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Abstract—As Hardware Trojans (HTs) emerges as the new 

threats for the integrated circuits (ICs), methods for identifying 

and detecting HTs have been widely researched and proposed. 

Identifying the HTs are important because it can assist in 

developing proper techniques for inserting and detecting the 

treat in ICs. One of the recent method of identifying and 

detecting HTs in ICs is classification using machine learning 

(ML) algorithm. There is still lack of machine learning-based 

classification for HTs identification. Thus, a three type of ML 

based classification includes Decision Tree (DT), K-Nearest 

Neighbor (KNN) and Support Vector Machine (SVM) are 

proposed for HTs identification. The dataset is based from the 

Trust-Hub. In order to improve the classification accuracy, the 

HTs are discretized based on their dominant attributes. The 

discretized HTs are classified using three machine learning 

algorithms. The results show that the DT and KNN learnt model 

are able to correctly predict about 83% of the test data. 

 

Index Terms—Classification; Hardware Trojan; Machine 

Learning; TrustHub. 

 

I. INTRODUCTION 

 

The hardware Trojan (HT) is a new emerging type of 

hardware attack for integrated circuits (ICs) and has become 

an important research topic in recent years. The impacts from 

HTs are malicious such as leaking sensitive user information 

or disabling or altering the functionality of an IC. For 

instance, in 2007, an incoming air strike bypassed the Syrian 

radar which is due to the backdoor that were built into the 

system's chips [1]. In another case, it was exposed that HTs 

were directly implanted into USB protocol or port by the 

Quantum program of US National Security Agency (NSA) in 

2014 [1] to acquire secret data from all over the world not 

only from Russian and China’s military, but also from the 

trading information from EU and Mexican’s law enforcement 

and drug cartel computer system. 

The structure of HTs comprises of triggers and payloads. 

The triggers are defined as the mechanism to activate the HTs 

while the payloads are the resulting effects from the HTs. To 

avoid detection, the HTs are typically stay dormant in the IC 

until they are triggered by rare signals or events [1]. Upon 

occurrences of the specified signal or event, the activated 

payload circuit begins to implement malicious functions. The 

triggers of the HTs are usually intelligently designed which  

they will not be induced during simulation or testing but 

only occur by covert field operation. In order to recognize 

these HTs, a number of typical HT-inserted benchmark 

circuits are developed in the TrustHub website [2]. The HTs 

benchmarks circuits database are created based on six factors: 

the insertion phase, abstraction level, activation mechanism, 

effect, location and physical characteristics. The insertion 

phase of the HTs may occur in either specification, design, 

fab, test or assembly. As for the abstraction level, the HTs 

may exist either at system or development, register-transfer 

level (RTL), gate or physical. The type of activation 

mechanism could be always-on with either being triggered 

internally or externally. The effect of the HTs could be either 

change functionality or degrade performance or leaking 

information or Denial of Service (DoS) attack. The component 

of ICs that contain HTs (location) can be either at processors, 

memory, power supply or clock grid. The physical 

characteristics of the HTs depends on either distribution, size, 

parameter, functionality or layout. All the elements of these 

six factors are used to assist the classification of HTs. By 

correctly identify types of the HTs, the techniques for the 

insertion and detection of these HTs can be methodically 

developed. 

One of the techniques for identification and detection of 

HTs is the classification. The classification of HTs can be 

performed either using mathematical models such as 

algebraic matrix [3, 5] or machine leaning algorithms [7-12]. 

There are only few approaches of identifying HTs using 

machine learning- based classification have been developed 

such as in [7] compared to the approaches in detection of HTs 

[8-12]. This is because the identification of HTs are still 

immature since there are more HTs that are yet anticipated 

and recognized. As for the HTs detection, techniques such as 

frequency-domain power differences [9], reverse engineering 

(RE) [8] and macro synchronous micro asynchronous 

(MSMA) [10] are utilized. Then, the machine learning 

algorithms play role to enhance the detection by the above 

techniques. This process can be simplified by emphasizing on 

proper identification of the HTs using machine learning-

based classification before the detection techniques are 

developed, thereby avoiding the redundant usage of machine 

learning based classification at the detection stage. 

In this paper, an identification of HTs using machine 

learning based classification is proposed. The identification 

of HTs are based on the benchmark circuits in Trust-Hub [2]. 

The procedures of developing the machine learning-based 

identification of HTs are divided into three steps. The first 

steps are initial learning where the class of the HTs are set to 

its default HT design name. Then, the discretize algorithm is 

used for learning the features. Three machine learning 

algorithms were used for classification of the HTs.  

The rest of the paper is organized as follows: Section II 

presents related work for identification and detection of HTs. 

The proposed work of developing a machine learning-based 

classification identification of HTs is explained in Section III. 

Section IV discusses result of using proposed algorithm. 

Finally, Section V concludes the finding and analysis of the 
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result. 

 

II. RELATED WORKS 

 

To further understand the motivation behind this study, the 

literatures that discuss the classification techniques for 

identification and detection of HTs either using machine 

learning-based algorithm are reviewed as follows: 

 

A. Classifying for the Identification of HTs 

The first attempt of using classification technique to 

identify HTs is made by [4] where the HTs were classified 

based on five attributes: design cycle phase, abstraction level, 

triggers, effects and physical location. By organizing a HT 

design competition on tertiary level, the diverse set of HTs 

are compiled and classified based on these five attributes. 

This initial dataset of HTs is further standardized in [2] by 

developing vulnerability analysis flow and detectability 

metric. The HTs are implemented based on the hard-to-detect 

areas that is determined by the vulnerability analysis flow. 

The detectability of the HTs are evaluated using Trojan 

detectability metric. In [3], a classification technique using 

algebraic method was developed to identify the missing 

attributes in HTs dataset from TrustHub. It is claimed that by 

using this technique, all HTs in TrustHub are properly 

classified compared to the classification technique in [2] and 

[4]. This technique was then automated using online tool 

called Hardware Trojan System (HTS) [5]. 

Another classification technique called score-based 

classification are developed in [6] to identify HT-free or HT- 

infected circuit without using golden netlist. Two types of 

class: weak and strong are developed for score-based 

technique. In the weak classification, Trojan nets are 

classified into nine cases and each case is given a score. The 

nets are classified as Trojan nets if they have maximum score 

that is less than 3, maximum constant cycle that is more than 

999996 cycles and the maximum score net count that is less 

than 5. This score-based technique is claimed to be able to 

detect all HTs in selected benchmark circuits in TrustHub 

compared to UCI and VeriTrust techniques. For classification 

technique that is based on machine learning algorithm, SVM 

is used in [7] to identify between normal and Trojan nets in a 

set of gate level netlist. 

The features that are used to classify these nets are logic 

gate fan-in (LGFi), flip-flop input (FFi), flip-flop output 

(FFo), primary input (PI) and primary output (PO). These 

extracted features are learned using SVM based on three 

conditions: no weighting, static weighting and dynamic 

weighting. For no weighting, SVM learned the normal and 

Trojan nets as their default quantities. 

For static weighting, the SVM learned the normal nets as 

their default quantities while the Trojan nets as their original 

quantity was multiplied by weight, W. For dynamic 

weighting, the SVM learned the normal nets as their default 

quantities while the Trojan nets as the quantity of normal nets. 

The accuracy of identifying the HTs are 80% or higher with 

dynamic weighting. 

 

B. Classifying for the Detection of HTs 

Compared to HTs identification, there are more literatures 

on developing machine learning-based classification for HT 

detection. In [8], an SVM-based approach was developed to 

assist RE in detecting HTs. This approach eliminated the last 

two steps: annotation and schematic creation in RE. The 

features were extracted from the first three steps of RE wihout 

labels. To solve this, one class v-SVM is used as the class for 

this training sample. This type of SVM has values between 

‘0’ and ‘1’ and these values were determined by the decision 

boundary that closely surrounds the training sample. This 

approach achieved higher accuracy with higher v and lower 

noise margin. 

Another machine learning-based classification for HTs 

detection is developed in [9] by converting the differences in 

power consumption between HT-free and HT-infected 

circuits into frequency domain and this converted power 

consumption was used as the training data using SVM. This 

technique is able to detect the all HTs in the AES circuit. A 

self- learning framework was developed in [10] to detect HTs 

in IC. The framework was constructed by integrating the 

MSMA detection technique with machine learning 

algorithms such as decision tree (DT), K-Nearest Neighbor 

(KNN) and Bayesian classifiers. The power, delay, current 

and frequency of the golden IC were extracted as attributes 

and were trained using the stated machine learning 

algorithms. The model was then used along with MSMA 

during the testing phase to detect HTs. The achieved 

accuracies using each model was relatively high where the 

accuracies were 95.19% using DT, 93.5% using BC and 

93.12% using KNN. 

In [11], a run-time Trojan detection architecture for custom 

many-core was developed using KNN, DT, Linear 

Regression (LR) and SVM. There are four features: source 

core number, destination core number, packet transfer path 

and total distance at each router hop that are extracted in order 

to detect communication-based HTs such as traffic diversion, 

routing loop and core spoofing. After all these features were 

extracted, they were trained using KNN, DT, LR and SVM to 

evaluate their accuracy in detecting all the communication-

based HTs. From the learnt model, two analyses are 

performed: accuracy analysis where showed that SVM and 

DT is the best (94%- 100%) and hardware complexity 

analysis where showed that SVM was the best option in term 

of computation and memory requirement. Thus SVM is 

selected for developing the HTs detection architecture for 

many-core platform. This SVMbased technique had 93% 

accuracy in detecting the mentioned communication-based 

HTs. This technique was further enhanced in [12] to secure 

design from new attacks introduced at real-time. To serve this 

purpose, Modified Balanced Winnow (MBW), online 

machine learning algorithm was utilized using the attach 

detection module (ADM). This enhanced technique has 5% 

to 8% higher detection accuracy for communication-based 

HTs compared to SVM and KNN. 

Based on the above discussion, it can be seen that there is 

still lack of machine learning-based algorithm for identifying 

the HTs compared to detecting HTs. However, the utilization 

of machine learning-based classification in HTs detection are 

complex since it is tailored to the detection techniques that 

are used. Thus, this process can be simplified given that 

proper HTs identification are performed using the machine 

learning- based classification prior to the HTs detection. 

 

III. PROPOSED WORK 

 

The method of classifying for the identification of the HTs 

using machine learning algorithms begins by tabulating the 

HTs in the Trust-Hub benchmark [2] as the training data. The 

taxonomies are used as the attributes where their contents are 
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represented by either ‘1’ to indicate TRUE or ‘0’ to signify 

FALSE. As for the attributes with all null values, they are 

omitted from the training data before the learning is 

performed. Once the training data is ready, it is learnt using 

the MATLAB Classification Learner Apps. The accuracy of 

the model is observed and improved by discretizing the class 

according to similar attributes. The learning is repeated using 

MATLAB Classification Learner Apps until best accuracy is 

achieved. After the best accuracy is achieved, the selected 

models are used for predicting analysis of hardware Trojan 

[4]. 

 

A. Process of Initial Learning of Hardware Trojan  

Using MATLAB R2015a and later, the Statistics and 

Machine Learning Toolbox provide an apps called 

‘Classification Learner’ which allow user to train and validate 

using different types of classifiers. The Classification Learner 

Apps has four available classifiers such as decision trees, 

SVM, KNN and ensembles.  

The process initial learning of Hardware Trojan data using 

the Classification Learner Apps requires four (4) steps. The 

steps include:  

Step 1: The user is required to select the dataset  

Step 2: A response features are selected from one of the 

attributes while the other attributes are set as the predictors.  

Step 3: User are required to select a validation model. In 

order to guarantee that the best model performance is 

acquired, the validation model must be decided before the 

training is executed. There are two types of validation: cross 

and holdout. In this experiment, the cross validation is 

selected since the dataset is small. 

Step 4: Next, the classifier is selected for training and 

predicting analysis of the feature of HTs. Once the training 

was done, the result is shown based on the confusion matrix. 

 

IV. RESULTS AND DISCUSSION 

 

Originally, there are 12 group of HTs according to design 

modules in the Trust-Hub benchmark [2]. The design 

modules that are injected with the hardware Trojan are AES, 

b15, b19, basic RSA, EthernetMAC, 8051microcontroller, 

multi- pyramid, PIC16F84, RS232, scan flip-flops, vga-lcd 

and WISHBONE conmax. Since the accuracies using each 

group of HTs as the class is moderate, then to improve the 

classification accuracy of the features, the discretization 

methods is applied for HTs. Table 1 tabulates the classes of 

discretized group of HTs.  

All the AES-based HT except AES-T1800, AES-T1900 

and AES-T500 are grouped with BasicRSA-T100 and 

BasicRSA-T300 in Class 1 based on their “Leak Information’ 

attributes. On the other hand, AES-T1800, AES-T1900 and 

AES-T500 are grouped with all the b15-based HT, 

BasicRSA- T200 and BasicRSA-T400 in Class 2 based on 

their commonality in ‘DoS’ attribute. As for Class 3, all the 

scan flip-flops based HT, vga-lcd-T100 and all PIC16F84-

based HT are grouped together based on their commonality 

in ‘Processor’ attribute. Class 4 has all MultPyramid-based 

HTs, EthernetMAC10GE-T700, EthernetMAC10GE-T710, 

EthernetMAC10GE-T720 and EthernetMAC10GE-T730 

which are grouped based on their “Fab” attribute. For Class 

5, it contains all MC8051-based HT, b19-T300, b19-T400 

and b19-T500 which are grouped based on their “RTL” 

attribute. In Class 6, the EthernetMAC10GE-T700, 

EthernetMAC10GE- T710, EthernetMAC10GE-T720, 

EthernetMAC10GE-T730, b19-T100, b19-T200, RS232-

T1000, RS232-T1100, RS232- T1200, RS232-T1300, 

RS232-T1400, RS232-T1500 and RS232-T1600 are grouped 

together based on their “Change Functionality” attribute. 

Finally, Class 7 comprises of RS232- T1700, RS232-T1800, 

RS232-T1900, RS232-T2000, RS232- T200, RS232-T300, 

RS232-T400, RS232-T500, RS232-T600, RS232-T700, 

RS232-T800, RS232-T900, RS232-T901 and all 

wb_conmax-based HT which are grouped based on 

“Internally Triggered” attribute.  
 

Table 1 HTS Discretization 
 

Discretized HT Class  Attributes HT Group  

Class 1 Leak 

Information 

1. All AES-based HT 

except AES-T1800, 
AES-T1900, AES- T500 

2. BasicRSA-T100 and 

BasicRSA-T300 
Class 2 DOS 1. AES-T1800, AES-

T1900, AES-T500 

2. All b15-based HT 
3. Basic RSA-T200 and 

BasicRSA-T400 
Class 3 Processor 1. All flip-flop -

based HT  

2. VGA-LCD-
T100 

3. All PIC16F84-

based HT 
Class 4 Fab 1. All EthernetMAC10GE-

based HT except 

EthernetMAC10GE- 
T700, 

EthernetMAC10GE- 

T710, 
EthernetMAC10GE-T720 

and EthernetMAC10GE-

T730 2.MultPyramid 
based HT 

Class 5 RTL 1. b19-T300, b19-T400 and 

b19- T500 
2. All MC8051-based HT 

Class 6 Change 

functionality 

1. EthernetMAC10GE-

T700, 
EthernetMAC10GE-

T710, 

EthernetMAC10GE-
T720 and 

EthernetMAC10GE-

T730 

2. b19-T100 and b19-

T200 

3. RS232-T1000, RS232-
T1100, RS232-T1200, 

RS232-T1300, RS232-

T1400, RS232-T1500 
and RS232-T1600 

Class 7 Internal 

Triggered 

1. RS232-T1700, RS232-

T1800, RS232-T1900, 

RS232-T2000, RS232-
T200, RS232-T300, 

RS232-T400, RS232-

T500, RS232-T600, 
RS232-T700, RS232-

T800, RS232-T900 and 

RS232-T901 

2. All wb_conmax-based 

HT 

 

Now that all the hardware Trojan are discretized according 

their dominance in certain attributes, they will be classified 

using the Classification Learner Apps tool to see whether 

their accuracies are improved or not. Table 2 shows the result 

accuracy for HTs. The table tabulates the achieved accuracy 

for each decision tree, SVM and KNN models. It can be seen 
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from the table that the best accuracy for the decision tree 

model is 76.1 %. As for the SVM model, the best accuracy is 

70.7%, while the best accuracy for the KNN model is 71.7% 

These accuracies must be further improved to ensure the HTs 

features are classified correctly. 
 

Table 2 

Accuracy of HTs  

 

Model 
Classification Accuracy 

(%) 

Decision Trees (medium split) 76.1 

SVM (quadratic kernel) 70.1 
KNN (weighted K=10) 71.1 

 

A. Hardware Trojan Classification using Discretization 

Algorithm 

Table 3 shows the comparison result classification based 

on discretization algorithm. 
 

Table 3 

Classification Accuracy with Discretization Algorithm 
 

Model 
Classification Accuracy 

(%) 

Decision Trees (medium split) 87.0 

SVM (quadratic kernel) 85.9 

KNN (weighted K=10) 89.1 
 

Based on Table 3, it shows that the result accuracy is 

improved for each decision tree, SVM and KNN models after 

applying the discretization algorithm with the three 

classifiers. It can be seen from the table that the best accuracy 

for the decision tree model now rises to 87.0%. As for the 

SVM model, the best accuracy is improved to 85.9%. The 

best accuracy for the KNN model is climbed to 89.1%. It can 

be seen from the table that all the accuracies for each 

classification model are improved by 14% to 25%. With these 

improved accuracies, the models are ready to be used for 

predicting analysis. 

Then, for predicting analysis, a total of 37 HTs are 

extracted from ten finalists of Embedded System Challenge 

2008 [4]. These finalists were asked to design HTs for crypto-

hardware platform, Alpha that implemented the Advanced 

Encryption Standard (AES) on Digilent BASYS Spartan-3 

FPGA board. The main processor on the board interacted with 

Alpha through an RS232 serial port. There are 256 shared 

secret keys are hard coded into Alpha. Leaking these secret 

keys or obtaining the unencrypted messages is the objective 

of the finalists as the attackers. The user of the device selected 

a private key using the switches. The encrypted data was sent 

through the RS-232 port. Alpha emulated a real world crypto 

accelerator, typically used to secure communications in a 

hostile environment. 

All the HTs that are designed by the finalists are made for 

the predicting analysis. The data for predicting analysis will 

be based on the test data. All the features of HTs are classified 

with the three (3) classifiers: Decision Tree (DT), Support 

Vector Machine (SVM) and K-Nearest Neighbor (KNN) with 

discretization algorithm. The label for predicted class comes 

from class attribute includes leak information, DoS, 

Processor, Fab, change functionality and internal triggered. 

 

B. Predicting Analysis based Decision Trees Classifier 

The result for predicting analysis using a test data is 

depicted in a Table 4. The table tabulates the dominant 

attribute matching of the predicted class for test data using 

decision tree learnt model. It can be seen that there are 26 

rows of test data are classified as Class 1, 2 rows of test data 

are classified as Class 2, 1 row is classified as Class 5 and 7 

rows are classified as Class 7. All 26 of test data rows that are 

predicted as Class 1 match the dominant attribute, ‘Leak 

information’. This is also true for test data rows that are 

predicted as Class 2 and Class 5 where all of them match the 

dominant attributes, ‘DoS’ and ‘RTL respectively. However, 

for test data rows that are predicted as Class 7, only 1 out of 

7 rows matches the dominant attribute, ‘Internally Triggered’. 
 

Table 4  
Dominant Attributes Matching based on Decision Tree (DT) Classifier 

 

Predicted Class 
Dominant Attribute 

for the Class 
Match to Dominant 

Attribute 

Class 1 Leak Information 26 out of 26 

Class 2 DoS 2 out of 2 

Class 5 RTL 1 out of 1 
Class 7 Internally Triggered 1 out of 7 

 

C. Predicting Analysis Based SVM Classifier 

The result for predicting analysis using a test data is 

depicted in a Table 5. The table tabulates the dominant 

attribute matching of the predicted class for test data using 

SVM learnt model. It can be seen that there are 27 rows of test 

data are classified as Class 1, 5 rows of test data are classified 

as Class 2, 3 row are classified as Class 3 and 1 rows are 

classified as Class 6. From 26 of test data rows that are 

predicted as Class 1, 21 of them match the dominant attribute, 

‘Leak information’. As for test data rows that are predicted as 

Class 3, only 1 out of 3 rows matches the dominant attribute, 

‘Processor’. However, for test data rows that predicted as 

Class 2 and Class 6, none of them matches the dominant 

attributes, ‘DoS’ and ‘Change Functionality’. 
 

Table 5  

Dominant Attributes Matching based SVM Classifier 
 

Predicted Class Dominant Attribute 

for the Class 

Match to Dominant 

Attribute 

Class 1 Leak Information 21 out of 27 
Class 2 DoS 0 out of 5 

Class 3 Processor 1 out of 3 

Class 6 Change Functionality 0 out of 1 

 

D. Predicting Analysis based K-Nearest Neighbor  

The result for predicting analysis using a test data is 

depicted in a Table 6. The table tabulates the dominant 

attribute matching of the predicted class for test data using 

decision tree learnt model. It can be seen that there are 25 

rows of test data are classified as Class 1, 2 rows of test data 

are classified as Class 2, 2 rows are classified as Class 5 and 

7 rows are classified as Class 7. All 25 of test data rows that 

are predicted as Class 1 matches the dominant attribute, ‘Leak 

information’. This is also true for test data rows that are 

predicted as Class 2 and Class 5 where all of them match the 

dominant attributes, ‘DoS’ and ‘RTL respectively. However, 

for test data rows that are predicted as Class 7, only 1 out of 

7 rows matches the dominant attribute, ‘Internally Triggered’. 
 

Table 6 

Dominant Attribute Matching based KNN 

 

Predicted Class 
Dominant Attribute 

for the Class 

Match to Dominant 

Attribute 

Class 1 Leak Information 25 out of 25 
Class 2 DoS 2 out of 2 

Class 5 RTL 2 out of 2 

Class 7 Internally Triggered 1 out of 7 
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V. CONCLUSION 

 

Based on the results, it is concluded that the machine- 

learning-based classification was successfully developed for 

HTs identification. About 83% of test data were successfully 

predicted by both DT and KNN algorithm based on the 

dominant attributes for each class. As for the SVM, it 

successfully predicted about 63% of the test data. These 

results match with the classification accuracies of the learnt 

models where SVM model had less accuracy than DT and 

KNN model 
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