

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 153

Agent-Oriented Methodology for Designing 3D

Animated Characters

Gary Loh Chee Wyai1, Cheah WaiShiang2 and Nurfauza Jali2

1School of Computing, University College of Technology Sarawak, Sarawak, Malaysia.
2Faculty of Computer Science & Information Technology,

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

gary@ucts.edu.my

Abstract—Agent Oriented Methodology (AOM) has been used

as an alternative tool to modelling the production of 3D

animated characters. Besides allowing strong engagement

between production team members, the agent models also drive

effective communication among them. This paper explores the

adoption of AOM to model the cognitive capability of 3D

animated characters. We extend and demonstrate how AOM

can be used to model a BDI (Belief/Desire/Intention) cognitive

architecture for 3D animated characters in a fire fighting and

evacuation scenario. The contribution of this work is that it

turns the AOM into a detailed design tool for a 3D production

team. Although the AOM can serve as an engagement tool

among various stakeholders, we further showcase the use of

AOM as a tool for production design and development.

Index Terms—Agent-Oriented Software Engineering; BDI;

Cognitive Architecture; Cognitive Modelling; Methodology.

I. INTRODUCTION

Agent oriented software engineering (AOSE), or also known

as Agent Oriented Methodology (AOM), is a software

development practice that autonomously reduces the

complexity of software development for dynamic systems

[4]. It is especially useful for cooperative software that

largely contains interactions [2] or software in an open and

dynamic organizational environment [3]. For example, an

electronic auction system requires software components to

interact with each other in order to perform tasks. This can

include making a decision task on behalf of users, negotiating

a deal, deriving bidding strategies, immediately and

proactively reacting to user requests, and identifying

opportunities with or without human intervention.

Complex interactions that emulate human communications

require reasoning capabilities that necessitates tools for

decomposition, abstraction and organization. Conventional

methodologies fail to support such practice since there is a

gap in conceptual representation [3]. Hence, AOM are

ushered in to bridge this gap [3]. According to [1], around 100

AOMs have been introduced. Some of the methodologies

lack generality where they only focus on specific systems and

agent architectures [5]. In addition, some of the

methodologies have insufficient detail to have practical value

[6].

AOM was initially introduced by Sterling and Taveter [5],

at Melbourne University. It has been further extended to

support rapid prototyping of socio-technical systems [5],

information finding [26], e-commerce [7], sustainable

software [9], video surveillance [13], environmental

study[14] and collaborative games [8]. It can also be adopted

as a “standard” agent methodology for industry [10] or novice

developers who are engineering a complex system. AOM

introduces a unified way to engineer a socio-technical system

from analysis, design to implementation. Since current agent

methodologies focus too much on specific domains, this

unification is able to bridge the gaps among these

methodologies.

When designing and implementing a socio-technical

system, modelling activities are treated in series of stages.

The modelling process consists of conceptual domain

modelling, platform independent design and platform specific

design. More specifically, the modelling process involves

modelling the goals, roles, interactions and domain

knowledge. This is followed by deciding on agent types,

knowledge of agents, interactions between agents and agent

behaviors. In addition, each model can be transformed into

another model.

AOM has been explored as an alternative tool in the 3D

animation character production industry [11] where the agent

models are used to engage the production team. This paper

continues the exploration of the adoption of AOM in this

domain to model the cognitive capability of 3D animated

characters. We extend and demonstrate how AOM can be

used to model a BDI (Belief/Desire/Intention) cognitive

architecture for the 3D characters in a fire fighting and

evacuation scenario. The contribution of this work is to turn

the AOM into a detailed design tool for the production team.

Although the AOM can serve as an engagement tool among

various stakeholders, we will attempt to showcase the usage

of AOM as a tool for production design and development.

This is important in order to align current production design

and development practices with AOM.

This paper is organized as follows. Section II presents a

review on cognitive modelling of 3D animation characters.

The case study is elaborated in Section III, where the two

scenarios of firefighting and evacuation is presented. Section

IV outlines the combination details of the AOM and

Prometheus agent-oriented software engineering

methodologies for designing virtual characters with BDI

architecture. The proposed methodologies combination

covers the understanding of the problem domain for which

the virtual characters are to be designed by conceptual

domain modelling. Section V discusses on designing the BDI

architecture for characters of the given problem domain by

platform-independent design. Section VI addresses the

implementation of the agent models created in Section IV in

an object-oriented agent programming language (OOAPL).

Finally, the conclusions and perspectives for future work are

presented in Section VII.

Journal of Telecommunication, Electronic and Computer Engineering

154 e-ISSN: 2289-8131 Vol. 9 No. 3-3

II. RELATED WORKS

AOM was validated in the production process of 3D

animated characters, where 12 undergraduate students from

Swinburne University were selected as subjects [11]. The

agent models were used to model the production process as a

guide in the animation process. For example, an animator will

animate a character with the goal of producing high quality

and believability; a goal of creative activities and rigid

activities. AOM allows the animator to evaluate his/her

activities in a live production environment. In this case, the

animators can simplify the communication and the

expectations within the animation process. The agent models

are able to engage and promote communication among

production team members.

Based on the success study in [11], this paper presents the

modelling of cognitive architecture for virtual character using

agent models. BDI cognitive architectures have been used to

model and control believable software agents [4]. From the

reviews, most of the works are focused on integrating agent

programming platform into games engines. For examples,

work has been done to integrate BDI programming platforms

like AgentSpeak, GOAL [19], Jason [21], 2APL [16], JACK,

Jadex [20] into games engines like Open Wanderland [15],

Unity [16] [18], Unreal engine [20].

Based on the mentioned works, there is neither a

methodology nor a systematic process to model the detailed

cognitive architecture of agents in serious games. As a result,

it is hard to model, design and develop a cognitive agent

among novice developers. Also, it is hard to transfer the same

cognitive design to other similar projects. Hence, there is a

need for a systematic process to model the cognitive agents

in games.

A systematic methodology was introduced in [22] for

cognitive modelling based on the natural complexity and

variability of ordinary human behavior. This methodology

provides (i) the notations to formulate the properties of

cognitive mechanisms, and (ii) a way of executing or

animating the theory of cognition to explicitly support the

implementation details. In addition, it promotes a sharing of

the same terminologies, annotations, models and

development processes as stated in [23].

To fill the gap in designing autonomous and believable

cognitive agents for 3D virtual worlds, AOM will be explored

in this work to model a cognitive architecture for cognitive

agents. The BDI cognitive architecture is adopted as it able to

mimic human behavior and simple to implement.

III. MOTIVATIONAL CASE STUDY

In this section, a motivational case study on cognitive

agents participating in a scenario of firefighting and

evacuation is presented. The scenario is used in Section 4 to

validate the combined methodology for designing the multi-

agent BDI cognitive architectures. The scenario is describe as

following: VirtualAgent1 is in the building and

VirtualAgent2 is in the open space. VirtualAgent1 has no fire

extinguishing experience, while VirtualAgent2 is well trained

to extinguish small fires. A fire suddenly burst out in the open

space. VirtualAgent1, who is located in the enclosed space is

unaware of the fire and continues with its work.

VirtualAgent2, being located in the open space, will take

action. Its first action is to find a fire extinguisher. Then, he

will take the extinguisher, locate the fire, move towards the

fire, and extinguish the fire.

In the following section, we present how to model the

cognitive agent through AOM.

IV. METHODOLOGY FOR DESIGNING COGNITIVE AGENTS

AOM is a comprehensive agent methodology that is

developed through a viewpoint framework [5]. The viewpoint

framework is a conceptual framework that has been

introduced by Sterling and Taveter [5]. The framework

introduces levels and aspects that are required to focus on

when people are involved in engineering open distributed

systems. The viewpoint framework is designed with a

reduced number of aspects, as compared to the Zachman

framework [5], to allow people to grasp the aspects more

easily. In addition, the viewpoint framework is compliant

with a model-driven architecture (MDA).

When designing and implementing a socio-technical

system, a sequence of modelling activities is involved as

shown in Figure 1. Briefly, the modelling process of AOM

covers the abstraction layers of (i) conceptual domain

modelling, (ii) platform-independent design, and (iii)

platform-specific design and implementation. The conceptual

domain modelling layer constitutes the system’s high-level

motivation layer. It describes the level that allows non-

technical stakeholders of any given problem domain to elicit,

represent, understand, and discuss the requirements for the

designed system. The highest layer is not dedicated to any

technology to be used for designing the system. The platform-

independent design layer corresponds to the designer view of

the system in which the design of the system is decided and

represented. However, the design descriptions presented at

this layer are not related to any particular implementation

platform or language. The design layer instead, provides a

description that can be converted into a particular

implementation at the next layer – the platform-specific

design and implementation layer. The design description at

this layer allows the system to be deployed and executed in a

particular environment of a specific platform, hardware

configuration, technology, and architecture.

Figure 1: Extension of the AOM methodology by Prometheus for cognitive

agents

Agent-Oriented Methodology for Designing 3D Animated Characters

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 155

From the Figure 1, it shows an extension of the stage VIII

with the Prometheus models. The extension is needed to cater

for concrete design of the multi-BDI cognitive architecture as

described in the previous section. Due to the fact that AOM

does not covers the BDI architecture, the integration of AOM

with Prometheus [9] is needed in this research. As

Prometheus is a methodology and modelling technique for

systems of BDI agents, it is worth to adopt it in this research.

Just like the work in [12], we claim that the AOM is able to

support an effective requirement elicitation and analysis of

cognitive processing and the Prometheus is able to support an

effective initial cognitive design. Hence, a comprehensive

methodology is introduced for cognitive agents.

In the cognitive processing modelling, we first model the

details of the firefighting scenario. Thereafter, we represent

the cognitive processing overview model and cognitive

memory-message agent model for the scenario. Finally, the

cognitive internal interaction model and cognitive knowledge

model are formed to model the details of the cognitive

configuration in relation to the given scenario. Cognitive

processing modelling is an iterative process until the design

goals are satisfied. The details of the models created during

the course of the cognitive processing modelling are as

follows:

A. Cognitive processing overview model (COP-model)

The Prometheus system overview model is adopted for this

purpose to present an overview of the multi-agent BDI

cognitive architecture. The model represents the agent types,

interaction protocols, perceptions and actions involved in the

cognitive processing;

B. Cognitive memory-message agent model (CMM-

model)

The Prometheus agent overview model is adopted to

present the overall message flow and the memory utilization

strategy for the given agent during cognitive processing;

C. Cognitive agent communication model (CAC-model)

The AOM interaction diagram is adopted to present the

interactions between the agents involved in the cognitive

processing; and

D. Cognitive agent knowledge model (CAK-model):

The AOM behavior model is adopted to present the agent’s

beliefs and intentions during the cognitive processing.

A methodology for modelling and designing cognitive

agent in 3D virtual worlds has been presented in this section.

In order to validate and elaborate on the methodology, a

walkthrough example of the motivational case study is

described in the following section.

V. DESIGNING THE COGNITIVE AGENTS IN THE FIRE

EXTINGUISHING SCENARIO

According to the methodology proposed in Section IV,

modelling activities begin with conceptual domain

modelling. Here, the problem domain is analyzed and

requirements are elicited and represented in order to design

the system. One of the main model types created at the stage

of conceptual domain modelling is the goal model.

Figure 2 presents an overall goal model for the fire

extinguisher. The goal model contains the following

components: the goal, sub-goals, quality goals and roles. A

goal signifies the functional requirement of the system, which

can be decomposed into sub-goals. Quality goals are non-

functional requirements and they set a specific standard to be

achieved to improve the quality of the goal such as to ensure

customer’s satisfaction. Roles describe the capacity or the

position to achieve the goal and quality goals. The main goal

of the fire extinguisher is to 'handle fire'. The goal is achieved

by two people, named, 'trainedEmployee' and

'untrainedEmployee'. There are two sub-goals to support the

main goal. The sub-goals are 'put down the fire' and 'cry for

help'. The trainedAgent is dependent on the untrainedAgent2

as shown in the organization model in Figure 3.

Untrained employee Trained employee

Handle fire

Cry for helpPut down the fire

Figure 2: The overall goal model for the scenario of fire extinguishing

Figure 3: Organization model for the scenario of fire extinguishing

The domain model of the fire extinguishing scenario is

shown in Figure 4. The domain model of AOM captures the

knowledge to be represented within the designed system.

Modelling domain knowledge involves identifying the

domain entities and relationships between them. As

illustrated in Figure 4, fourteen (14) domain entities have

been modelled for the fire extinguishing scenario. Agents

playing the role of Employee are situated in a building. The

“Building layout” consists of “Physical objects” of types

“Wall”, “Fire”, “Door”, “Furniture”, “Fire extinguisher”, and

“Window”. All the physical objects are situated in the

building and are modelled as contained by the “Memory”

domain entity. Agents playing the roles of Trained Employee

and Untrained Employee perform actions on the physical

objects and perceive events associated with physical objects.

Journal of Telecommunication, Electronic and Computer Engineering

156 e-ISSN: 2289-8131 Vol. 9 No. 3-3

Figure 4: Domain model for the scenario of fire extinguishing

We present the higher-level model of fire extinguisher

scenario through goal modelling, domain modelling. In the

following section, we present the platform-independent

design of the fire extinguisher scenario. As is shown in Figure

1, one of the central model types in platform-independent

design are AOM scenario models. AOM Scenario models

represent, for each scenario, the goal from the relevant goal

model, the initiating agent, the triggering event, and the

scenario description consisting of numbered steps of the

scenario. Each step models one activity along with the

condition for it to be performed, the role involved and agent

type and the physical objects involved. Table 1 represents the

high-level scenario for achieving the goal “Put out the fire”.

According to Table 1, the activity “Act on fire” is elaborated

by another scenario – Scenario 2, which is represented as

Table 2. The scenario modelled in Table 2 represents the

cognitive processing within the multi-agent BDI cognitive

architecture for the virtual character represented in Figure 1.

Table 1

The scenario for achieving the goal “Put down the fire”

Scenario 1

Goal Put out the fire
Initiator TrainedEmployeeAgent

Trigger Perceived event associated with the Fire object

Description

Condition Step Activity
Role / Agent
type

Physical
objects

 1
Act on fire
(Scenario 1)

Trained

Employee /

Virtual Agent

Fire

extinguisher

Fire

Based on the scenario models of AOM, the next step is

designing the cognitive capabilities of the involved agents by

using models put forward by the Prometheus methodology.

Figure 5 presents a cognitive processing overview model for

the cognitive agents. This figure is modelled as a system

overview diagram of Prometheus. The diagram represents the

two agents involved in the fire extinguishing scenario.

Different agents interact by means of the following protocols:

“act on fire protocol”, “cry for help protocol”, “evacuation

protocol”. The “act on fire protocol” consists of simple rules

that “notify” the other virtual agents about the effort to put

out the fire. The “cry for help protocol” consists of rules to

coordinate the fire extinguishing process among the virtual

agents. Finally, the “evacuation protocol” consists of rules to

coordinate the evacuation process among the virtual agents.

Both agents receive incoming perceptions of time, events,

physical objects, and incoming communication and actions

by other agents, from the environment. Actions are executed

by sending the “execute action” commands to the body of the

virtual agent.

Table 2
The elaborated scenario for achieving the goal “Put down the fire” by a

virtual character

Scenario 1

Goal Act on fire

Initiator TrainedEmployeeAgent

Trigger Perceived event associated with the Fire object

Description

Cond. Step Activity

Agent

types

and roles
involved

Physical objects

 1 Cognition configuration

 1.1
Subscribe to the
Fire object

Virtual
agent

Fire

 1.2
Set attentions/state

to idle mode

 1.3
Subscribe to

domain objects
 Building layout

 1.4
Subscribe to
domain objects

 Building layout

 1.5
Subscribe to body

locality
 Locality

 2 Cognition to act on fire

 2.1 Notify fire
Fire

 2.2
Update

attention/state

 2.3
adoptGoal(act on
fire)

 2.4
Deliberation and

execute plan

 2.4.1
Locate fire

extinguisher

Fire

Fire extinguisher

 2.4.2
Execute traversing
plan

 Building layout

Loop 2.4.3
Wait for action

status

 2.4.4
Grasp the fire

extinguisher
 Fire extinguisher

 2.4.5 Locate fire
Fire
Fire extinguisher

 2.4.6
Execute traversing

plan
 Fire extinguisher

Loop 2.4.7
Wait for action

status

Fire

Fire extinguisher

 2.4.8 Put out the fire
Fire
Fire extinguisher

 2.5
Update

attention/state

Figure 5: System overview diagram for a cognitive agent

Figure 6 represents a Prometheus agent overview diagram

for the trained agent. This diagram shows the model for the

Agent-Oriented Methodology for Designing 3D Animated Characters

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 157

capabilities of an agent, the triggers of the capabilities and the

execution of the capabilities. The trained agent has the

following six capabilities: “ask for help”, “offer for help”,

“update agent state”, “act on fire”, “grasp things”, and “use

things”. Each capability modelled in Figure 7 receives inputs

as messages or from the agent memory. The same model also

represents strategies that support certain complex

capabilities. For example, the “ask for help strategy” supports

the “ask for help” capability, and the “explore strategy” and

“traversing strategy” support the “act on fire” capability and

finally the “offer help strategy” and “traversing strategy”

support the “offer help” capability. Meanwhile, strategies

also generate messages that request the execution of certain

actions. In addition, a strategy may lead to another strategy or

capability. For example, the “explore strategy” leads to the

“traversing strategy” as well as to the “grasp things” and “use

things” capabilities.

Figure 6: Agent overview diagram for the trained agent

In the first scenario, both agents do not communicate with

each other. Figure 7 presents the interaction protocol for the

second scenario. In this case, the untrained agent is “crying

for help” by sending a communication message to the trained

agent. The trained agent receives the message and responds

with “agree to offer help”.

Figure 7: Interaction protocol for the second scenario

Figure 8 presents an overview of a behavior model for the

trained agent. It models a deliberation of an agent towards the

entire goal. It models the agent’s belief within a certain

context, and the agent’s intention to achieve its desire. Also,

it models belief update, intention reconsideration (e.g. Rule)

and intention execution.

Figure 8: Behavior model for trained agent

A behavior model indicates what individual agents of a

particular type do [10]. It enables both the modelling of

proactive and reactive behaviors. An agent achieves a goal

through performing activities, strategies or a plan. A rule is

the basic behavior modelling construct. A rule is triggered

due to an activity start event, conditions that have been

fulfilled, or an action event caused by external agents. The

execution of a particular activity is modelled by triggering a

rule to update the agent’s mental state and/or send the

message or perform an action of another type by an individual

agent.

In Figure 8, the Trained Agent starts to deliberate during

receiving of perception of fire object. The BDI interpreter

updates the agent attention and creates a fire object in the

agent belief. Hence, the Fire object and fire attention will

trigger the deliberation of exploring strategy and plan. The

exploring strategy consists of a sequential plan performing

strategy initialization, triggering the traverse strategy or

performing grasp action and finally performing the use on

action. Meanwhile, the execution of the explore strategy leads

to belief update.

VI. IMPLEMENTATION OF THE FIRE EXTINGUISHING

SCENARIO

The previous section explained the platform-independent

models for the scenario of fire extinguishing. In this section,

we focus on the platform-specific design and implementation

of the scenario in the object-oriented agent programming

language (OOAPL) [25], based on the platform-independent

models. OOAPL is a Java-based language that allows flexible

control and scalability of the agent deliberation lifecycle for

programming BDI agents. In brief, the agent deliberation

lifecycle in OOAPL is parallel, concurrent and distributed.

This guarantees a balance between slow and fast deliberation

processes. The readers can be referred to [25] for a better

understanding of OOAPL.

While the mind of a virtual character is implemented as an

OOAPL agent, the body of the agent is implemented by the

CIGA middleware. The CIGA middleware [16] supports the

development of non-player characters in virtual worlds.

Figure 9 shows two screenshots of “putting out the fire” by

the virtual characters. During the simulation, the

Journal of Telecommunication, Electronic and Computer Engineering

158 e-ISSN: 2289-8131 Vol. 9 No. 3-3

virtualAgent1 is situated at an open space and the

virtualAgent2 is situated in a room. The virtualAgent1 has

fire extinguishing knowledge whereas the virtualAgent2 does

not know how to put out the fire. Once a fire occurs in the

room, the virtualAgent2 will cry for help. Then, the

virtualAgent1 find the scream reactively. This is followed by

asking the location of the virtualAgent2 by the virtualAgent1.

Then, the virtualAgent1 locates the fire extinguisher, moves

to the fire extinguisher, grasps the fire extinguisher, moves

towards the location of the virtualAgent2, locates the fire and

uses the fire extinguisher to extinguish the fire.

Figure 9: Virtual agents dealing with the fire

VII. CONCLUSION

Cognitive processing within a believable virtual character

is complex. This complexity can be tamed by using multi-

agent technology in building such virtual characters, which

results in the Agent Oriented Methodology. This paper

presents the combination of the AOM and Prometheus

methodologies for modelling the cognitive capabilities of

agents in 3D virtual worlds. An extension of AOM by

Prometheus is required because AOM does not support the

design of BDI agents. Through this combined methodology,

cognition by a software agent for a virtual character is

modelled at the abstraction layers of conceptual domain

modelling, platform-independent design, and platform-

specific design and implementation. In summary, the

proposed combined methodology supports conceptualization

of cognitive agents, which is closer to the concerns of the

problem domain at hand and is easier to understand and

validate. It also improves the efficiency and quality of the

cognitive agent development process. Furthermore, the

proposed methodology reduces the complexity of developing

cognitive agents. In the future, more empirical studies are

required to further justify the benefits of the combination of

AOM and Prometheus in designing cognitive agents for

virtual characters.

REFERENCES

[1] P. Koutsabasis, and J. Darzentas, “Methodologies for agent systems

development: Underlying assumptions and implications for design,” AI

& Society, vol. 23, no. 3, pp. 379-407, 2007.

[2] C. Bernon, M. Cossentino, and J. Pavón, “Agent-oriented software
engineering,” The Knowledge Engineering Review, vol. 20, no. 2, pp.

99-116, 2005.

[3] L. M. Cysneiros, V. Werneck, J. Amaral, and E. Yu, “Agent/goal
orientation versus object orientation for requirements engineering: A

practical evaluation using an exemplar,” in Proc. of VIII Workshop in

Requirements Engineering, 2005, pp. 123-134.
[4] V. Silva, A. Garcia, A. Brandão, C. Chavez, C. Lucena, and P. Alencar,

“Taming agents and objects in software engineering,” in SELMAS

2002: Software Engineering for Large-Scale Multi-Agent Systems,
2003, pp. 1-26.

[5] K. Taveter, and L. Sterling, The Art of Agent-Oriented Modelling. MIT
Press, 2009.

[6] A. Sturm, and O. Shehory, “Agent-oriented software engineering:

Revisiting the state of the art,” in Agent-Oriented Software
Engineering, O. Shehory and A. Sturm, Eds. Berlin, Heidelberg:

Springer, 2014, pp. 13-26.

[7] C. WaiShiang, A. B. Masli, and E. Mit, “Sustainability modelling of e-
Commerce for rural community: A case from Long Lamai e-Commerce

initiative,” in Proc. of IEEE International Conference on Informatics

and Creative Multimedia (ICICM), 2013, pp. 282-287.
[8] C. W. Loh, C. WaiShiang, A. K. Chowdhury, and C. Gulden,

“Engineering sustainable software: A case study from offline computer

support collaborative annotation system,” in Proc. of 9th IEEE
Malaysian Software Engineering Conference (MySEC), 2015, pp. 272-

277.

[9] C. WaiShiang, E. Mit, and A. A. Halin, “Shared single display
application: An interactive patterns approach,” Journal of Software

Engineering and Its Applications, vol. 9, no. 2, pp. 233-250, 2015.

[10] T. Miller, B. Lu, L. Sterling, G. Beydoun, and K. Taveter,
“Requirements elicitation and specification using the agent paradigm:

The case study of an aircraft turnaround simulator,” IEEE Transactions

on Software Engineering, vol. 40, no. 10, pp. 1007-1024, 2014.
[11] S. Murdoch, “Agent-oriented modelling in the production of 3D

character animation,” Studies in Australasian Cinema, vol. 10, no. 1,

pp. 35-52, 2016.
[12] A. A. Letichevsky, “Theory of interaction, insertion modeling, and

cognitive architectures,” Biologically Inspired Cognitive Architectures,
vol. 8, pp. 19-32, 2014.

[13] C. WaiShiang, O. B. Tien, T. F. Swee, M. A. Khairuddin, and M.

Mahunnah, “Developing agent-oriented video surveillance system
through agent-oriented methodology (AOM),” Journal of Computing

and Information Technology, vol. 24, no. 4, pp. 349-368, 2016.

[14] J. V. Berna-Martinez, and F. Marcia-Perez, “Robotic control systems
based on bioinspired multi-agent systems,” International Journal of

Advanced Engineering Sciences and Technologies, vol. 8, no. 1, pp. 32-

38, 2011.
[15] C. WaiShiang, S. YeeWai, S. Nizam, and C. W. Loh, “Agent oriented

requirement engineering for lake mathematical modelling: Preliminary

study,” Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 8, no. 2, pp. 5-10, 2016.

[16] O. Van, W. Joost, and D. Frank, “Goal-based communication using

BDI agents as virtual humans in training: an ontology driven dialogue
system,” in Proc. of Agents for games and simulations II, 2011, pp. 38-

52.

[17] Y. Luo, L. Sterling, and T. Kuldar, “Modelling a smart music player
with a hybrid agent-oriented methodology,” in Proc. of 15th

Requirements Engineering Conference, 2007, pp. 281-286.

[18] P. R. Smart, T. Scutt, K. Sycara, and N. R. Shadbolt, “Integrating ACT-
R cognitive models with the Unity game engine,” in Integrating

Cognitive Architectures into Virtual Character Design, IGI Global,

2014.
[19] K. V. Hindriks, V. R. Birna, B. Tristan, K. Rien, K. Nick, P. Wouter,

and D. R. Lennard, “Unreal goal bots,” in Proc. of Agents for games

and simulations II, Berlin Heidelberg: Springer, 2011, pp. 1-18.

[20] S. Korecko, S. Branislav and C. Pavol, “Emotional agents as non-

playable characters in games: Experience with Jadex and JBdiEmo,” in

Proc. of IEEE 15th International Symposium Computational
Intelligence and Informatics (CINTI), 2014, pp. 471-476.

[21] C. Sioutis, I. Nikhil, and C. J. Lakhmi, “A framework for interfacing

BDI agents to a real-time simulated environment,” in Design and
application of hybrid intelligent systems, 2003, pp. 743-748.

[22] R. Cooper, F. John, and S. Tim, “A systematic methodology for

cognitive modelling,” Artificial Intelligence, vol. 85, no. 1-2, pp. 3-44,
1996.

[23] J. M. Gascueña, and F. Antonio, “Agent-based modeling of a mobile

robot to detect and follow humans,” in Proc. of KES International
Symposium on Agent and Multi-Agent Systems: Technologies and

Applications, Berlin Heidelberg: Springer, 2009, pp. 80-89.

[24] L. Padgham, and W. Michael, “Prometheus: A methodology for
developing intelligent agents,” in Proc. of International Workshop on

Agent-Oriented Software Engineering, Berlin Heidelberg: Springer,

2002, pp. 174-185.
[25] M. Dastani, and T. Bas, “From multi-agent programming to object

oriented design patterns,” in Proc. of International Workshop on

Engineering Multi-Agent Systems, 2014, pp. 204-226.
[26] C. WaiShiang, L. Sterling, and K. Taverter, “Task knowledge patterns

reuse in multi-agent system development,” in Proc. of 13th
International Conference on Principles and Practice of Multi-Agent

Systems, Kolkata, India. 2010, pp. 459-474.

