIS improved the result by almost

6% when compared to PSO-EIS and ACO-EIS in dual

processors. HPIO-EIS improve the result by 12% when

compared to PSO-EIS and HPIO-EIS improved by 10% when

compared to ACO in triple processor. This improvement for

HPIO-EIS in quad core processor is 4% when compared to

PSO-EIS and 7% when compared to ACO-EIS.

Figure 7: Total successful task by using EIS in different processor

Figure 8 shows details related to successful ratio in dual

processor. Figure 9 and Figure 10 shows the data related to

triple processor and quad processor. As it is shown in Figure

7, HPIO performs better when compared to other algorithms;

the same expected result is presented in Figure 8, 9 and 10

also. This enhancement in result is due to usage EIS to

arrange the inputs of the processor and effect on algorithms

and have a divergent result in the local search.

Figure 8: Successful ratio in dual processor

Figure 9: Successful ratio in triple processor

Figure 10: Successful ratio in quad processor

Figure 9 shows the successful ratio of scheduled tasks in

triple core processor. In this test also HPIO with EIS could

achieve higher result in comparison with PSO and ACO

algorithm. As you might observe ACO perform well if the

tasksets are big but it is highlighted that ACO require long

time to process the data in comparison with PSO or HPIO.

Since time is an important factor in this research therefore

ACO cannot be a good candidate.

VII. HYBRID EDF, EIS AND HPIO

In this part, we explain the result related to Hybrid EDF,

EIS and HPIO. Figure 11 shows how the algorithm switch

between EDF and HPIO when load is increasing. As it can be

observed until task 35 the system could handle all the tasks

by using EDF algorithm which is performed so fast but after

that when load is increased to system then it goes to

overloaded situation and from EDF slowly it switches to the

HPIO algorithm.

Figure 11: Processor allocation for EDF, EIS and HPIO

Journal of Telecommunication, Electronic and Computer Engineering

72 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Figure 12, shows the comparison of number of successful

tasks in HPIO and HEDFPIO algorithm. As we can observe

that we had some improvement in number of tasks

successfully scheduled. In most of the cases HEDFPIO could

schedule more tasks by combining EDF, EIS and HPIO.

Figure 12: Comparison of Successful Task between HEDFPIO and HPIO

In Figure 13 and 14, we can observe that when system is

not overloaded, we can save calculation time since EDF

perform so fast in comparison with other algorithm. Hence it

is understood that EDF decrease calculation time from task

set 7 to 75 while overloaded situation start from 30 tasks in

this experiment. As shown in Figure 11, system behavior is

also change from task set 35 and it shows that system require

more resource for scheduling tasks. By using EDF, EIS and

HPIO, total successful schedule tasks improved around 3%

and completion time decreases by 1.2%.

Figure 13: Calculation time for task set 7 to 150

Figure 14: Calculation time for task set 200 to 2000

VIII. CONCLUSION

In conclusion, as it is observed HPIO can achieve better

results in comparison with ACO and PSO for number of

successful scheduled tasks. By using EIS algorithm with

HPIO, the author could improve the initial population and

therefore, better result achieved in multiprocessor. The author

combined EDF algorithm with EIS and HPIO for improving

the calculation time in multiprocessor. HEDFPIO could be

performing better and faster in comparison with HPIO. The

author conducts many research to achieve the result and all

the algorithms to be implemented in C#.

ACKNOWLEDGMENT

This research was partly funded by Research University

Grant of Universiti Teknologi Malaysia (Vote: 07462).

REFERENCES

[1] M. Karimi and H. Motameni, “Tasks scheduling in computational grid

using a hybrid discrete particle swarm optimization,” International

Journal of Grid and Distributed Computing, vol. 6, no. 2, pp. 29–38,

2013.
[2] A. R. Mehrabain and C. Lucas, “Novel Numerical optimization

algorithm inspired from invasive weed colonization,” Ecological

Informatics., vol. 1, no. 4, pp. 355–366, 2006.
[3] A. Shah and K. Kotecha, “ACO based dynamic scheduling algorithm

for real-time multiprocessor systems,” Internationa. Journal.of Grid

and High Performance Computing., vol. 3, no. 3, pp. 20–30, 2011.
[4] A. Shah, K. Kotecha, and D. Shah, “Dynamic Scheduling for real-time

distributed systems using ant colony optimization,” International
Journal of Intelligent Computing and Cybernetics., vol. 3, no. 2, pp.

279–292, 2010.

[5] A. Shah and K. Kotecha, “Adaptive scheduling algorithm for real-time
multiprocessor systems,” in Proc. IEEE International Conference

Advance Computing, Patiala, India, 2009, pp. 6–7.

[6] M. Karimi, “Hybrid discrete particle swarm optimization for task
scheduling in grid computing,” International Journal of Grid and

Distributed Computing, vol. 7, no. 4, pp. 93–104, 2014.

[7] J. Nandanwar and U. Shrawankar, “An adaptive real time task
scheduler,” International Journal of Computer Science Issues, vol. 9,

no. 6, pp. 335–340, 2012.

[8] F. Xhafa and A. Abraham, “Nature inspired schedulers in
computational grids,” CSI Communications, vol. 34, no. 11, pp. 28–30,

2011.

[9] M. R. Ghalenoei, H. Hajimirsadeghi, and C. Lucas, “Discrete invasive
weed optimization algorithm: Application to cooperative multiple task

assignment of UAVs,” in Proceedings of the 48th IEEE Conference on

Decision and Control,Shanghai, 2009, pp. 1665–1670.
[10] V. E. Balas, L. C. Jain, and B. Kovačević, “Soft computing

applications,” in Proceedings of the 6th International Workshop Soft

Computing Applications, vol. 1, pp. 338–345, 2015.

7 14 20 25 35 50 75 100 150

HEDFPIO 1 1 1 2 3 8 13 42 61

HPIO 9 10 10 11 12 15 19 41 60

0

10

20

30

40

50

60

El
ap

se
d

 M
ill

is
e

co
n

d
s

Calculation time

Hybrid Real-Time Task Scheduling Algorithm in Overload Situation for Multiprocessor System

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 73

[11] K. M. Passino and T. D. Seeley, “Modeling and analysis of nest-site
selection by honeybee swarms: The speed and accuracy trade-off,”

Behav. Ecol. Sociobiol., vol. 59, pp. 427–442, 2006.

[12] M. Karimi and H. Motameni, “Tasks scheduling in computational grid
using a hybrid discrete particle swarm optimization,” International

Journal of Grid and Distributed Computing, vol. 6, no. 2, pp. 29–38,

2013.

