

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 185

Issue Starvation in Software Development: A Case

Study on the Redmine Issue Tracking System

Dataset

Md Shamsur Rahim, AZM Ehtesham Chowdhury, Dip Nandi and Mashiour Rahman
Department of Computer Science, American International University-Bangladesh, Dhaka, Bangladesh.

shamsur@aiub.edu

Abstract—In computing, starvation refers to the scenario

when a process does not get required resources to complete its

work. This mainly happens due to very simple priority based

scheduling algorithms. Issues in software development require

resources too and which issue will get the required resources

depend on its priority. So the question is: Does starvation occur

in Software Development too? The authors tried to answer the

question with the help of their prepared dataset named as

“Redmine Dataset”. Redmine is one of the popular web-based

project management tool as well as an Issue Tracking Systems

which also provide role-based access control. Currently, the

Redmine ITS has more than 13000 issues and the number of

issues is increasing time to time being. The authors have

analyzed the Redmine dataset and found that starvation also

occurred for issues in Software Development. The authors

believe that this finding will steer the Software Engineering

community for conducting research on advanced prioritization

techniques which will resolve Issue starvation. Furthermore, the

authors have provided few future research directions where this

dataset can be used.

Index Terms—Dataset; Redmine; Issue Report; Issue

Starvation; Mining Software Repository.

I. INTRODUCTION

Operating systems use various prioritization techniques to

allocate the resources for processes efficiently. For poor

prioritization techniques, it has found that several low prior

processes never get the resources which is referred as process

starvation [1]. Similar to the operating system, in our real life,

sometimes people also need to wait indefinitely for required

resources to get a job done. In software development,

different development issues such as bugs, features, patches,

customer requests are being tracked and managed by Issue

Tracking Systems (ITS). These issues are resolved on priority

basis. Higher prior issues are resolved earlier and issues with

lower priority resolved later. Hence, starvation may also arise

in the software development but to the best of authors’

knowledge no evidence has been found till now to support

this statement. So, the authors make a hypothesis that issues

also suffer from starvation in software development. The

authors proposed it as Issue Starvation. To verify the

hypothesis, the authors have prepared a dataset which

contains the issues from the archive of Redmine ITS and

performs analysis to get the valuable insights from the

dataset.

The mining software repositories community is playing a

noteworthy role by sharing robust and valuable datasets and

research outcomes with the software industry. Software

practitioners use these results in order to improve their

development process. Most of the research have done till now

are mainly defect centric analysis by mining software

repositories and defect dataset [2][3][4]. But along with

software repositories, Issue Tracking Systems (ITSs) have

become an integral part of software development.

An ITS is a special software that manages and tracks list of

issues like bugs, features, patches and customer requests. The

consistent usage of ITS is considered as one of the “hallmarks

of a good software team” [5]. As a consequence, the usage of

ITS has gained significant popularity among software

development practitioners. Due to the enormous popularity,

these ITSs have become a great source of data for testing

hypotheses regarding maintenance, building prediction

models [3].

In this paper, we emphasis on all types of issues reported in

Redmine, an open source, cross-platform and cross-database

project management web application. This dataset contains

all the issues reported in Redmine ITS from its inception to

till now (almost a decade). One of the major features of

Redmine is: it provides a flexible issue tracking system. Each

issue in the system contains several metadata which allow us

to investigate the complete life cycle of a reported issue. We

believe that rather than focusing only on reported bugs, the

focus on whole lifetime of all types of issues can be more

effective for verifying the hypothesis. The main contributions

of this research are:

i. Verification of the hypothesis proposed by the authors.

ii. The accumulation of different types of reported issues

from the issue tracking system of Redmine, regarding

itself.

iii. The future research direction in the related field using

the dataset.

The following sections discussed in this paper are

structured as follows: background study and related works in

Section II, how the dataset is obtained and processed in

Section III, description of data in section IV, an overview of

data in Section V, analysis of the dataset & the proof of

concept in Section VI, future research direction and

conclusion in Section VII.

II. BACKGROUND STUDY AND RELATED WORK

In order to understand the issue starvation, it is required to

understand the life cycle of an issue first. As an issue can be

a bug or feature or patch or simply a support ticket, so it may

have its own life cycle. To provide a general idea, the authors

have discussed the life cycle of a bug in this section along

with some issue prioritization methods.

Journal of Telecommunication, Electronic and Computer Engineering

186 e-ISSN: 2289-8131 Vol. 9 No. 3-3

In software development, a defect or bug needs to go

through a life cycle to be closed or resolved. A specific life

cycle ensures the standard of the bug fixing process. The life

cycle contains several stages which are shown in Figure 1 [8].

Figure 1: Defect Life Cycle.

When a bug or defect found during the testing phase, the

tester/ reviewer first need to check if it is the same bug which

has been reported already in the system. If it is not, then the

bug is reported as a New bug in the IST. After this stage, the

status of the bug is assigned as Open and a person is assigned

to fix the bug. When the assigned person tests the bug then

the status of the bug is changed to Test. After this stage, the

fix of the bug goes through a verification stage. If it is

verified, then the status of the bug is changed to Closed and

that is the end of the bug. But if the testing of the fix fails, the

bug reopened again.

From the Figure 1, it is clearly understandable that issue

starvation may occur before any stages of the defect life cycle

due to the lack of required resources.

The priority of an issue is determined based on some

parameters like business value, cost, effort, risk, volatility [9].

Determining priority of an issue is one of the challenging

tasks to the practitioners [10]. There are many methods

proposed by researchers to prioritize an issue. Some of the

common techniques are: Analytical Hierarchy Process (AHP)

[11], 100-dollar test [12], Cost-Value Approach [13],

Planning Game [14]. Noe of the existing techniques have any

mechanisms to detect or handle issue starvation.

III. DATA COLLECTION AND PROCESSING

Every issue in Redmine has its own URL ending by issue

id. The raw-HTML documents of the issues were crawled

using the URL and processed later on. The main blocks of the

data collection and processing architecture are presented in

Figure 2.

Figure 2: Data Collection and Processing Architecture.

A. Redmine Issue URL

The issues in Redmine maintain a common URL pattern,

which can be retrieved at

http://www.redmine.org/issues/issue_id. This pattern is

similar for every type of issue. We find out the total number

of issues manually and later on used this number to extract

data using web crawler.

B. Web Crawler

We have used a web crawler for extracting the HTML

pages of Redmine. To create a crawler, we have used the open

source tool Selenium WebDriver and programmed it with C#.

It is a powerful yet lightweight tool for web automation. For

each requested page, the crawler can pass through the

Document Object Model (DOM) [6] for searching particular

elements.

C. Information Extraction

In this process, required information are extracted from the

particular elements of the DOM crawled by the web crawler.

In addition, we have used Regular Expression (RE) to find

out formatted data from the particular elements.

D. Local Storage

Initially, we have stored the extracted data into local

storage in Comma Separated Values (CSV) format. The main

idea behind choosing this format is the ease of writing and

processing CSV files.

E. Data Processing

The raw data collected in the previous step may contain

duplicate, unnecessary, error prone, inaccurate and missing

data. In order to increase the accuracy and efficiency of

analysis, these inconsistencies need to be removed. So we

have used OpenRefine [7], an open source, a powerful tool

for processing data.

F. Final Dataset

After the data processing step, the final dataset contains

13820 instances with 19 attributes. The final dataset can be

retrieved from https://github.com/shamsur-

rahim/RedmineDataset.

Issue Starvation in Software Development: A Case Study on the Redmine Issue Tracking System Dataset

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 187

IV. DESCRIPTION OF DATASET

After crawling and processing the issues from Redmine

repository, our dataset contains following attributes:

i. Issue Id. It indicates entry number of issues on

Redmine repository.

ii. Tracker. This attribute contains the type of issues like

bug, defect, feature or patch.

iii. Subject. Contains the short description about the issue

that is being reported.

iv. Status. It shows the issues’ current state. An issue

may be newly opened (new), closed and resolved. An

issue can be needed feedback.

v. Priority. When an issue has been created on Redmine

repository, it can be stated with different level of

priority like normal, high and low.

vi. Category. This attribute depicts the different

categories of issues such as documents, translations,

email notification, administration, security etc.

vii. Author. It’s necessary to identify the specific user

who creates the issue.

viii. Assignee. To whom the issue is assigned.

ix. Resolution. It depicts the issue whether it is a

duplicate of another issue or is it reproducible or not.

x. Progress. This attribute indicates the current progress

on the specific issue.

xi. Target Version. It depicts the software version for

which the issue has been placed.

xii. Affected Version. This indicates the software version

that going to be affected unless the correspondent

issue has been resolved.

xiii. Creation Date. It contains the DateTime of the issue

has been created.

xiv. First Updated Date. When the correspondent issue

has been updated for the first time.

xv. Last Update Date. When the correspondent issue has

been updated for the last time.

xvi. Due Date. The targeted date to complete the issue.

xvii. Closed Date. When the correspondent issue has been

closed.

xviii. Count of Reopening. It depicts the number of

reopening of a correspondent issue for resolution.

In regards to the format, the Redmine dataset has been

packaged in an XML file (redminedataset.xml). The schema

of the XML file has been shown in Figure 3.

Meanwhile, Figure 4 represents the fragments of the XML

file content where we can observe the different attributes for

an issue. For instance, the tracker attribute denotes the type

of the issue (defect or feature or patch), issueId represents the

unique identifier of the issue and so on.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="root">

 <xs:complexType>

 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="row">

 <xs:complexType>

 <xs:sequence>
 <xs:element name="tracker" type="xs:string" />

 <xs:element name="issueId" type="xs:unsignedShort" />

 <xs:element name="subject" type="xs:string" />
 <xs:element name="status" type="xs:string" />

 <xs:element name="priority" type="xs:string" />
 <xs:element name="catagory" type="xs:string" />

 <xs:element name="author" type="xs:string" />

 <xs:element name="created" type="xs:string" />
 <xs:element name="lastUpdated" type="xs:string" />

 <xs:element name="startDate" type="xs:string" />

 <xs:element name="dueDate" type="xs:string" />
 <xs:element name="assignee" type="xs:string" />

 <xs:element name="progress" type="xs:string" />

 <xs:element name="targetVersion" type="xs:string" />
 <xs:element name="affectedVersion" type="xs:unsignedByte"

/>

 <xs:element name="resolation" type="xs:string" />
 <xs:element name="firstUpdate" type="xs:string" />

 <xs:element name="closeDate" type="xs:string" />

 <xs:element name="reOpen" type="xs:unsignedByte" />
 </xs:sequence>

 </xs:complexType>

 </xs:element>
 </xs:sequence>

 </xs:complexType>

 </xs:element>
</xs:schema>

Figure 3: XML Schema of the Redmine Dataset.

………

<row>
 <tracker>Defect </tracker>

 <issueId>649</issueId>
 <subject>Menu translations broken</subject>

 <status>Closed</status>

 <priority>High</priority>
 <catagory>Translations</catagory>

 <author>Michael Pirogov</author>

 <created>2/13/2008</created>
 <lastUpdated>2/22/2008</lastUpdated>

 <startDate>2/13/2008</startDate>

 <dueDate></dueDate>
 <assignee>Jean-Philippe Lang</assignee>

 <progress>100%</progress>

 <targetVersion>-</targetVersion>
 <affectedVersion></affectedVersion>

 <resolation></resolation>

 <firstUpdate>2/13/2008</firstUpdate>
 <closeDate>2/15/2008</closeDate>

 <reOpen>1</reOpen>

 </row>

Figure 4: A fragment extracted from redminedataset.xml

V. OVERVIEW OF DATA

In this section, we will provide insights on our dataset. The

Redmine dataset contains exactly 13820 issues over the time

span of almost 10 years, from December, 2006 to November,

2016. The dataset contains 3 types of issues and it uses 4 types

of the tag to represent the priority of each issue. Table 1

denotes the summary of issue types and their priorities.

Table 1
Overview of the Dataset in Terms of Issue Type & Priority

 Priority

Issue

Type

Urgent High Normal Low Total

Defect 221 595 5692 313 6821
Feature 34 159 4588 241 5022

Patch 12 26 1886 53 1977

Total 267 780 12166 607 13820

Table 1 indicates that among all types of issues, detect type

issues hold the major share followed by feature and patch. On

the other hand, the number of issues with priority Normal is

the highest with value 12166.

Figure 5 illustrates the count of issues by their status where

there are 9717 issues hold Closed staus and 3766 issues hold

New status. The closed issues can be a good source for

Journal of Telecommunication, Electronic and Computer Engineering

188 e-ISSN: 2289-8131 Vol. 9 No. 3-3

predicting the required time or possibility of reopening for the

new issues and predicting the priority of upcoming issues.

Figure 5: Count of Issues by Status

VI. DATA ANALYSIS AND PROOF OF CONCEPT

A statistical analysis has been performed on the prepared

dataset. We have filtered the issues having the status of new.

We have found that 27.25% (3766 issues out of 13820) issues

are still unresolved. Next we calculated the age of each

unresolved issue using the following equation:

∀ 𝐢 ∈ ℕ: 𝐴𝑖 = 𝐶𝑖 − 𝑥; (1)

where 𝐀𝐢 is the age of issue i, 𝐂𝐢 is the creation date of the

issue i and x is the present date.

Figure 6 shows that 1247 issues are unresolved, aged about

5 to 10 years old. Meanwhile, Figure 7 shows the priority

status of unresolved issues, aged of 6 to 10 years. Among the

unresolved issues, about 1150 issues are with normal and

high priority.

Figure 6: Count of Issues that are unresolved aged of 5 to 10 years

Figure 7: Count of unresolved issues aged 6 to 10 years with priority.

The analysis clearly depicts that due to the existing

prioritization techniques, many of the issues are not getting

required resources for its completion. This supports the

hypothesis regarding issue starvation. As a consequence, we

can state that, the issues are also suffering from starvation in

software development.

VII. FUTURE RESEARCH DIRECTION AND CONCLUSION

Issue response time plays a vital role in software

development. We have proved our hypothesis that issues are

getting starved due to the lack of advance prioritization

techniques. We believe that the finding from this research

will result in new prioritization techniques which will

overcome Issue Starvation.

We have used the Redmine dataset to analyze issue

response time and find out that some issues are facing

starvation. We believe that, the usage of Redmine dataset will

not be limited to this far. Our dataset can be adopted to:

i. Develop new issue prioritization techniques to

improve productivity.

ii. Develop predictive models to analyze the possibility

of an issue to be reopened.

iii. Test different hypotheses regarding software

developments and maintenance.

iv. Develop models for predicting the priority of issues.

Data gathered from Issue Tracking System (ITS) is

essential to perform further research on software engineering.

In Redmine ITS repository, we have found several important

data fields that can be a vital measure to analyze and

understand the pattern of a solution for issues.

REFERENCES

[1] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System

Principles. John Wiley & Sons, 2006.

[2] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, and R.
Tonelli, “The JIRA repository dataset: Understanding social aspects of
software development,” in Proceedings of the 11th International
Conference on Predictive Models and Data Analytics in Software
Engineering, 2015, pp. 1-4.

[3] A. Lamkanfi, J. Pérez, and S. Demeyer, “The eclipse and mozilla defect
tracking dataset: a genuine dataset for mining bug information,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, 2013, pp. 203-206.

9717

46 168

3766

79 44
0

2000

4000

6000

8000

10000

12000

C
lo

se
d

C
o

n
fi

rm
e

d

N
e

ed
s

fe
e

d
b

ac
k

N
e

w

R
eo

p
en

e
d

R
es

o
lv

ed

Issue Starvation in Software Development: A Case Study on the Redmine Issue Tracking System Dataset

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 189

[4] D. Spinellis, “A repository with 44 years of unix evolution,”
in Proceedings of the 12th Working Conference on Mining Software
Repositories, 2015, pp. 462-465.

[5] J. Spolsky, “Painless Bug Tracking,” in Rock Star Developer News,
2000. Available at https://www.joelonsoftware.com/2000/11/08/
painless-bug-tracking/

[6] J. Marini, Document Object Model. McGraw-Hill, Inc., 2002.

[7] R. Verborgh, and M. De Wilde, Using OpenRefine. Packt Publishing
Ltd., 2013.

[8] B. S. Ainapure, Software Testing and Quality Assurance. Technical
Publications, 2009.

[9] P. Berander, and A. Andrews, “Requirements prioritization,” in
Engineering and Managing Software Requirements, A. Aurum, and C.
Wohlin, Eds. Springer, 2005, 69-94.

[10] M. Rahim, M. Hasan, A. E. Chowdhury, and S. Das, “Software
engineering practices and challenges in Bangladesh: A preliminary
survey,” Journal Telecommunication, Electronic and Computer,
submitted for publication.

[11] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm, “An
industrial case study on distributed prioritisation in market-driven
requirements engineering for packaged software,” Requirements
Engineering, vol. 6, no. 1, pp. 51-62, 2001.

[12] D. Leffingwell, and D. Widrig. Managing Software Requirements: A
Unified Approach. Addison-Wesley Profesional, 2000.

[13] J. Karlsson, and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, no. 5, pp. 67-74, 1997.

[14] K. Beck, Extreme Programming Explained: Embrace Change.
Addison-Wesley Profesional, 2000.

