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Abstract—As to date, various software being produced to help 

in our daily routines. At times, there are complaints on errors or 

faults lodged by users over the internet. This information can be 

valuable for software development teams to enhance the 

software functionalities in the next releases. Not only that, these 

comments contain important software features that can be 

extracted and reuse for future development of similar software 

systems. Reviews provided by various user from unknown 

background is an example of open call involvement in 

crowdsource software engineering. In this paper, sample 

software reviews available in the internet were collected. In the 

experiment conducted, twenty-five groups of random 

software reviews within the domain of children online 

learning software were selected as input to crowdsource 

requirements engineering. T h e  extracted reviews were then 

clustered into related groups by using K-Means algorithm. 

The clustering results achieved by K-Means were evaluated in 

terms of cluster compactness and cohesion. A statistically 

significant result with time efficiency obtained and reported 

at the end of this paper. Based on this information, this paper 

provides some recommendations on how user reviews can be 

used as input to the crowdsource requirements engineering 

either for improving existing software or for production of a new 

similar systems. 

 

Index Terms—Crowdsource Software Development; Feature 

Extraction; Requirements Engineering; Similar Systems 

Development. 

 

I. INTRODUCTION 

 

It is a norm for users to leave comments after they have 

experienced certain software, especially when they are 

unsatisfied with it. For example, users downloaded an online 

hotel booking apps. After encountering some difficulties in 

certain function, frustrated users may leave some comments 

about the problems, with the hope somebody from the 

developer’s side will come and fix it. Developers have taken 

user comments to come up with a similar software for a better 

version: the same development team fixed the problems and 

published a newer improved version, or a different 

development team (business competitor) uses the comments 

to come out with a similar software. with an enhanced 

version. Here, the feedbacks on software functionalities are 

contributed by users in open call format; the concept of 

crowdsourced software engineering.  

Crowdsource software engineering emphasizes any 

software engineering activity, involving any act of 

undertaking any external software engineering tasks by an 

undefined, potentially large group of online workers in open 

call format [1]. Meanwhile, the use of user review as a source 

for gathering software requirements received attention from 

software engineering community and this can be seen in  [2]. 

As an example, a detailed systematic review on mining user 

reviews from mobile applications was published in [3]. The 

review mechanism provided for software and mobile apps 

resembles a communication channel that bridge the gap 

between users and developers[1], at the same time supporting 

the crowdsource software development.  

The act of open user involvement in terms of providing 

feedback for improvement may benefit the development team 

and other users in future. However, when massive comments 

are received, developers will face hard times in digesting 

information from reviews if done manually. In order to 

extract related software functionalities, there is a need for a 

simple automated process to classify the user comments. For 

example, positive comments from users can be a channel to 

boost team motivation, while negative comments must be 

taken seriously for future improvements. This research is 

interested to extract open comments related to software 

features and highlight this to the development team. 

This paper firstly describes related works in the area of 

crowdsource software development and requirements 

extraction from user reviews. In Section III, the proposal for 

a crowdsource requirements engineering process is presented. 

Then, the results from an initial experiment on crowdsource 

requirements engineering is discussed in Section IV, and 

lastly this paper is concluded by highlighting thread to 

validity and the future plans for this research. 

 

II. RELATED WORK 

 

In order to describe the characteristics of crowdsource 

based software development, let us first take a closer look at 

the traditional requirements elicitation process. In practice, 

requirements elicitation is a process of gathering the 

requirements of a system from users, customers and 

stakeholders. Requirements elicitation usually involves 

development teams going back and forth discussing with 

stakeholders until requirements are mutually agreed. There, 

stakeholders and development team discussed in closed and 
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formal meetings. The input to software development, the 

software functionalities must be agreed upon by all 

stakeholders, and this information remain secrecy until the 

first version of the software product is released. This is 

different from crowdsource software development where 

requirements or input to the development of similar system or 

new releases are based on crowd’s opinion in an open call. 

The term crowdsourcing was firstly coined in [5], and 

crowdsourcing is explicitly defined as any acts a company or 

institution taking a function once performed by employees, 

and outsourcing it to an undefined (and generally large) 

network in the form of an open call. Open call here means 

anybody interested may contribute to the development, and 

this is made possible with the existence of internet. In this 

section, we divide our review into two distinct areas: related 

works on crowdsource software development and related 

works on requirements extractions from user reviews. From 

this point on, we will refer the crowdsource software 

engineering as Crowd SE. 

Within software engineering community, [1] surveyed 210 

unique publications on Crowd SE practices. Selected 

publications ranged from 2008 – 2015. They have 

summarized the following items: Crowd SE practice in terms 

of platforms and case studies available, Crowd SE 

Applications in terms of published researched in the area of 

Crowdsourcing Requirements Analysis, Software Design, 

Coding, Testing and Verification, Evolution and 

Maintenance and crowdsource for other software engineering 

activities. Some benefits of Crowd SE from case studies been 

discussed in [6] and [7]. Stol and Fitgerald reported a case 

study on implementation of Crowd SE in a multi-national 

corporation, TechPlatform Inc. (known as TPI), a global 

player that offers services and solution in the cloud [7]. TPI 

outsourced its software development through TopCoder, the 

largest software development crowdsourcing platform with 

more than 600,000 developers who codes software for clients. 

Through TopCoders, softwares are produced based on 

competition held online. Developers compete for prizes to 

produce best softwares. Winning software will be licensed for 

profit by TopCoder. Hitherto, important organization like 

Facebook, Amazon, NASA, Google and more leverages on 

this competition based program development to select the 

most innovative software produced by the most brilliant 

competitors. Since timely delivery of the software is very 

crucial, as long as deadline is met, Crowd SE provides 

flexible working schedule for developers[6]. This is due to its 

nature where development can take place anytime anywhere 

as long as there is internet connection, developers can freely 

choose their working place and schedule.  

Although Crowd SE provide added value in terms of faster 

software delivery and flexible development schedule, the 

following are some prevalent issues and problems discussed 

in [1]: quality control mechanism, difficult task 

decomposition for complex software, planning, scheduling, 

motivations and remunerations are among issues related to 

Crowd SE. Even if task can be properly decomposed, getting 

the correct specification still remain as global issues in Crowd 

SE [8], with the question: can requirements be crowdsourced? 

Software engineering research community have begun to 

study this problem including how to create workflow for a 

variety of development tasks for Crowd SE. For example, 

StakeSource 2.0, a tool that identifies and prioritises 

stakeholders and their requirements by using social 

networks[8]. Among the features offered by StakeSource 2.0 

includes the collection of requirements and their ratings, 

recommendations of other requirements of interest and 

visualization of requirements on the social networks. 

Communication between analysts and stakeholders occurs 

through emails and social network site. Ratings are given and 

requirements are prioritized based on overall ratings from 

stakeholders. StakeSource 2.0 highlights any stakeholders’ 

conflicts pertaining to specific requirements, and reveal this 

issue on the social network. Consequently, attention should 

be given to requirements with many stakeholders in conflict. 

StakeRare is another example of Crowd SE for requirements 

elicitation which uses social network and collaborative 

filtering to identify and prioritize requirements in large 

software projects [10]. StakeRare identifies stakeholders for 

a project and ask stakeholders involved to recommend other 

stakeholders and build a social networks of stakeholders for 

a posted project. Links for their recommendations are shared 

and stakeholders are asked to rate initial requirements lists, 

and the system recommends other relevant requirements 

using collaborative filtering. Other proposal to enhance the 

use of Crowd SE in requirements engineering can as well be 

found in CrowdREquire[11], UDesignIt, Bespoke and 

AOI[1].  

Up to this section, the related work in Crowd SE is briefly 

described and followed by how Crowd SE being applied in 

requirements engineering activities. Next, let us take a look 

at brief overview on the use of user reviews as input to 

requirements engineering process. Guzman and Maalej  [2] 

used collocation findings to extract fine-grained features, 

utilised sentiment analysis to extract sentiments and opinions 

associated to the features, and applied topic modelling to 

group-related features. They have extracted 32210 reviews 

for 7 iOS and Android apps and compared the results with 

2800 manually peer-analysed reviews. The results indicate 

that their proposed approach is effective in extracting the 

most frequently mentioned features. Groups of features are 

coherent and relevant to app requirements, and sentiment 

analysis results positively correlate to the manually assigned 

scores. In their work [2], the extraction process was done by 

using the NLTK toolkit. Nouns, verbs, and adjectives were 

extracted from the mobile app reviews, followed by stop 

words removal. This was then followed by lemmatization 

process that grouped different inflected words with the same 

part of speech tagging together (lemmatization group words 

that are syntactically different but semantically similar). The 

collocation algorithm provided by the NLTK toolkit was then 

applied for extracting features from the reviews.  

Carreno and Windbladh [4] analysed the user reviews 

available for third-party mobile applications as a way to 

extract new or changed requirements for future releases of a 

particular software. In their work, the authors used topic 

modelling to extract the main topics from the user feedback 

and evaluated them on different publicly available data sets. 

In previous work, we have explored the use of software 

reviews as input to feature extraction from natural language, 

FENL [12] to assist the reuse of requirements, by using 

natural language processing and information retrieval 

techniques. There, a promising precision result was obtained 

when compared to manual process. In this paper, we will 

apply the FENL approach and extend its functionality by 

incorporating k-Means clustering algorithms. Based on the 

experiment conducted, we will provide suggestion on how 

this can be applied to crowdsource requirements engineering.  
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III. OUR APPROACH 

 

The main goal of our approach is to automatically identify 

and cluster the software functionality from the selected 

software reviews published by the crowd. This information 

will then be highlighted to development team for further 

actions. For this, open source screenscraper tool is used to 

copy the user comments from the internet. These raw data are 

then stored in text files and fed into the FENL tool. The k-

Means clustering is used to cluster the similar software 

features together. Lastly, these features will be highlighted to 

development team for further actions. Figure 1 illustrates the 

steps in our approach. 

 

 

 

 

 

 

 

 
Figure 1: Crowdsource RE proposal 

 

In the following sub-section, we describe the first two 

processes from Figure 1 (User Review Extraction with FENL 

and k-Means clustering). The later two processes: “Cluster 

Evaluations” and “Highlight Features to Development Team” 

will be discussed in Section IV. 

 

A. Review Extraction  

In this work, a total of 25 software reviews pertaining to 

online children learning posted at toptenreviews.com are 

scraped, by using open source screen scraper utility. This 25 

software reviews came from three subcategories under the 

domain of online learning software for children: Preschool 

games (10 reviews), Algebra (7 reviews) and Creative 

Writing (10 reviews). Complete description of Feature 

Extraction from Natural Language, FENL can be found in 

[11]. Here, the FENL tool is used to extract the features that 

resides from the 25 reviews. As the output, FENL produces 

list of features in the forms of noun phrases.  

Figure 2 illustrates some example the example of noun 

phrases extracted: 

 

 
 

Figure 2: Sample noun phrases extracted from software reviews 

 

To obtain phrase relatedness, each noun phrases is being 

tabulated in the term-document matrix, in terms of the 

number of its occurrences. This is followed by applying the 

term-frequency-inverse-document-frequency, tf-idf. We 

applied the Singular Value Decomposition, SVD calculation 

from the Latent Semantic Analysis, LSA. The LSA 

application output the coordinates for all the phrases in the 

document space. The closer the distance between a noun 

phrase to another indicate that they are of similar meaning, 

with the assumption of similar terms tend to occur in similar 

contexts [13].  

B. K-Means Clustering  

K-Means clustering is used to group the noun phrase 

(feature summary) together. The K-Means algorithm is the 

simplest and commonly used algorithm to optimize the 

objective function (the distance) that is described by the 

following equation: 

 

𝐸 =  ∑ ∑ 𝑑(𝑥, 𝑚𝑖
𝑥∈𝐶𝑖

𝑐

𝑖=1

) (1) 

 

where mi is the centre of cluster Ci, while d(x,mi) is the 

Euclidean distance between data point, x and mi. In the 

experiment, we input the coordinates obtained from LSA and 

we then use K-means algorithm (based on [14]) indicated as 

follows: 

i. Specify a fixed number of clusters, c.  

ii. Randomly pick up a cluster centre. 

iii. Assign all data points (the coordinate for terms 

obtained earlier) to the cluster whose centre is the 

nearest (closest centroid). 

iv. Re-compute the centres for each centroid. 

v. Repeat the process in steps iii & iv until the centres 

stop changing. 

The clustering experiment was conducted against the 

extracted noun phrases to form c number of clusters, for three 

different rounds at random numbers, c=8,10, 12, and 15); and 

each round of clustering was executed within 100 iterations. 

 

IV. RESULTS  

 

There were 391 noun phrases extracted: 173, 107 and 111 

distinct phrases from the three software reviews, as shown in 

Table 1: 

 
Table 1 

Dataset for the experiment 

 

Learning Software Subcategory # of documents Noun phrases 

Preschool Learning 10 173 

Algebra Learning 6 107 

Writing Software 9 111 
Total 25 391 

 

Noun phrases extracted can be used to demonstrate the 

main theme or main features from the software reviews. For 

example, among noun phrases extracted include “preschool 

games”, “coloring pages” and “algebra software”, which 

provide us the general ideas on the basic features for the 

software being reviews.  

K-Means clustered the similar features according to the 

distance of each noun phrases within the document space as 

shown in Figure 3. Note that with c=8, 19 noun phrases were 

grouped in one cluster, and the remaining two are separated. 

Logically, this is not accurate. For example, phrases related 

to “maths” should have been separated to phrases related to 

“coloring activities”, but with c=12 and c=15, both of the 

phrases were grouped together, leading to assumption that 

less cluster might not produce accurate groupings. 

 

User 
Reviews 

Extraction 
with FENL 

k-Means 
clustering 

Cluster 
Evaluations

Highlight 
features to 

development 
team
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Figure 3: The k-means clustering results 

 

Next, the cluster validation for the k-Means clustering is 

presented in terms of: 1) Inter-cluster distance, 2) Intra-

cluster distance and statistical evaluations 

Figure 4 illustrates the difference between inter-cluster and 

intra-cluster distance, where point X indicates the centroid for 

each clusters, while points labeled o are the items reside 

within each cluster. 

 

 
Figure 4: Intra-cluster distance and inter-cluster distances 

 

A. Inter-cluster Distance (separation) 

To obtain the inter-cluster distance, the average distance 

between all centroids produced by the K-Means is taken; this 

sometimes referred to as the degree of separation from one 

centroid to other centroids. This is accomplished by applying 

the following function in Matlab: 

 

m = pdist(centroids) (2) 

 

where centroids are the list of cluster centers obtained by the 

K-Means algorithm. The bigger the average distance 

indicated that a cluster produced is well separated from the 

other clusters in the problem space. In this observation, K-

Means clustering with c=8 (i.e. km8) recorded the highest 

average inter cluster distance, when compared to the 

clustering solution with different number of clusters. In this 

case, smaller number of clusters tend to produce clusters that 

are well separated, and this is expected. Figure 5 shows the 

average inter-cluster and intra-cluster distance produced 

when using different number of clusters: 

 

 
 

Figure 5: Results for average inter and intra cluster distances 

 

To determine whether there was statistically significant 

difference between the means produced when clustering 

using different number of clusters, we had conducted a One-

Way ANOVA test. The results from One-way ANOVA test 

(Table 2) indicate that there was significant difference in 

between means for all groups when measuring the inter-

cluster distance, (i.e. F(3,199) = 4.792, p = 0.003). The post 

hoc test confirms that there was a significant mean difference 

on inter-cluster distance between km8 and the other groups 

(clusters). 
 

Table 2 

 ANOVA test for Inter cluster distance 

 

 
Sum of 
Squares 

df 
Mean 
Square 

F Sig. 

Between 

Groups 
.170 3 .057 4.792 .003 

Within 

Groups 
2.357 199 012   

Total 2.527 202    

 

B. Intra-cluster Distance (cohesion) 

The intra-cluster distance identified the degree of 

compactness or cohesion of each cluster produced by the 

clustering algorithms.  

In other words, the intra-cluster distance measures how 

close related items that are placed in each cluster. In the 

context of our experiment, we are measuring the average 

distance between all points to its centroid. This is 

accomplished by applying the Matlab code in Figure 6. 

Smaller intra-cluster value may indicate a better clustering 

result, which means items clustered within each group are 

very similar. In this case, c=12 to produce a more compact 

cluster when compared to other groups.  

The ANOVA result (as in Table 3), showed that at p < 0.05, 

there was a statistically significant difference between the 

average distance calculated by clustering solution for 

different number of clusters (i.e. F(3,41)= 3.141, p=0.035). 

Moreover, a post hoc Tukey test conducted confirmed that 

c=12 differed significantly in their average distance 

compared to the other groups. 
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Figure 6: Matlab code for finding average intra-cluster distance 

 

Table 3 

ANOVA for Intra-cluster distance 
 

 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between 
Groups 

.071 3 
.024 

 
3.141 

 
.035 

 

Within 

Groups 
.309 41 

.008 

 
  

Total .380 44    

 

V. DISCUSSIONS 

 

From the experiment, we observed that FENL able to 

extract software features, confirming the result obtained in 

our earlier experiment in [11]. By incorporating k-Means 

clustering, related features can be grouped based on their 

relatedness (distance based on LSA calculation). The final 

clustering results (given a suitable number of clusters) can 

suggest important features that can be extracted from user 

reviews. Figure 6, is a sample list of noun phrase that were 

clustered together based on k-Means results. This information 

can be beneficial to the domain analyst. Domain analysts will 

be highlighted regarding important features found for a 

software, as frequently mentioned by users in the reviews. 

Development team can take note on these important features 

for future development of similar software, or for 

improvements on current software in the next releases. 

 

 
 

Figure 7: Clustering Result 

 

This recommendation although not validated for its 

accuracy (recall and precision), however we believe it can act 

as an early input to development team or domain analyst to 

have brief idea pertaining to the main features mentioned by 

the end users. Additionally, our proposed process can reduce 

the time for domain analysts to read the entire customer 

reviews.  

Crowdsource requirements engineering in our context 

depends on the extraction of user reviews; the reviews 

provided by public that came from various background. The 

reviews came from their experience using the software as 

well as the quality of datasets used. This however can be good 

and bad too. Reviews can be good when users write genuine 

report relating to the software features such as reporting the 

frequently used features, reporting features with problems 

and more. On the other hand, reviews can be useless when 

users tend to write comments that are not related to software 

features like sarcasm or harsh words that will not bring added 

values to the overall reviews. This may have been affected by 

the use of user reviews extracted from the internet that were 

not validated. For example, sentences provided by users most 

of the times did not follow any formatted sentence structure, 

as what can be expected from Software Requirements 

Specification documents. The extracted review consists of 

raw data and free text as it came from large crowd who can 

freely express their opinion. Therefore, we note this as some 

of the limitations to the input for crowdsource requirements 

engineering. 

Another thread to validity for our experiment result may be 

affected by the smaller data set used: only 25 reviews for this 

small-scale experiment. For that, we agree with [13] on the 

fact that the accuracy for LSA results will increase if using a 

larger set of data. Therefore, this will be our immediate future 

plan to increase the datasets and find a benchmark data for 

accuracy evaluation.  

 

VI. CONCLUSION AND FUTURE WORKS 

 

In this paper, the use of software reviews to demonstrate 

the crowdsource requirements engineering is presented. 

Firstly, this paper summarized the related works in the area 

of crowdsource software development and the use of user 

reviews in requirements engineering research. This is then 

followed by description on the experiment conducted with 

FENL tool, supplemented with k-Means clustering by using 

user reviews as its input, to demonstrate the crowdsource 

requirements engineering. A promising significant clustering 

result as indicated by the ANOVA and post hoc Tukey test is 

obtained and described in the paper. Thus, our contribution 

from this paper comes in two-fold: demonstrating the 

crowdsource requirements engineering by using user reviews, 

and adding data mining techniques with statistical evaluations 

to Software Engineering research. Although detail 

experiment being conducted, we believe our experiment may 

yield a better and a more accurate result in the near future 

with bigger data sets to work with. Furthermore, we will have 

to search for a benchmark dataset in this area, so that 

supplementary accuracy test such as precision and recall can 

be performed in the near future.  

 

REFERENCES  

 
[1] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of 

crowdsourcing in software engineering,” J. Syst. Softw., 2017. vol 126, 

pp. 57-84. 

[2] E. Guzman and W. Maalej, “RE 2014 - Appstore review and reuse,” in 
How Do Users Like This Feature? A Fine Grained Sentiment Analysis 

of App Reviews, 2014, pp. 153– 162. 

[3] N. Genc-Nayebi and A. Abran, “A systematic literature review: opinion 
mining studies from mobile app store user reviews,” J. Syst. Softw., 

2017. vol. 125, pp 207-219. 

[4] L. V. G. Carreno, and K. Windbladh. “Analysis of user comments: An 
approach for software requirements evolution,” in 2013 35th 

International Conference on Software Engineering (ICSE), 2013, pp. 
582–591.  

[5] J. Howe, “The rise of Crowdsourcing,” Wired, vol. 14, no. 6, pp. 1-4, 

2006.  



Journal of Telecommunication, Electronic and Computer Engineering 

146 e-ISSN: 2289-8131   Vol. 9 No. 3-3  

[6] N. Hasteer, N. Nazir, A. Bansal, and B. K. Murthy, “Crowdsourcing 
software development: Many benefits many concerns,” Phys. 

Procedia, vol. 78, pp. 48–54, 2016. 

[7] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a case 
study of crowdsourcing software development,” in Proceedings of the 

36th International Conference on Software Engineering - ICSE 2014, 

2014, pp. 187–198. 
[8] T. T. D. Latoza and A. van der Hoek, “Crowdsourcing in software 

engineering: Models, opportunities, and challenges,” IEEE Softw., vol. 

33, no. 1, pp. 1–13, 2016. 
[9] D. Damian and A. Finkelstein, “StakeSource2.0: Using social networks 

of stakeholders to identify and prioritise requirements,” in 33rd 

Internation Conference of Software Engineering, ICSE 2011, 2011, pp. 
1022–1024. 

[10] S. L. Lim and A. Finkelstein, “StakeRare: Using social networks and 

collaborative filtering for large-scale requirements elicitation,” IEEE 
Trans. Softw. Eng., vol. 38, no. 3, pp. 707–735, 2012. 

[11] A. Adepetu, K. Ahmed, and Y. Al Abd, “CrowdREquire: A 
Requirements Engineering Crowdsourcing Platform,” in 2012 AAAI 

Spring Symposium Series, 2012, pp. 1-6, Available at 

https://www.aaai.org/ocs/index.php/SSS/SSS12/paper/viewFile/4311/
4685, Date retrieved: 28/8/2017. 

[12] N. H. Bakar, Z. M. Kasirun, N. Salleh, and A. H. A. Halim,  “Extracting 

software features from online reviews to demonstrate requirements 
reuse in software engineering,” in Proceedings of the International 

Conference on Computing & Informatics, 2017, pp. 184-190. 

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, and T. K. Landauer, 
“Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41, 

no. 6, p. 391, 1998. 

[14] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. 
Adaptive C. MIT Press, 2001. 

 

 
 


