

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 141

Crowdsource Requirements Engineering: Using

Online Reviews as Input to Software Features

Clustering

Noor Hasrina Bakar1, Zarinah M. Kasirun2, Norsaremah Salleh3 and Azni H. Halim4
1Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

2Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia.
3Kuliyyah of Information and Communication Technology,

International Islamic University Malaysia, 50728 Kuala Lumpur, Malaysia.
4Faculty Science and Technology, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.

noorhasrina@ukm.edu.my

Abstract—As to date, various software being produced to help

in our daily routines. At times, there are complaints on errors or

faults lodged by users over the internet. This information can be

valuable for software development teams to enhance the

software functionalities in the next releases. Not only that, these

comments contain important software features that can be

extracted and reuse for future development of similar software

systems. Reviews provided by various user from unknown

background is an example of open call involvement in

crowdsource software engineering. In this paper, sample

software reviews available in the internet were collected. In the

experiment conducted, twenty-five groups of random

software reviews within the domain of children online

learning software were selected as input to crowdsource

requirements engineering. T h e extracted reviews were then

clustered into related groups by using K-Means algorithm.

The clustering results achieved by K-Means were evaluated in

terms of cluster compactness and cohesion. A statistically

significant result with time efficiency obtained and reported

at the end of this paper. Based on this information, this paper

provides some recommendations on how user reviews can be

used as input to the crowdsource requirements engineering

either for improving existing software or for production of a new

similar systems.

Index Terms—Crowdsource Software Development; Feature

Extraction; Requirements Engineering; Similar Systems

Development.

I. INTRODUCTION

It is a norm for users to leave comments after they have

experienced certain software, especially when they are

unsatisfied with it. For example, users downloaded an online

hotel booking apps. After encountering some difficulties in

certain function, frustrated users may leave some comments

about the problems, with the hope somebody from the

developer’s side will come and fix it. Developers have taken

user comments to come up with a similar software for a better

version: the same development team fixed the problems and

published a newer improved version, or a different

development team (business competitor) uses the comments

to come out with a similar software. with an enhanced

version. Here, the feedbacks on software functionalities are

contributed by users in open call format; the concept of

crowdsourced software engineering.

Crowdsource software engineering emphasizes any

software engineering activity, involving any act of

undertaking any external software engineering tasks by an

undefined, potentially large group of online workers in open

call format [1]. Meanwhile, the use of user review as a source

for gathering software requirements received attention from

software engineering community and this can be seen in [2].

As an example, a detailed systematic review on mining user

reviews from mobile applications was published in [3]. The

review mechanism provided for software and mobile apps

resembles a communication channel that bridge the gap

between users and developers[1], at the same time supporting

the crowdsource software development.

The act of open user involvement in terms of providing

feedback for improvement may benefit the development team

and other users in future. However, when massive comments

are received, developers will face hard times in digesting

information from reviews if done manually. In order to

extract related software functionalities, there is a need for a

simple automated process to classify the user comments. For

example, positive comments from users can be a channel to

boost team motivation, while negative comments must be

taken seriously for future improvements. This research is

interested to extract open comments related to software

features and highlight this to the development team.

This paper firstly describes related works in the area of

crowdsource software development and requirements

extraction from user reviews. In Section III, the proposal for

a crowdsource requirements engineering process is presented.

Then, the results from an initial experiment on crowdsource

requirements engineering is discussed in Section IV, and

lastly this paper is concluded by highlighting thread to

validity and the future plans for this research.

II. RELATED WORK

In order to describe the characteristics of crowdsource

based software development, let us first take a closer look at

the traditional requirements elicitation process. In practice,

requirements elicitation is a process of gathering the

requirements of a system from users, customers and

stakeholders. Requirements elicitation usually involves

development teams going back and forth discussing with

stakeholders until requirements are mutually agreed. There,

stakeholders and development team discussed in closed and

Journal of Telecommunication, Electronic and Computer Engineering

142 e-ISSN: 2289-8131 Vol. 9 No. 3-3

formal meetings. The input to software development, the

software functionalities must be agreed upon by all

stakeholders, and this information remain secrecy until the

first version of the software product is released. This is

different from crowdsource software development where

requirements or input to the development of similar system or

new releases are based on crowd’s opinion in an open call.

The term crowdsourcing was firstly coined in [5], and

crowdsourcing is explicitly defined as any acts a company or

institution taking a function once performed by employees,

and outsourcing it to an undefined (and generally large)

network in the form of an open call. Open call here means

anybody interested may contribute to the development, and

this is made possible with the existence of internet. In this

section, we divide our review into two distinct areas: related

works on crowdsource software development and related

works on requirements extractions from user reviews. From

this point on, we will refer the crowdsource software

engineering as Crowd SE.

Within software engineering community, [1] surveyed 210

unique publications on Crowd SE practices. Selected

publications ranged from 2008 – 2015. They have

summarized the following items: Crowd SE practice in terms

of platforms and case studies available, Crowd SE

Applications in terms of published researched in the area of

Crowdsourcing Requirements Analysis, Software Design,

Coding, Testing and Verification, Evolution and

Maintenance and crowdsource for other software engineering

activities. Some benefits of Crowd SE from case studies been

discussed in [6] and [7]. Stol and Fitgerald reported a case

study on implementation of Crowd SE in a multi-national

corporation, TechPlatform Inc. (known as TPI), a global

player that offers services and solution in the cloud [7]. TPI

outsourced its software development through TopCoder, the

largest software development crowdsourcing platform with

more than 600,000 developers who codes software for clients.

Through TopCoders, softwares are produced based on

competition held online. Developers compete for prizes to

produce best softwares. Winning software will be licensed for

profit by TopCoder. Hitherto, important organization like

Facebook, Amazon, NASA, Google and more leverages on

this competition based program development to select the

most innovative software produced by the most brilliant

competitors. Since timely delivery of the software is very

crucial, as long as deadline is met, Crowd SE provides

flexible working schedule for developers[6]. This is due to its

nature where development can take place anytime anywhere

as long as there is internet connection, developers can freely

choose their working place and schedule.

Although Crowd SE provide added value in terms of faster

software delivery and flexible development schedule, the

following are some prevalent issues and problems discussed

in [1]: quality control mechanism, difficult task

decomposition for complex software, planning, scheduling,

motivations and remunerations are among issues related to

Crowd SE. Even if task can be properly decomposed, getting

the correct specification still remain as global issues in Crowd

SE [8], with the question: can requirements be crowdsourced?

Software engineering research community have begun to

study this problem including how to create workflow for a

variety of development tasks for Crowd SE. For example,

StakeSource 2.0, a tool that identifies and prioritises

stakeholders and their requirements by using social

networks[8]. Among the features offered by StakeSource 2.0

includes the collection of requirements and their ratings,

recommendations of other requirements of interest and

visualization of requirements on the social networks.

Communication between analysts and stakeholders occurs

through emails and social network site. Ratings are given and

requirements are prioritized based on overall ratings from

stakeholders. StakeSource 2.0 highlights any stakeholders’

conflicts pertaining to specific requirements, and reveal this

issue on the social network. Consequently, attention should

be given to requirements with many stakeholders in conflict.

StakeRare is another example of Crowd SE for requirements

elicitation which uses social network and collaborative

filtering to identify and prioritize requirements in large

software projects [10]. StakeRare identifies stakeholders for

a project and ask stakeholders involved to recommend other

stakeholders and build a social networks of stakeholders for

a posted project. Links for their recommendations are shared

and stakeholders are asked to rate initial requirements lists,

and the system recommends other relevant requirements

using collaborative filtering. Other proposal to enhance the

use of Crowd SE in requirements engineering can as well be

found in CrowdREquire[11], UDesignIt, Bespoke and

AOI[1].

Up to this section, the related work in Crowd SE is briefly

described and followed by how Crowd SE being applied in

requirements engineering activities. Next, let us take a look

at brief overview on the use of user reviews as input to

requirements engineering process. Guzman and Maalej [2]

used collocation findings to extract fine-grained features,

utilised sentiment analysis to extract sentiments and opinions

associated to the features, and applied topic modelling to

group-related features. They have extracted 32210 reviews

for 7 iOS and Android apps and compared the results with

2800 manually peer-analysed reviews. The results indicate

that their proposed approach is effective in extracting the

most frequently mentioned features. Groups of features are

coherent and relevant to app requirements, and sentiment

analysis results positively correlate to the manually assigned

scores. In their work [2], the extraction process was done by

using the NLTK toolkit. Nouns, verbs, and adjectives were

extracted from the mobile app reviews, followed by stop

words removal. This was then followed by lemmatization

process that grouped different inflected words with the same

part of speech tagging together (lemmatization group words

that are syntactically different but semantically similar). The

collocation algorithm provided by the NLTK toolkit was then

applied for extracting features from the reviews.

Carreno and Windbladh [4] analysed the user reviews

available for third-party mobile applications as a way to

extract new or changed requirements for future releases of a

particular software. In their work, the authors used topic

modelling to extract the main topics from the user feedback

and evaluated them on different publicly available data sets.

In previous work, we have explored the use of software

reviews as input to feature extraction from natural language,

FENL [12] to assist the reuse of requirements, by using

natural language processing and information retrieval

techniques. There, a promising precision result was obtained

when compared to manual process. In this paper, we will

apply the FENL approach and extend its functionality by

incorporating k-Means clustering algorithms. Based on the

experiment conducted, we will provide suggestion on how

this can be applied to crowdsource requirements engineering.

Crowdsource Requirements Engineering: Using Online Reviews as Input to Software Features Clustering

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 143

III. OUR APPROACH

The main goal of our approach is to automatically identify

and cluster the software functionality from the selected

software reviews published by the crowd. This information

will then be highlighted to development team for further

actions. For this, open source screenscraper tool is used to

copy the user comments from the internet. These raw data are

then stored in text files and fed into the FENL tool. The k-

Means clustering is used to cluster the similar software

features together. Lastly, these features will be highlighted to

development team for further actions. Figure 1 illustrates the

steps in our approach.

Figure 1: Crowdsource RE proposal

In the following sub-section, we describe the first two

processes from Figure 1 (User Review Extraction with FENL

and k-Means clustering). The later two processes: “Cluster

Evaluations” and “Highlight Features to Development Team”

will be discussed in Section IV.

A. Review Extraction

In this work, a total of 25 software reviews pertaining to

online children learning posted at toptenreviews.com are

scraped, by using open source screen scraper utility. This 25

software reviews came from three subcategories under the

domain of online learning software for children: Preschool

games (10 reviews), Algebra (7 reviews) and Creative

Writing (10 reviews). Complete description of Feature

Extraction from Natural Language, FENL can be found in

[11]. Here, the FENL tool is used to extract the features that

resides from the 25 reviews. As the output, FENL produces

list of features in the forms of noun phrases.

Figure 2 illustrates some example the example of noun

phrases extracted:

Figure 2: Sample noun phrases extracted from software reviews

To obtain phrase relatedness, each noun phrases is being

tabulated in the term-document matrix, in terms of the

number of its occurrences. This is followed by applying the

term-frequency-inverse-document-frequency, tf-idf. We

applied the Singular Value Decomposition, SVD calculation

from the Latent Semantic Analysis, LSA. The LSA

application output the coordinates for all the phrases in the

document space. The closer the distance between a noun

phrase to another indicate that they are of similar meaning,

with the assumption of similar terms tend to occur in similar

contexts [13].

B. K-Means Clustering

K-Means clustering is used to group the noun phrase

(feature summary) together. The K-Means algorithm is the

simplest and commonly used algorithm to optimize the

objective function (the distance) that is described by the

following equation:

𝐸 = ∑ ∑ 𝑑(𝑥, 𝑚𝑖
𝑥∈𝐶𝑖

𝑐

𝑖=1

) (1)

where mi is the centre of cluster Ci, while d(x,mi) is the

Euclidean distance between data point, x and mi. In the

experiment, we input the coordinates obtained from LSA and

we then use K-means algorithm (based on [14]) indicated as

follows:

i. Specify a fixed number of clusters, c.

ii. Randomly pick up a cluster centre.

iii. Assign all data points (the coordinate for terms

obtained earlier) to the cluster whose centre is the

nearest (closest centroid).

iv. Re-compute the centres for each centroid.

v. Repeat the process in steps iii & iv until the centres

stop changing.

The clustering experiment was conducted against the

extracted noun phrases to form c number of clusters, for three

different rounds at random numbers, c=8,10, 12, and 15); and

each round of clustering was executed within 100 iterations.

IV. RESULTS

There were 391 noun phrases extracted: 173, 107 and 111

distinct phrases from the three software reviews, as shown in

Table 1:

Table 1

Dataset for the experiment

Learning Software Subcategory # of documents Noun phrases

Preschool Learning 10 173

Algebra Learning 6 107

Writing Software 9 111
Total 25 391

Noun phrases extracted can be used to demonstrate the

main theme or main features from the software reviews. For

example, among noun phrases extracted include “preschool

games”, “coloring pages” and “algebra software”, which

provide us the general ideas on the basic features for the

software being reviews.

K-Means clustered the similar features according to the

distance of each noun phrases within the document space as

shown in Figure 3. Note that with c=8, 19 noun phrases were

grouped in one cluster, and the remaining two are separated.

Logically, this is not accurate. For example, phrases related

to “maths” should have been separated to phrases related to

“coloring activities”, but with c=12 and c=15, both of the

phrases were grouped together, leading to assumption that

less cluster might not produce accurate groupings.

User
Reviews

Extraction
with FENL

k-Means
clustering

Cluster
Evaluations

Highlight
features to

development
team

Journal of Telecommunication, Electronic and Computer Engineering

144 e-ISSN: 2289-8131 Vol. 9 No. 3-3

Figure 3: The k-means clustering results

Next, the cluster validation for the k-Means clustering is

presented in terms of: 1) Inter-cluster distance, 2) Intra-

cluster distance and statistical evaluations

Figure 4 illustrates the difference between inter-cluster and

intra-cluster distance, where point X indicates the centroid for

each clusters, while points labeled o are the items reside

within each cluster.

Figure 4: Intra-cluster distance and inter-cluster distances

A. Inter-cluster Distance (separation)

To obtain the inter-cluster distance, the average distance

between all centroids produced by the K-Means is taken; this

sometimes referred to as the degree of separation from one

centroid to other centroids. This is accomplished by applying

the following function in Matlab:

m = pdist(centroids) (2)

where centroids are the list of cluster centers obtained by the

K-Means algorithm. The bigger the average distance

indicated that a cluster produced is well separated from the

other clusters in the problem space. In this observation, K-

Means clustering with c=8 (i.e. km8) recorded the highest

average inter cluster distance, when compared to the

clustering solution with different number of clusters. In this

case, smaller number of clusters tend to produce clusters that

are well separated, and this is expected. Figure 5 shows the

average inter-cluster and intra-cluster distance produced

when using different number of clusters:

Figure 5: Results for average inter and intra cluster distances

To determine whether there was statistically significant

difference between the means produced when clustering

using different number of clusters, we had conducted a One-

Way ANOVA test. The results from One-way ANOVA test

(Table 2) indicate that there was significant difference in

between means for all groups when measuring the inter-

cluster distance, (i.e. F(3,199) = 4.792, p = 0.003). The post

hoc test confirms that there was a significant mean difference

on inter-cluster distance between km8 and the other groups

(clusters).

Table 2

 ANOVA test for Inter cluster distance

Sum of
Squares

df
Mean
Square

F Sig.

Between

Groups
.170 3 .057 4.792 .003

Within

Groups
2.357 199 012

Total 2.527 202

B. Intra-cluster Distance (cohesion)

The intra-cluster distance identified the degree of

compactness or cohesion of each cluster produced by the

clustering algorithms.

In other words, the intra-cluster distance measures how

close related items that are placed in each cluster. In the

context of our experiment, we are measuring the average

distance between all points to its centroid. This is

accomplished by applying the Matlab code in Figure 6.

Smaller intra-cluster value may indicate a better clustering

result, which means items clustered within each group are

very similar. In this case, c=12 to produce a more compact

cluster when compared to other groups.

The ANOVA result (as in Table 3), showed that at p < 0.05,

there was a statistically significant difference between the

average distance calculated by clustering solution for

different number of clusters (i.e. F(3,41)= 3.141, p=0.035).

Moreover, a post hoc Tukey test conducted confirmed that

c=12 differed significantly in their average distance

compared to the other groups.

Crowdsource Requirements Engineering: Using Online Reviews as Input to Software Features Clustering

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 145

Figure 6: Matlab code for finding average intra-cluster distance

Table 3

ANOVA for Intra-cluster distance

Sum of

Squares
df

Mean

Square
F Sig.

Between
Groups

.071 3
.024

3.141

.035

Within

Groups
.309 41

.008

Total .380 44

V. DISCUSSIONS

From the experiment, we observed that FENL able to

extract software features, confirming the result obtained in

our earlier experiment in [11]. By incorporating k-Means

clustering, related features can be grouped based on their

relatedness (distance based on LSA calculation). The final

clustering results (given a suitable number of clusters) can

suggest important features that can be extracted from user

reviews. Figure 6, is a sample list of noun phrase that were

clustered together based on k-Means results. This information

can be beneficial to the domain analyst. Domain analysts will

be highlighted regarding important features found for a

software, as frequently mentioned by users in the reviews.

Development team can take note on these important features

for future development of similar software, or for

improvements on current software in the next releases.

Figure 7: Clustering Result

This recommendation although not validated for its

accuracy (recall and precision), however we believe it can act

as an early input to development team or domain analyst to

have brief idea pertaining to the main features mentioned by

the end users. Additionally, our proposed process can reduce

the time for domain analysts to read the entire customer

reviews.

Crowdsource requirements engineering in our context

depends on the extraction of user reviews; the reviews

provided by public that came from various background. The

reviews came from their experience using the software as

well as the quality of datasets used. This however can be good

and bad too. Reviews can be good when users write genuine

report relating to the software features such as reporting the

frequently used features, reporting features with problems

and more. On the other hand, reviews can be useless when

users tend to write comments that are not related to software

features like sarcasm or harsh words that will not bring added

values to the overall reviews. This may have been affected by

the use of user reviews extracted from the internet that were

not validated. For example, sentences provided by users most

of the times did not follow any formatted sentence structure,

as what can be expected from Software Requirements

Specification documents. The extracted review consists of

raw data and free text as it came from large crowd who can

freely express their opinion. Therefore, we note this as some

of the limitations to the input for crowdsource requirements

engineering.

Another thread to validity for our experiment result may be

affected by the smaller data set used: only 25 reviews for this

small-scale experiment. For that, we agree with [13] on the

fact that the accuracy for LSA results will increase if using a

larger set of data. Therefore, this will be our immediate future

plan to increase the datasets and find a benchmark data for

accuracy evaluation.

VI. CONCLUSION AND FUTURE WORKS

In this paper, the use of software reviews to demonstrate

the crowdsource requirements engineering is presented.

Firstly, this paper summarized the related works in the area

of crowdsource software development and the use of user

reviews in requirements engineering research. This is then

followed by description on the experiment conducted with

FENL tool, supplemented with k-Means clustering by using

user reviews as its input, to demonstrate the crowdsource

requirements engineering. A promising significant clustering

result as indicated by the ANOVA and post hoc Tukey test is

obtained and described in the paper. Thus, our contribution

from this paper comes in two-fold: demonstrating the

crowdsource requirements engineering by using user reviews,

and adding data mining techniques with statistical evaluations

to Software Engineering research. Although detail

experiment being conducted, we believe our experiment may

yield a better and a more accurate result in the near future

with bigger data sets to work with. Furthermore, we will have

to search for a benchmark dataset in this area, so that

supplementary accuracy test such as precision and recall can

be performed in the near future.

REFERENCES

[1] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of

crowdsourcing in software engineering,” J. Syst. Softw., 2017. vol 126,

pp. 57-84.

[2] E. Guzman and W. Maalej, “RE 2014 - Appstore review and reuse,” in
How Do Users Like This Feature? A Fine Grained Sentiment Analysis

of App Reviews, 2014, pp. 153– 162.

[3] N. Genc-Nayebi and A. Abran, “A systematic literature review: opinion
mining studies from mobile app store user reviews,” J. Syst. Softw.,

2017. vol. 125, pp 207-219.

[4] L. V. G. Carreno, and K. Windbladh. “Analysis of user comments: An
approach for software requirements evolution,” in 2013 35th

International Conference on Software Engineering (ICSE), 2013, pp.
582–591.

[5] J. Howe, “The rise of Crowdsourcing,” Wired, vol. 14, no. 6, pp. 1-4,

2006.

Journal of Telecommunication, Electronic and Computer Engineering

146 e-ISSN: 2289-8131 Vol. 9 No. 3-3

[6] N. Hasteer, N. Nazir, A. Bansal, and B. K. Murthy, “Crowdsourcing
software development: Many benefits many concerns,” Phys.

Procedia, vol. 78, pp. 48–54, 2016.

[7] K.-J. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: a case
study of crowdsourcing software development,” in Proceedings of the

36th International Conference on Software Engineering - ICSE 2014,

2014, pp. 187–198.
[8] T. T. D. Latoza and A. van der Hoek, “Crowdsourcing in software

engineering: Models, opportunities, and challenges,” IEEE Softw., vol.

33, no. 1, pp. 1–13, 2016.
[9] D. Damian and A. Finkelstein, “StakeSource2.0: Using social networks

of stakeholders to identify and prioritise requirements,” in 33rd

Internation Conference of Software Engineering, ICSE 2011, 2011, pp.
1022–1024.

[10] S. L. Lim and A. Finkelstein, “StakeRare: Using social networks and

collaborative filtering for large-scale requirements elicitation,” IEEE
Trans. Softw. Eng., vol. 38, no. 3, pp. 707–735, 2012.

[11] A. Adepetu, K. Ahmed, and Y. Al Abd, “CrowdREquire: A
Requirements Engineering Crowdsourcing Platform,” in 2012 AAAI

Spring Symposium Series, 2012, pp. 1-6, Available at

https://www.aaai.org/ocs/index.php/SSS/SSS12/paper/viewFile/4311/
4685, Date retrieved: 28/8/2017.

[12] N. H. Bakar, Z. M. Kasirun, N. Salleh, and A. H. A. Halim, “Extracting

software features from online reviews to demonstrate requirements
reuse in software engineering,” in Proceedings of the International

Conference on Computing & Informatics, 2017, pp. 184-190.

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, and T. K. Landauer,
“Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41,

no. 6, p. 391, 1998.

[14] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining.
Adaptive C. MIT Press, 2001.

