

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 15

A Test Case Selection Framework and Technique:

Weighted Average Scoring Method

Rafaqat Kazmi1, Dayang N. A. Jawawi1, Radziah Mohamad1, Imran Ghani2 and Muhammad Younas1

1Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
2School of Information Technology, Monash University Malaysia.

rafaqutkazmi@gmail.com

Abstract—Test case selection techniques identify and

eliminate the modification revealing test cases and try to reduce

the test suite size for optimization of regression testing. The

objective of this experiment is to assess the effectiveness of

weighted average scoring method of test case selection against

single objective test case selection techniques. The multi-

objective test case selection with the weighted average scoring

framework and technique are proposed in this study to select the

test cases. This method is trying to solve conflicting test case

selection objectives with six selection scenarios. The method

used test data of cost, coverage, fault detection ability and code

change information, convert them into the weighted average

score as scalar function and presented this score to 100-index

slabs related to low to high scores, then select the test cases. The

results for these selection scenarios are computed and evaluated

using size reduction of the test suite, inclusiveness, and precision.

The results showed that all scenarios performed acceptable level

within conditions applied from 17% minimum to 86%

maximum in size reduction metrics. The inclusiveness showed

17% to 88% and 33% to 85% for precision metric.

Index Terms—Regression Testing; Test Case Selection; Test

Suite Effectiveness.

I. INTRODUCTION

Regression testing is very expensive and repetitive activity

and utilized whenever a program is changed, modified or

updated. The regression testing is to build the confidence that

changes do not harm the program. The complete testing of a

software is not possible especially in the case of regression

testing, the only possible way out is an adequate testing with

certain objectives to fulfils. The JB Goodenough [1], put the

question, What is the criterion for adequate software testing?

The test case selection methods are purposed in 1977 [2] for

maintenance of modified software. Test case selection is used

to select a subset of test cases already available for previously

executed test cases [3]. Test cases are input to the testing

process and act as execution conditions with expected outputs

[4]. The set of more than one test case (test suite) for testing

software under test (SUT) must grow with the evolution of

software. To re-execute, all these test cases are not wise and

consume considerable costs [5]. In order to execute the most

related tests regarding modification made into code, test case

selection is carried out.[6].

The prioritization methods of regression testing try to order

the test suites in such a way that they should expose the faults

as early as possible. The main difference between selection

methods with prioritization, the first one primary focus on

code changes and modifications while the later primary focus

on fault detection as early as possible. Furthermore,

prioritization methods did not eliminate the test cases from

original test suites, only change their order of execution,

while selection methods remove redundant test cases from the

test suites. The reduction methods for regression testing

primary focus on minimization of the size of the test suite

with the intent to reduce the cost of regression testing. The

objectives of reduction and selection are same except

selection methods also care for modifications in the code.

There are many different objectives and possible direct or

indirect benefits with regression test case selection. The goals

observed in literature for regression test case selection are

continuous integration, N release development, continuous

development and continuous quality enhancements [7, 8].

Regression Test Selection (RTS) techniques ultimately

contributes directly and in some cases indirectly to overall

quality of software product, maintenance activities [9],

reliability of software product [10], transition of software

system from old systems [11], deployment activities of

product, software upgrades [12], training of applications and

staff and version control systems. But RTS techniques work

with code/requirement information, risk management,

software production and metrics to evaluate the results of

testing process

This study is extension of the previous research [13]

provided the justification for test case selection parameters

cost, coverage, fault detection ability and code change

information as single objective for RTS The second study

which is part of the same research provides the justification

for cost trade-offs [14], discuss the different cost measures

and their trade-off with respect to each other.The main

objective of this controlled experiment is to select the relevant

subset of test cases from original test suites and minimize the

size of test suite keeping cost, coverage, fault detection ability

and code change based effectiveness in control. The second

objective is to establish a continuous test case selection

process which includes cost, coverage, fault detection ability

and change information as the separate measure as well as

accumulative measure for test case selection measure. The

third objective is to embed the tester experience as part of test

case selection process which provides the flexibility of choice

in selection parameters and may increase the the

effectiveness.

The rest of the study is organized as the Section 2 contains

the Related Work, Section 3 contains the Proposed

Framework, Section 4 contains the Test Case Selection

Technique based on the proposed framework, Section 5

contains experimental setup, Section 6 contain the results,

Section 7 contains discussion and Section 8 contains

conclusion and future work.

Journal of Telecommunication, Electronic and Computer Engineering

16 e-ISSN: 2289-8131 Vol. 9 No. 3-4

II. RELATED WORK

The experimental studies which investigate regression test

case selection techniques use single objective (cost, coverage,

fault detection ability, code change information) or multiple

adequacy measures like any combinations of cost, coverage,

fault detection ability and code change information. The

Leung and White proposed a cost model which includes

executional, validation and analysis costs model. This model

provides a relative effectiveness measure for regression

testing [15]. A code analysis based RTS [16] proposed for

software written in java and.NET environments, applied on

intermediate code, try to reduce the executional cost but

ignoring the cost to maintain the test suite, analysis cost and

maintenance of code repository. A control flow graph based

RTS [17] technique is designed to reduce the cost of

regression testing. The focus is on changes appeared on the

edges of the graph that were used to select the test cases for

the current version of the software. This method is based on

code instrumentations which limits its effectiveness.

Furthermore, the study did not consider the graph size and

algorithm runtime for test selection in executional cost.

The code coverage based RTS technique [18] compares

four prioritization techniques, one test case selection, one

reduction and one hybrid method. These all techniques are

using five coverage types. The study reports that updated

coverage information was more effective as compared to

simple coverage measures. A graph based RTS technique

[19] used coverage information to reduce the overall cost of

test case selection. The study provides a system ReTest to

perform regression test case selection, by identifying finer

granularity levels of coverage to select the dangerous edges

in control flow graph and then based on these edges, selection

of test cases is accomplished.

A code change based RTS [20] try to compute updated

coverage without re-executing the tests on SUT. The

techniques try to reduce the executional cost by using

selective code instrumentation to assess the code changes into

the SUT. The selection of tests is based on the comparison of

out-dated coverage with the re-computed coverage

information but its accuracy is based on change types and

location inside the code of SUT.

The multi-objective test case selection technique [21]

investigates branch coverage with an executional cost of the

test suites for SUT. The objectives are carried out by applying

Particle Swarm Optimization(PSO). A competitive analysis

[22] using mutation scores to identify the bugs from SUT and

also to select the test case from existing test suites. The study

compared the results of five benchmarks based on mutation

score. This study applied Genetic Classification(GC) to

measure genetic effectiveness based on genetic operators

with mutation operators. All these measures are incorporated

into the Integrated Coevolutionary Genetic algorithm. The

comparison was based on three scenarios, test case selection,

mutation score and reduction of the execution cost. The study

ignores the complexity and the size of the test suites and the

size of SUT. The genetic effectiveness with mutation score is

used to measure the effectiveness of the selection technique,

but there was no distinction between equivalent and non-

equivalent mutants. Similarly, there was no discussion on

mutation operators used for analysis, because there are so

many mutation operators in use with different performance

measures.

The change identification RTS [23] using difference engine

to assess and analyse the results from the old and current

version of the SUT. The difference engine identifies the

correlations between code and test cases and recommends test

cases which show strong relationship between code entities

and test suites based on modifications made to the SUT. The

evaluation metrics like precision, recall, and efficiency is

used to justify the results.

The understanding of these selection methods is narrow.

The main reasons for this were these studies normally

established a base or original version and then execute the

same method on modified version. Then after executing

selection technique, they simply compare the results of base

application with modified version of SUT. The two-major

limitation with these selection techniques are, these studies

model RTS as the one-time process instead of continuous

activity. These studies ignored resource constraints like time

and cost of the regression testing. The historical test data is

also ignored in these classic selection and prioritization

techniques. The historical data is important because of the

repetitive nature of the problem. Due to ignoring historical

data, these techniques are memoryless. These techniques

solely based on the current information of test cases and

sacrificing the benefits of test history.

In this controlled experiment, we try to embed history in

terms of tester experience and test case executional data from

previous runs. The proposed framework and test case

selection technique also embed aggregated impact of

effectiveness measures by weighted average score which also

makes this technique flexible and more useful with local as

well as generalized testing requirements.

III. PROPOSED FRAMEWORK FOR TEST CASE SELECTION

BASED ON WEIGHTED AVERAGE SCORE

In this section, we propose a framework for regression test

case selection based on weighted average sum [24] of

measurable aspects of test case selection. These aspects are

code coverage, the cost of testing, fault detection ability of

the test suites and code change information. These measures

are primary contributors of the effectiveness of test case

selection process. The abstract view of proposed framework

is shown in Figure 1. The framework consists of four layers

contributing equally to fulfills the purpose of test case

selection. This process starts with the first execution of test

suites on subject programs and collect data for code coverage,

fault detection ability and execution costs of the test cases.

The code change information is collected from the second

version of the SUT, for which this selection process is carried

out with respect to previous version. The second input to this

process is the selection criterion, based on testers experience

and requirement for tests for next iteration of regression

testing.

These criterions for current settings are cost-based test case

selection, coverage-based test case selection, fault detection

ability-based test case selection, code change based test case

selection, balanced scoring test case selection (uses all four

parameters with equal weight) and customized (varying

weighting factors for four parameters) scoring test case

selection. The third step is to measure the weighted factors

for each test case, executed on previous version and criterion

inputted by the tester for next version. The detailed

systematic process is elaborated in algorithm presented in

next section After computing these weighted values for each

test case, the weighted average sum for each test case is

A Test Case Selection Framework and Technique: Weighted Average Scoring Method

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 17

computed based on the selection criterion.

Figure 1: Proposed framework for regression test case selection

Then based on this weighted average sum, a selection index

is defined to select or skip the test cases for next version. Here

we use 100-index scale to present the strength or weakness of

the score. This indexing mechanism is adapted from a feature

analysis method [25], which use the index of 0 to 1 to show

features score for selection, but here we use the 100-index to

make it more meaningful for test case selection. After

selection of these test cases, the data is stored for next analysis

and selection for the next iteration and so on.

IV. TEST CASE SELECTION ON WEIGHTED AVERAGE

SCORE(TCSWAS) TECHNIQUE

In this section, we elaborate the proposed TCSWAS

technique to select the test case from previously executed test

cases. The proposed method aims to: a) Decrease the overall

cost of the test suite execution, b) decrease the size of test

suite size from previous test suite, c) Include the weighted

average score (cost, coverage, fault detection, code changes)

for test case selection, d) Improve the overall effectiveness of

test suites. The TCSWAS process is based on the framework

proposed in Figure 1. The test case selection is carried out in

two steps. First, the values for each effectiveness measure

(cost, coverage, fault detection, code changes) is computed

and then these computations are converted into their weighted

average by using metrics weighted average sum [26]. In

second step, these measures are presented on 100-index scale,

to compare them on an equal level for better understanding.

The weighting average score and presentation scale are

shown in the Figure 2. The scaling of heterogeneous data also

used in regression testing to compare and present data [27] to

find relationships between cost, coverage and effectiveness of

the test suites.

The multi-objective optimization problems are converted

into single objective by using scalar function [24]. Different

weights are used with different testing requirements. An

experiment was conducted to select features from multiple

features with the different weights, reported that optimized

results are found with 0.4 on the scale of of 1, it is converted

to 25 on the scale of 100 for weighted average scoring method

[25] as shown in Figure 2. There are total six different

selection criterions used to select the test cases. These

criterions are 1) cost based selection, 2) coverage based

selection, 3) fault based selection, 4) change based selection,

5) balanced scoring selection and 6) customized scoring

selection. The complete scoring scheme is shown in the

Figure 2. The intent is to use the weighted average for each

effectiveness measure and include the impact of each

measure to a final score. Then this accumulative score is

presented on the scale of 100 for the test case selection. The

100-index has five slabs. The range from 0 to 20 presented as

very low, 21 to 39 as low, 40 to 59 as the medium, 60 to 74

as high and 75 to 100 considered as the very high score. The

similar scheme is used to find the relationship between these

effectiveness measures (cost, coverage, fault detection

ability) in study [27]. An experiment is conducted to assess

the co-relationship between effectiveness measures which

rate this relationships from 0 to 100 points slabs using kendall

Tau [28]. Here in this experiment, select the test cases with

index greater than 39, considered medium to very high index

test cases.

Figure 2: The weighted scoring scheme and indexing slabs

V. EXPERIMENTAL SETUP

Three datasets are selected to apply the proposed test case

selection technique based on the test case selection

framework. These three datasets are listed in Table 1 with

their respective characteristics. Two of them Triangles [29]

and TreeDataStructure [29] are academic datasets with test

suites written in java. The third dataset dataset JodaTime [30],

an open source library to replace java date and time library.

Table 1

The Characteristics of System Under Test

Number Data Set Version LOC Test Case

1 JodaTime 2 280464 279
2 TreeDataStructure 2 2200 22

3 Triangles 2 116 12

The Figure 3, provides the experimental process for

regression test case selection with weighted average sum and

100-index scale. This experimental process based on the

framework proposed in section II and consists of five layers

with a dedicated role in the selection process. In the first layer

in the experimental process, the subject program is prepared

with test suites, the environment for program execution is

Journal of Telecommunication, Electronic and Computer Engineering

18 e-ISSN: 2289-8131 Vol. 9 No. 3-4

Eclipse [31] and Junit framework is selected for test suite

creation and execution. The second layer is tool support, for

collecting relevant information for proposed technique .For

current environment, the size of system under testing(SUT)

and the coverage information(statement coverage) are

measured by EclEmma [32],test suite size and test results are

collected through Junit, the faulty versions of SUT are

produced and analysed by PIT [33] and the code changes

between different versions of the same software are measured

by JDiff [34].In the third layer, relevant data for coverage,

size of test suite, mutation score and code change information

is received from second layer and prepared the data in 100-

index format for further processing. The fourth layer takes the

data for each measure from third layer and assign the average

sum. The fifth layer of this process gets the user requirement

about test case selection scenario and compute the weighting

factor for each measurement collected from the previous

layer. Then based on test case selection criteria and computed

the weighted score of test cases, the test cases score is

converted again into the 100-index scale and then test cases

are selected from the original test suites.

Figure 3: The Procedure for Experimental Setup

The algorithm for test case selection using TCSRAW

technique is presented in Figure 4. The algorithm takes three

inputs a program P, a modified program P′ and a test suite T.

The algorithm also takes test engineer choice to choose the

selection scenario and return a test suite T′.

The metrics used for data collection, analysis and

presentation of results are listed in the Table 2. The coverage

is measured in terms of statement coverage for a single test

case. The cost is taken as the execution cost of each test case,

divided by total execution cost of the test suite, and then

multiplied by hundred. Fault detection ability is measured in

terms of mutation score. The code changes, we mean here the

number of statements modified, deleted, or added in a unit

under test. The change ratio is calculated by the number of

statements changed, divided by lines of code of unit under

test and then multiplied by hundred. The precision and

inclusiveness is calculated to assess the test case selection

technique, how much modification revealing test cases are

selected is called inclusiveness and how much non-

modification test cases are not included is called precision.

ALGORITHM: Selecting test cases

1. TCSRAW(P, P′,T)

2. T = {t1, t2, t3,…..Tn}
3. Cov = Collect statemnt coverage of T on P for each t ɛ T.

4. Cost = Collect executional time of each t ɛT on P.

5. FaultDetection = Collect MutationScore for each t ɛ T on P.
6. ChangeInfo = Compare P , P′, collect statement change info.

7. Convert each Cov, Cost, FaultDetection, ChangeInfo on 100-

index.
8. SelectionCriterion = Cost OR Cov. OR FaultDetection OR

ChangeInfo OR BalancedScoring OR CustomScoring

9. Assign weights such that
9.1 w1 + w2 + w3 + w4 = 100

9.2 IF SelectionCriterion = Cost

9.2.1 SelectionIndex = (100 * Cost + 0 * Cov, + 0 *

FaultDetection + 0 * ChangInfo)

9.3 IF SelectionCriterion = Cov

9.3.1 SelectionIndex = (0 * Cost + 100 * Cov, + 0 *

FaultDetection + 0 * ChangInfo)

9.4 IF SelectionCriterion = FaultDetection

9.4.1 SelectionIndex = (0 * Cost + 0 * Cov, + 100 *

FaultDetection + 0 * ChangInfo)

9.5 IF SelectionCriterion = ChangeInfo

9.5.1 SelectionIndex = (0 * Cost + 0 * Cov, + 0 *
FaultDetection + 100 * ChangInfo)

9.6 IF SelectionCriterion = BalancedScore

9.6.1 (SelectionIndex = 25 * Cost + 25 * Cov, + 25 *

FaultDetection + 25 * ChangInfo)

9.7 IF SelectionCriterion = CustomScoring

9.7.1(SelectionIndex =w1 * Cost + w2* Cov, + w3*

FaultDetection + w4 * ChangInfo)

10. Move test Ti from T to T′ for all those tests

 SelectionIndex ˃ 39
11. Return T′

Figure 4: Algorithm for test case selection

Table 2

Metrics used for Analysis and Evaluation of TCSWAS Technique

Measure Description Formula

Coverage The coverage is the number

of lines of code executed by
a test suite/test case divided

by total testable number of

lines of unit under test.

Coverage =(LOC covered

by TC)/(Total LOC of unit
under test)*100

Cost The cost is measured as time

taken by a test case divided

by total time take by the test
suite, multiplied by hundred.

Cost=(Execution time

taken by TC)/(Total

Execution time of test
suite)*100

Fault

Detection

The mutants killed by a test

case/test suite divided by a

total number of mutants

generated, multiplied by
hundred.

Mutation Score=(Killed

mutants)/(Total

Mutants)*100

Change Ratio The total number of lines

changed, divided by a total
number of lines covered by

test case/test suite, multiplied

by hundred.

Change Ratio Score=(LOC

Changed)/(Total LOC for
unit under test)*100

Inclusiveness Let a test suite T contains n

tests which are modification

revealing for a program P
and M selects “m”

modification revealing for P′.

Inclusiveness = 100(m/n)

iff n 0

Precision Let a test suite T contains n
tests which are non-

modification revealing for a

program P and M rejects m
non-modification revealing

for P′.

Precision = 100(m/n) iff n

0

VI. RESULTS

The objective of all test case selection techniques is to

select a subset of test cases from the existing test suite and the

A Test Case Selection Framework and Technique: Weighted Average Scoring Method

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 19

subset is as minimum as possible without compromising the

overall effectiveness of the testing process. The first objective

of TCSWAS is also to select a sub set of test cases from

existing test suites. The study was executed on three datasets

and the results for test suites selection with respect to retest-

all are shown in Figure 5. There were total five scenarios

created based on tester requirements and then compiled and

computed the weighted average score and 100-index scale.

The customized scenario is same as balanced scoring

scenario, the results for customized scenario are not included

to keep the study precise. The 100-indexing is used to present

the data of all effectiveness measures on a similar scale and

easy to understand and help in selection process as well as

makes simple assessments in verification and validation

process.

(a) (b)

(c)

Figure 5: The Reduction in Test Suite Size Graph

The graph in Figure 5, representing the reduction in the test

suite size in terms of number of the test case with respect to

retest-all and the reduction in test suite in terms of percentage

to total test suite size. The Y-axis showing the total reduction

in test suite size in number on left and test suite reduction on

right side. Similarly, each scenario, cost-based selection,

coverage based selection, fault detection based selection,

balanced selection is represented on X-axis, in order to

compare them with retest-all, as well as with each other. The

line intersecting the graph is frequency distribution curve

which indicating the normality and skewness of data

collected. For current experiment, the details of data

normality and skewness are not discussed in detail to keep the

analysis simple.

The results of dataset Triangles in Figure 5-a show that cost

based selection criterion selects 17% of the test cases,

coverage based selection criterion selects 75% of test cases,

fault detection ability based criterion selects 58% test cases,

the balanced weighted score selection criterion selects 50%

test cases and change information based selection criterion

selects 42% test cases as compared to original test suite. This

is observed that in all scenarios, the overall test suite

reduction is good without compromising the overall

effectiveness of the testing process within the conditions of

current environment.

In the second dataset under study, Figure 5-b shows that the

cost based selection scenario selects 17%, coverage based

selection scenario selects 36%, fault detection ability based

scenario selects 39%, change based selection criterion selects

13% and balanced scenario which gives all measures equal

weight selects 41% test cases as compared to original test

suite. The third dataset TreeDataStructure in Figure 5-c

shows that for cost-based selection, it selects 67% test cases,

coverage based scenario selects 86% test cases, fault

detection ability based scenario selects 43% test cases,

change information based scenario selects 38% test cases and

balanced scoring scenario selects 67% of the test cases as

compared to original test suite. The results show that for all

scenario, the test suite size reduction is good except for

coverage criterion, which selects more than 70% test cases for

two datasets. It is also observed that balanced scoring criteria

perform optimum as compared to other scenarios under

analysis, selects 41% to 67% of the test cases. The choice of

the selection criterion depends on the testing requirement

provided by the test engineer of the SUT.

In order to assess and analyse the regression test case

selection techniques, inclusiveness and precision are

measured. The inclusiveness is the measure to assess that how

much modification revealing test cases are selected by the

selection technique. The comparison of TCSWAS for

inclusiveness metric for the data sets under the study of all

test case selection criterions are shown in the Figure 6. The

X-axis in the graph below is showing the test case selection

criterion which are cost based selection, coverage based

selection, fault detection ability based selection, change

information based selection criterion and balanced score

based selection criterion. The graph bars representing the

modification revealing test cases selected in comparison with

a total number of modification revealing test cases on the left

side of Y-axis and in percentage to right side of Y-axis.

(a) (b)

(c)

Figure 6: The inclusiveness evaluation graph for TCSWAS technique

In the Figure 6-a, showing the inclusiveness measure for

dataset Triangles. It shows that the inclusiveness for all

scenarios is 83% except for cost-based test case selection

criterion which is 17%. The Figure 6-b, the inclusiveness

values for JodaTime are presented. The balanced approach

Journal of Telecommunication, Electronic and Computer Engineering

20 e-ISSN: 2289-8131 Vol. 9 No. 3-4

includes 72% of modification revealing test cases, coverage

based selection criterion includes 61% of modification

revealing test cases, fault detection ability selection criterion

selects 59% of the modification revealing test cases, cost-

based selection criterion selects 48% of modification

revealing test cases and change information based selection

criterion selects 39% of modification revealing test cases. The

minimum inclusiveness for TCSWAS is 39% and the

maximum is 72% which is the acceptable value for a test case

selection technique providing four different measures and six

selection criterions.

The second viewpoint to assess and analyse the test case

selection technique is to assess, how many non-modifications

revealing test cases are omitted by the test case selection

technique, is called precision metric for regression test case

selection techniques. The Figure 7 showing the results for

precision measure for three datasets under study. The X-axis

in the graph showing the test case selection criterions and Y-

axis representing the total number of test case which is non-

modification revealing on the left and percentage of non-

modification test cases on the right.

(a) (b)

(c)

Figure 7: The precision evaluation graph for TCSWAS technique

The Figure 6-a shows the precision values for dataset

Triangles. The cost-based test case selection scenario, fault

detection ability based scenario and balanced scoring

scenario rejects the non-modification test cases during test

case selection process which is 67%. The change information

based selection criterion rejects 78% of non-modification test

cases. The coverage based test case selection criterion rejects

33% of non-modification revealing test cases. In Figure 7-b,

the change based test case selection criterion rejects the

maximum number of non-modification test cases which is

97%, the coverage based selection criterion rejects 76%, fault

detection ability selection scenario rejects 73%, balanced

scoring selection criterion rejects 71% and cost based

selection criterion rejects 35% of non-modification revealing

test cases. The change based test case selection scenario

performs better as compared to other scenarios, the reason is

obvious that this scenario based solely on the change

information detected during the testing process so its ability

to include modification revealing test cases and rejection of

non-modification based test cases is better as compared to

other scenarios.

VII. DISCUSSION

This controlled experimental study proposed a framework

and test case selection technique on a weighted average score

and 100-indexing method to select the test cases from already

executed test suites. The main concern is to investigate the

mutual impact of cost, coverage, fault detection ability and

code change information on the selection criterions already

available from previously executed test suite. The cost,

coverage and fault detection has many types of dependencies

and relationships on each other. The code changes are the

primary concern of all regression test case selection criterion,

in this study, authors try to combine all these effectiveness

measures in a single test case selection criterions.

The third important parameter for this technique is to give

the flexibility to the test engineers to select effectiveness

measures by choosing the test case selection scenario from

cost-based test selection, coverage based selection, fault

detection ability based selection, code change based

selection, balanced scoring selection criterion or customized

test selection criterion.

The cost-based selection only based on cost measures of an

individual test case and ignore other measures. The coverage

based scenario only selects the test cases with coverage

satisfied test cases. The fault detection ability chooses test

cases with fault detection scores. The change information

selection scenario only focuses on change information and

selects the test cases related to code changes between current

and previous versions of system under testing. The balanced

scoring scenario gives equal weights to all measures which

are cost, coverage, fault detection ability and code changes.

The customized scenario gives the independence to test

engineer to rate all these effectiveness measures between 0 to

100, but their rating sum must equal to 100. This mechanism

provides a broad range of possibilities to include local testing

requirements.

In this study, three datasets are used to evaluate the

proposed framework and TCSWAS regression test case

selection technique. The inclusiveness and precision metrics

are used to assess the ability of selection of modification

revealing and rejection of non-modification revealing test

cases for the proposed technique. The evaluation results show

that each scenario is performed at the acceptable level with

different conditions. The cost-based selection criterions

reduced the maximum possible number of test cases in cost

based selection criterions with all datasets. But the one

observation for small suite sizes was that cost values were so

small and sometimes very near to zero. Therefore, cost alone

is not a good test case selection criterions because the cost

values are insignificant in some situations. Code coverage

based selection criterion always returns more than 50% test

cases selected. It seems good indicator in-order to test a

maximum number of lines of code, but it also includes non-

modification revealing test cases and high-cost values. The

second interesting observation was that fault detection ability

in terms of mutation analysis return similar trends and data

with coverage based analysis but again costs are bit high.

Therefore, the coverage alone not return effective test suites.

The authors recommend that coverage measure used with

code change based metrics for selection criterions of

A Test Case Selection Framework and Technique: Weighted Average Scoring Method

 e-ISSN: 2289-8131 Vol. 9 No. 3-4 21

regression testing. The fault detection ability is used as

performance measure so far in regression testing, but in this

study authors try to use this measure as selection criterion as

well. The results are satisfactory with fault detection ability.

But one observation was that tools used to collect and analyse

fault data are not well matured yet and they also put some

extra cost and analysis overhead to the regression test

technique.

The change information based selection is the primary

concern of all selection criterion for all test case selection

techniques. In this experiment change information improves

the balanced scoring technique considerably. The balanced

scoring criterion equally weights all the effectiveness

measures and always return satisfactory results for selection.

The inclusiveness and precision also show balanced scoring

scenario performs reasonably acceptable and show the

combined behaviour of cost, coverage, fault detection ability

and code change information. The code change information

is used as the proxy for a balanced scoring scenario, the

possible reason was coverage and fault detection ability

return similar data and cost behaves skewed in small size

datasets, but code change information refined the results of

previous measures and returns reasonable acceptable reduced

test suites, which also fulfils the testing requirements.

VIII. CONCLUSION AND FUTURE WORK

This study proposes a regression test case selection

framework and a test case selection technique TCSWAS

based on weighted average sum to fulfils the following

objectives. Decrease the number of test case without

compromising effectiveness with respect to an original test

suite. Increase the overall effectiveness of RTS process in

terms cost, coverage, fault detection ability and code changes.

Establish a continuous selection process which uses previous

test data and tester experience. There were three datasets to

evaluate the framework and proposed technique. The results

show that all scenarios used performs reasonably acceptable

manner in terms of inclusiveness and precision measures with

their environment and testing requirements. The cost behaves

differently for different test suite sizes, while coverage and

fault detection ability perform in similar fashion returning

almost equally reduced test suites. The code change

information behaves as the proxy to validate and refine the

reduced test suite by cost, coverage and fault detection ability.

Therefore, it is concluded that combined measures of cost,

coverage, fault detection ability and change information are

good predictors of effectiveness of reduced test suites by

selection technique as compared to use them separately. The

test engineers experience can also further improve the

effectiveness, in this study, test case selection scenarios

provide the flexibility to choose relevant measures to select

the test cases but results conclude that balanced scoring

produces more effective results for selection.

The future work for this experiment is to embed more

change based granularity levels, right now to keep the process

simple, only statement changes are used as change

information. But method changes, class changes and change

impact analysis also need to investigate in future. The code

coverage may also need to add stronger coverage types like

condition coverage and modified condition coverage.

Similarly, mutation analysis was a good start but this study

may also be evaluated by the real fault with industrial project.

ACKNOWLEDGEMENT.

We are thankful to Ministry of Science, Technologi and

Innovation (MOSTI) Malaysia for supporting this research

under Vot: 4S113. We are also thankful to Universiti

Teknologi Malaysia (UTM) for providing the research

facilities.

REFERENCES

[1] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data
selection,” IEEE Transactions on Software Engineering, vol. SE-1, no.

2, pp. 156-173, 1975.

[2] K. F. Fischer, “A test case selection method for the validation of
software maintenance modifications,” in Proceedings of COMPSAC,

1977, pp. 421-426.

[3] B. Beizer, Black-Box Testing: Techniques for Functional Testing of
Software and Systems. John Wiley & Sons, Inc., 1995.

[4] M. Zavvar and F. Ramezani, “Measuring of software maintainability

using adaptive fuzzy neural network,” International Journal of Modern
Education & Computer Science, vol. 10, pp. 27-32, 2015.

[5] M. A. Askarunisa, M. L. Shanmugapriya, and D. N. Ramaraj, “Cost

and coverage metrics for measuring the effectiveness of test case
prioritization techniques,” INFOCOMP Journal of Computer Science,

vol. 9, no. 1, pp. 43-52, 2010.

[6] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S.

Kanduri, “Understanding the effects of changes on the cost‐
effectiveness of regression testing techniques,” Software Testing,

Verification and Reliability, vol. 13, no. 2, pp. 65-83, 2003.

[7] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in ACM SIGSOFT Software Engineering Notes,

2004, pp. 241-251.

[8] W. E. Lewis, Software Testing and Continuous Quality Improvement.
CRC press, 2016.

[9] W. E. Wong, J. R. Horgan, S. London, and H. A. Bellcore, “A study of

effective regression testing in practice,” in ISSRE '97 Proceedings of
the Eighth International Symposium on Software Reliability

Engineering, 1997, pp. 264-274.

[10] J. D. Musa, “Operational profiles in software-reliability engineering,”
IEEE Software, vol. 10, no. 2, pp. 14-32, 1993.

[11] C. Larman and V. R. Basili, “Iterative and incremental developments.

a brief history,” Computer, vol. 36, no. 6, pp. 47-56, 2003.
[12] A. Bertolino, “Software testing research: Achievements, challenges,

dreams,” in Future of Software Engineering, 2007 (FOSE '07), 2007,

pp. 85-103.
[13] R. Kazmi, D. N. Jawawi, R. Mohamad, and I. Ghani, “Effective

regression test case selection: a systematic literature review,” ACM

Computing Surveys (CSUR), vol. 50, no.2, pp. 1-29, 2017.
[14] R. Kazmi, I. Ghani, R. Mohamad, M. Tariq, I. S. Bajwa, and S. R.

Jeong, “Trade-off between automated and manual testing: a production

possibility curve cost model,” Int. J. Advance Soft Compu. Appl, vol. 8,
no.1, pp. 12-27, 2016.

[15] H. K. Leung and L. White, “A cost model to compare regression test

strategies,” in Proceedings Conference on Software Maintenance,
1991, pp. 201-208.

[16] T. Koju, S. Takada, and N. Doi, “Regression test selection based on

intermediate code for virtual machines,” in Proceedings of
International Conference on Software Maintenance (ICSM 2003),

2003, pp. 420-429.

[17] G. Rothermel, M. J. Harrold, and J. Dedhia, “Regression test selection
for C++ software,” Software Testing Verification and Reliability, vol.

10, pp. 77-109, 2000.

[18] D. D. Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage‐
based regression test case selection, minimization and prioritization: A
case study on an industrial system,” Software Testing, Verification and

Reliability, vol. 25, no. 4, pp. 371-396, 2015.

[19] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S.
Sinha, S. A. Spoon, and A. Gujarathi, “Regression test selection for

Java software,” in OOPSLA '01 Proceedings of the 16th ACM

SIGPLAN conference on Object-oriented programming, systems,
languages, and applications 2001, pp. 312-326.

[20] P. K. Chittimalli and M. J. Harrold, “Recomputing coverage

information to assist regression testing,” IEEE Transactions on
Software Engineering , vol. 35, no.4, pp. 452-469, 2009.

[21] L. S. de Souza, R. B. Prudêncio, and F. d. A. Barros, “A Hybrid binary

multi-objective particle swarm optimization with local search for test
case selection,” in Intelligent Systems (BRACIS), 2014 Brazilian

Conference, 2014, pp. 414-419.

Journal of Telecommunication, Electronic and Computer Engineering

22 e-ISSN: 2289-8131 Vol. 9 No. 3-4

[22] A. A. L. de Oliveira, C. G. Camilo-Junior, and A. M. Vincenzi, “A
coevolutionary algorithm to automatic test case selection and mutant in

mutation testing,” in 2013 IEEE Congress on Evolutionary

Computation (CEC), 2013, pp. 829-836.
[23] E. D. Ekelund and E. Engström, “Efficient regression testing based on

test history: An industrial evaluation,” in 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2015,
pp. 449-457.

[24] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization

using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, no. 9, pp. 992-1007, 2006.

[25] S. Wang, S. Ali, and A. Gotlieb, “Minimizing test suites in software

product lines using weight-based genetic algorithms,” in Proceedings
of the 15th Annual Conference on Genetic and Evolutionary

Computation, 2013, pp. 1493-1500.

[26] T. Hesterberg, “Weighted average importance sampling and defensive
mixture distributions,” Technometrics, vol. 37, no. 2, pp. 185-194,

1995.

[27] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 435-445.

[28] P. K. Sen, “Estimates of the regression coefficient based on Kendall's
Tau,” Journal of the American Statistical Association, vol. 63, no. 324,

pp. 1379-1389, 1968.

[29] Nayuki, Project Nayuki. University of Toronto, 2017. Available at
https://www.nayuki.io/

[30] JodaTime. Joda.org., 2017. Available at http://www.joda.org/joda-

time/
[31] Java Editor. The Eclipse Foundation. Available at https://eclipse.org/

[32] M. R. Hoffmann, “Java Code Coverage,” 2017.

[33] PIT. (2016). Available at http://pitest.org/
[34] M. B. Doar, JDiff-An HTML Report of API Differences. LGPL.

Available at http://javadiff.sourceforge.net/

