

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 125

Test Case Prioritization based on Extended Finite

State Machine Model

Muhammad Luqman Shafie and Wan M. N. Wan Kadir
Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

luqman_1993@yahoo.com.my

Abstract—Regression testing is done to test the modified

version of a software, however re-testing all test cases are very

inefficient. Test Case Prioritization is one of the techniques used

to overcome this problem. It prioritizes the test cases in the test

suite by ordering them according to a desired objective goal like

revealing faults earlier and has various approaches in

performing it. One of them is model-based approach which

utilizes the system model to make prioritization. The advantages

of this approach are cheaper execution cost and lesser

prioritization time compared to code-based prioritization. In

this paper, we propose a model-based test case prioritization

approach using extended finite state machine. The proposed

approach will be based on several related existing approaches

with an extra criterion of degree of code changes. The

contribution of the proposed approach is it overcomes the

identified limitations from the related works and improve the

prioritization result.

Index Terms—Extended Finite State Machine; Model-Based;

Regression Testing; Test Case Prioritization Technique.

I. INTRODUCTION

A software system that has passed the development phases

cannot be counted as completely done because changes in a

software system will continuously occur over time and are

inevitable due to ever changing environment [1]. Parts of the

system such as architectures, requirements and functions are

modified, added and discarded to satisfy the changes. When

changes are implemented to a system, its test cases are rerun

for testing purpose to ensure that no new defects are

introduced during the modification. This phase is necessary

to ensure that the quality of the system is in top notch [1] and

is particularly known as Regression Testing. The prime

purpose of Regression Testing is to make sure that

modification and changes made to the particular software

system did not create any negative impacts on it [2].

The main issue in Regression Testing is that it has been

proved to be among the costliest phases in a software

development life cycle [3]. Hall et al. [4] claims that almost

80% of testing budget is dominated by Regression Testing.

This circumstance arises mostly because software always

undergoes modifications and new version is released from

time to time to cope with these changes. As a result, the test

suite will have the tendency to grow in size because new test

cases might be added to cover the modified or added elements

for the testing purpose [5]. As a consequence, the testing cost

will obviously escalate endlessly and there will be a point

where re-testing all the test suite will not be relevant anymore.

Furthermore, Regression Testing also requires a lot of times

in the process. A report of an industrial collaborator is the

prove of these issues stating that one of its products consisting

of 20,000 lines of code involves an extremely long period of

seven weeks for the whole test suite to be executed [6]. This

inconvenient situation without a doubt will jeopardize the

testing phase significantly in many factors.

For these particular reasons, researchers had come up with

assorted techniques in order to solve this issue. In their

survey, Yoo et al. [2] explain and cluster Regression Testing

techniques into three main categories which are Test Suite

Minimization (TSM), Test Case Selection (TCS) and Test

Case Prioritization (TCP). TCM discards any outdated or

unnecessary test cases permanently from the test suite [7]

while TCS select relevant test cases from the test suite

according to certain criteria [8]. Lastly is the TCP which re-

arranges the test cases from the original test suite based on a

specified purpose in a manner that the test cases that serve the

purpose the most are given the highest priority [9]. All of

these techniques possess their advantages and limitations in

Regression Testing. However, in this paper we will be

focusing on TCP technique, more specifically the model-

based approach.

Korel et al. [10] are among the earliest researchers that

propose Model-based TCP which implement a different

approach in prioritizing test cases than the commonly used

code-based techniques. In this particular approach, the system

model is utilized to prioritize test cases instead of the system

code itself. State machine diagram, activity diagram and

sequence diagram are some of the basic models used in

model-based prioritization. The advantage of model-based

over code-based is cheaper execution cost [10]. Analyzing

models would be faster than the source code and early

feedback can be achieved since models are made before

source code is implemented [3]. Despite that, the number of

papers published related to developing new model-based

approach is relatively low throughout the years. According to

a study conducted, only four papers proposed or used model-

based approach between 2001 and 2009 and six were

published during 2009 and 2010 period [3]. Therefore, the

aim of this paper is to propose a model-based test cast

prioritization approach using Extended Finite State Machine.

The remainder of this paper presents our technical paper of

the model-based Test Case Prioritization approach. A

comprehensive elaboration of Extended Finite State Machine

and Model-based Testing is given in Section II and III

respectively. A detailed elaboration regarding model-based

TCP is presented in Section IV. Section V shows the related

works in model-based approach. Our proposed technique was

presented in in Section VI while the empirical study is shown

in Section VII. Lastly, Section VIII will conclude the

technical paper.

Journal of Telecommunication, Electronic and Computer Engineering

126 e-ISSN: 2289-8131 Vol. 9 No. 3-3

II. EXTENDED FINITE STATE MACHINE

The model that we are focusing in this study is the

Extended Finite State Machine. The traditional Finite State

Machine (FSM) is extended by Extended FSM (EFSM) by

context variables, input parameters, output parameters and

conditions when a transition can be fired. EFSM comprises

of states and transitions between states [10]. Transitions

consist of an event, a condition and a sequence of actions. A

particular transition is executed when a specified event occurs

and when an enabling condition related to the transition

evaluates to true. As a result of a transition’s execution,

actions associated to it are also executed. The formal

definition of an EFSM taken from Tahat et al. [11] is a 7-tuple

𝑀 = (𝛴, 𝑄, 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑥𝑖𝑡, 𝑉, 𝑂, 𝑅′) where Σ denotes the set of

events, 𝑄 denotes the set of states, 𝑆𝑡𝑎𝑟𝑡 ∈ 𝑄 denotes the start

state, 𝐸𝑥𝑖𝑡 ∈ 𝑄 denotes the stop state, 𝑉 denotes a finite set

of variables, O denotes the set of actions and R′ is the set of

transitions. Each transition 𝑇 is denoted by the tuple: 𝑇 =
(𝐸, 𝐶, 𝐴, 𝑆𝑏 , 𝑆𝑒) where 𝐸 ∈ Σ is an event, 𝐶 denotes an

enabling condition described over 𝑉, 𝐴 is a series of actions,

𝐴 = 〈𝑎1, 𝑎2, … , 𝑎𝑗〉, where 𝑎𝑖 ∈ 𝑂, 𝑆𝑏 ∈ 𝑄 denotes

transition’s starting state, 𝑆𝑒 ∈ 𝑄 is the transition’s exiting

state.

For instance, an example of EFSM quoted from Tahat et al.

[12] is shown. Figure 1 illustrates an EFSM model of a

simplified ATM system which provides three types of

functionalities: balance inquiry, withdrawal and deposit.

These experimental functions do not represent a real-world

operation of an ATM system. To start a transaction, a user

must enter a bank card which contains the actual PIN number

and money balance represented by the event 𝐶𝑎𝑟𝑑(𝑥, 𝑦)

where transition 𝑇1 is triggered. To enter the main menu, a

matching prompted Pin number with the actual one must be

entered with a maximum of three attempts. For example,

transition 𝑇2 is executed when the system is at state S1 and

event 𝑃𝐼𝑁(𝑝) is received, the enabling conditions are true

when a mismatch PIN is entered where (𝑝! = 𝑝𝑖𝑛) and

(𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 < 3), next the series of actions are displaying

error message, increment 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 value by one and prompt

user to enter another PIN number.

III. MODEL-BASED TESTING

The aim of testing in the context of software engineering is

to show that whether the intended and the actual behaviors of

a system differ or not and to gain confidence that that they do

not [13]. In general terms, failure detection is the major goal

of testing which is done by searching the noticeable

distinction between the behaviors of implementation and the

planned behaviors of the system under test (SUT), as

indicated by its requirements. Shafique et al. [14] states that

software testing which is the evaluation of a SUT by spotting

its executions on valued inputs is probably the most

commonly utilized verification technique. Black-box testing

and white-box testing are the two main categories of software

testing depending on whether they rely entirely on the

specifications of the SUT or exclusively on its

implementation. Model-based Testing (MBT) is a branch of

software testing that relies on the exact behavior models that

encode the intended behaviors of the SUT which is a black-

box testing. In MBT, a SUT models can be utilized to

automatically generate test cases, unlike conventional testing

where each test case must be coded by the test engineer [15].

Figure 1: Example EFSM model of a simplified Automated Teller Machine
system

The process of MBT consists of several crucial steps in it

[13]. The first step is (1) building the models which are often

called as test model are built from the informal requirements

or specification documents of the SUT. It is crucial that the

test models to be simpler (more abstract) than the SUT or else

the attempt to validate the models would be equivalent to the

efforts of validating the SUT itself. The second step as

addressed by Utting et al. [13] is (2) to choose test selection

criteria. This step is done to guide the automatic test

generation in order to produces a quality test suite, the one

that can satisfy the test policy described for the SUT. After

the test selection criteria are chosen, they are (3) transformed

into test case specifications that describe the notion of test

selection criteria and turn them to be operational.

The fourth step in MBT is where (4) a set of test cases is

generated using automatic test case generator given model

and a test case specification, which aims is to satisfy all of the

test case specifications. Finally, (5) once the test suite has

been generated, it is run. The execution may be manual which

is run by a person, or may be automated by a test execution

environment that support the ability to automatically execute

the tests and record their verdicts. In the process of running

the test cases, the test inputs are first concretized and then the

concrete data are sent to the SUT. Then, the resulting concrete

outputs from the SUT will be abstracted to obtain the high-

level actual result. This actual result will be compared with

the expected result to determine the verdict. This process of

concretization and abstraction is the duty delegated to a

component called adapter. Figure 2 illustrates the overall

process of MBT with the corresponding steps labelled.

Figure 2: MBT overall process

IV. MODEL-BASED TEST CASE PRIORITIZATION

Test Case Prioritization is a technique under regression

testing in which test cases are re-ordered from the original test

Test Case Prioritization based on Extended Finite State Machine Model

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 127

suite according to a particular purpose in a manner that the

test cases that serve the purpose the most is given the highest

priority [9]. We took the definition of Test Case Prioritization

problem proposed by Elbaum et al. [16] into consideration for

this systematic review which is stated below:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real number.

Problem: Find T ∈ PT such that

(∀𝑇′′)(𝑇′′ ∈ 𝑃𝑇)(𝑇′′ ≠ 𝑇′)[𝑓(𝑇′) ≥ 𝑓(𝑇′′)] (1)

In this definition, PT serves as the set of all possible

sequences of T, while f is the function when implemented to

any of the sequences, yields an award value for that particular

sequence. In short, the definition expect that the higher award

values are more preferable than the lower ones. There are a

number of possible goals when referring to prioritization in

this context. Elbaum et al. [16] also states some of the goals

in their study which are (1) to increase the rate of early faults

detection when executing test suite, (2) to increase the code

coverage under test at a faster pace when executing test suite,

(3) to increase their confidence in the system’s reliability at a

faster rate and (4) to increase possibility of revealing faults

associated to particular code changes earlier in testing

process.

Over time, researchers have proposed numerous

approaches for Test Case Prioritization. All of these

approaches can be divided into two main categories which are

code-based and model based. In code-based Test Case

Prioritization, test cases are prioritized by utilizing the source

code information of the software system. A survey conducted

by Mahdian et al. [5] states that the vast majority of test

selection strategies are code-based. A study carried out by

Catal et al. [3] also proved that the most investigated

prioritization method was coverage-based that conquered 40

percent of all the various techniques they had gathered.

Coverage-based is a kind of code-based prioritization where

the more coverage achieved by a test suite, the more chances

faults can be revealed earlier during testing process. Coverage

in this context means the code coverage of the software

system for example statement, function or code block. The

downside of code-based is that code knowledge is needed in

order to prioritize test cases [5] which means prioritization

cannot begin until the source code is available. Another

drawback of code-based is that most of them are language

dependent [5] so testing process will become troublesome in

cases where the program is written in various programming

languages.

On the other hand, model-based prioritization manipulates

the model of the software system to perform prioritization

[17]. Generally, any kind of Test Case Prioritization approach

that uses the system model in it can be categorized as model-

based approach. Some examples of system models are use

case diagram, sequence diagram, state machine diagram and

activity diagram. The primary advantage of model-based

prioritization is that execution of the system models is rather

faster than the execution of the system codes itself during

testing [10]. This is because system models are at a higher

level of abstraction thus capturing system’s behavior and

structure is less complex compared with the source code [11].

Therefore, model-based prioritization is considerably

inexpensive compared to code-based prioritization which is

both resource-wise and time-wise [10]. Nevertheless, model-

based prioritization also possesses their own weaknesses.

One of the major flaws is its dependence on the correctness

and completeness of the system models [18]. As the space is

limited, this topic regarding model-based weaknesses will not

be discussed in this study.

V. RELATED WORKS

Al-Herz et al. [19] proposed three approaches in their

study. One of them is named Degree Measure Method

(DMM) which utilized the Object Relation Diagram (ORD)

model which represents the design structure of web

application. This particular technique ranks components

based on fan-in degree then prioritizes test cases that cover

the highest ranked components. Fan in degree in this context

means the number of components that lead to this particular

component. The rationale behind this technique is that most

of the other components will fail to get services if this high

fan-in degree component break down [19]. The flaw in this

technique is which one should be given highest priority when

two components have the same fan-in degree. Their

suggestion to solve this problem is by adding more criteria

such as component type and fan-in edge type.

In addition, an approach namely Model Dependence-based

Test Prioritization was invented by Korel et al. [10] which

make use of Extended Finite State Machine (EFSM) to

perform prioritization. This approach was elaborated by them

in further details in their extended version of studies for

modification made both in software system and models and

for modification for which models are not modified (only

source code is modified) [11, 12]. In brief, this approach

utilizes the model dependence analysis to determine the

patterns of how added and deleted transitions communicate

with the modified model and lastly utilizes this information

to prioritize test cases. Despite that, this approach increases

execution time because it needs more analysis and gather

extra information from the model from other models

proposed by them. Furthermore, the whole model execution

trace must be stored to compute the interaction patterns thus

raising resources usage.

Another approach in model-based TCP is by using the

Structural Aspects of Use Case & Activity Diagram proposed

by Sapna et al. [18]. In their approach, the UML model use

case diagram and activity diagram are used as the input for

prioritization. The process starts with capturing data from all

use case diagrams to calculate use case priority. Next,

scenarios are extracted from activity diagram and assigned

weights to their nodes and edges. The weight of path

(scenario) is calculated then finally prioritize by summing the

sum of the priorities starting at level 1 of the schema and

moving down adding the weights of all the nodes up to the

scenario weight. The downside in this approach is its

dependence on the correctness and completeness of the use

case diagram and activity diagram. For example, if the

activity diagram is not complete, there will be possibilities

where some requirements are not captured. As the result, the

scenarios will not be generated and this will affect the overall

prioritization.

VI. PROPOSED APPROACH

Before elaborating the proposed approach, some related

existing approaches proposed by Tahat et al. [11] are clarified

for further understanding in the sub sections. The formal

Journal of Telecommunication, Electronic and Computer Engineering

128 e-ISSN: 2289-8131 Vol. 9 No. 3-3

definitions which will be used throughout the following sub

sections are described as follow. 𝑇𝐶𝐻 is the set with high

priority tests, 𝑇𝐶𝐿 is the set with low priority tests, 𝑇𝐶𝐻 ∩
𝑇𝐶𝐿 = ∅, 𝑇𝑆 = 〈𝑡1, 𝑡2, … , 𝑡𝑁〉 is an ordered test suite of size

𝑁 tests, 𝑡𝑖 is a test case, 𝑖 is the test case number, 𝑇𝑆𝑃 is a

prioritized ordered test suite, R′ = {𝑇1, 𝑇2, … , 𝑇𝑗 , 𝑇𝑂} is the set

of all transitions of size 𝑂 transitions and 𝑗 is the transition

number, 𝑀𝑇 is a set of all modified transitions, 𝑆(𝑡𝑖) is a

sequence of transitions traversed by 𝑡𝑖, 𝐴(𝑡𝑖) is a set of

modified transitions executed by test 𝑡𝑖. Example 1 described

below is utilized to show the example of possible result of

prioritization for the approaches mentioned later.

Example 1: Suppose that 𝑀𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5}, 𝑇𝑆 =
〈𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉. For each test the following

modified transitions are traversed,
(𝑡1: 𝑇1, 𝑇2, 𝑇1, 𝑇2, 𝑇3) (𝑡2: 𝑇3, 𝑇4, 𝑇5) (𝑡3: 𝑇3, 𝑇4) (𝑡4: 𝑇5) (𝑡5: 𝑇1)

(𝑡6: 𝑇1, 𝑇2, 𝑇1, 𝑇2) (𝑡7: 𝑇2, 𝑇4) (𝑡8: 𝑇3, 𝑇4, 𝑇2, 𝑇4) (𝑡8: ∅) (𝑡9: ∅)
. Suppose 𝐴(𝑡1) = {𝑇1, 𝑇2, 𝑇3}; 𝐴(𝑡2) = {𝑇3, 𝑇4, 𝑇5}; 𝐴(𝑡3) =
{𝑇3, 𝑇4}; 𝐴(𝑡4) = {𝑇5}; 𝐴(𝑡5) = {𝑇1}; 𝐴(𝑡6) = {𝑇1, 𝑇2};

𝐴(𝑡7) = {𝑇2, 𝑇4}; 𝐴(𝑡8) = {𝑇2, 𝑇3, 𝑇4}; 𝐴(𝑡9) = ∅; 𝐴(𝑡10) =
∅.

A. Selective Test Prioritization #1

In this approach, high priority is assigned to tests that

executed modified transitions in the model. Which means if a

test case includes at least one modified transition in its

execution, the test case will be given high priority. On the

other hand, low priority is assigned to the test cases that does

not execute any modified transition in its execution. In case

if during the execution of a test 𝑡𝑖, transition 𝑇𝑗 which is a

modified transition, 𝑇𝑗 ∈ 𝑀𝑇, is traversed, the 𝑡𝑖 will be put

into the high priority set, 𝑡𝑖 ∈ 𝑇𝐶𝐻. If not, the test case is

assigned to low priority set, 𝑡𝑖 ∈ 𝑇𝐶𝐿. All test cases in high

priority set will be executed first and randomly then all the

test cases in low priority set will be executed randomly. .

Therefore, a possible prioritized test suite using this particular

approach will be 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉.

B. Even Spread Count-based Test Prioritization #2

The idea of this approach is that all modified transitions

must be given same chance to be covered during testing.

Meaning that it tries to balance the number of executions of

modified transitions during testing. Higher priority is given

to a test that executes a modified transition which is traversed

the least number of times at any point of testing.

An additional definition of a function 𝑐𝑜𝑢𝑛𝑡(𝑇, 𝑆′) that

describes the number of tests in 𝑆′ on which 𝑇 is executed is

used in this approach. The equation of the function is:

𝑐𝑜𝑢𝑛𝑡(𝑇, 𝑆′) = ∑ 𝐹 (𝑇, 𝑡𝑖𝑗
)

𝑚

𝑗=1

 (2)

where function 𝐹(𝑇, 𝑡𝑖𝑗
) returns 1 if 𝑇 ∈ 𝐴(𝑡𝑖), if not 0 is

returned. Let assumes 𝑇𝑖 and 𝑇𝑘 are two modified transitions.

𝑇𝑘 would has a higher priority than 𝑇𝑖 if 𝑐𝑜𝑢𝑛𝑡(𝑇𝑘 , 𝑆′) <

𝑐𝑜𝑢𝑛𝑡(𝑇𝑗 , 𝑆′) which means transition with lowest

𝑐𝑜𝑢𝑛𝑡(𝑇, 𝑆′) will be the highest priority.

Refer to Example 1. Suppose firstly the approach select and

execute test 𝑡4 containing 𝑇5 from its algorithm which is,

select randomly test 𝑡𝑖 ∈ 𝐴(𝑡𝑖) for which 𝐴(𝑡𝑖) ≠ ∅ and

remove 𝑡𝑖 from 𝑇𝑆. Then transition counts for each modified

transition are then updated as follow: 𝑐𝑜𝑢𝑛𝑡(𝑇1) =
0, 𝑐𝑜𝑢𝑛𝑡(𝑇2) = 0, 𝑐𝑜𝑢𝑛𝑡(𝑇3) = 0, 𝑐𝑜𝑢𝑛𝑡(𝑇4) =
0, 𝑐𝑜𝑢𝑛𝑡(𝑇5) = 1. Then, the approach identified four

modified transitions with minimum count, 𝐸 =
{𝑇1, 𝑇2, 𝑇3, 𝑇4}. Next, suppose the approach select 𝑇2, the tests

that execute 𝑇2 are identified, 𝑇2: 𝑡1, 𝑡6, 𝑡7, 𝑡8. Assumes test 𝑡6

is selected and executed, the transition counts for each

modified transition are updated again as follow: 𝑐𝑜𝑢𝑛𝑡(𝑇1) =
1, 𝑐𝑜𝑢𝑛𝑡(𝑇2) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇3) = 0, 𝑐𝑜𝑢𝑛𝑡(𝑇4) =
0, 𝑐𝑜𝑢𝑛𝑡(𝑇5) = 1. Then, the approach identified two

modified transitions with minimum count, 𝐸 = {𝑇3, 𝑇4}.

Next, suppose the approach select 𝑇4, the tests that execute 𝑇4

are identified, 𝑇4: 𝑡2, 𝑡3, 𝑡7, 𝑡8. Assumes test 𝑡3 is selected and

executed, the transition counts for each modified transition

are updated again as follow: 𝑐𝑜𝑢𝑛𝑡(𝑇1) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇2) =
1, 𝑐𝑜𝑢𝑛𝑡(𝑇3) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇4) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇5) = 1. The

approach will continue looping until all tests that triggered at

least one marked transition is selected. Lastly, 𝑡10 and 𝑡9 that

do not traverse any modified transition are executed

randomly. Therefore, a possible prioritized test suite using

this particular approach will be 𝑇𝑆𝑃 =
〈𝑡4, 𝑡6, 𝑡3, 𝑡2, 𝑡1, 𝑡5, 𝑡8, 𝑡7, 𝑡9, 𝑡10〉.

C. Proposed Approach

The proposed approach is inspired by these approaches

mentioned earlier while trying to overcome limitations

discussed in the related works. The idea of the proposed

approach is that higher priority is assigned to tests that

executed more modified transitions in the model while

balancing the number of executions of modified transitions

during testing. A modified transition will also be assigned a

degree of code changes where the higher the degree of code

changes of a transition, the higher its priority will be.

Modified transitions that have high degree of code changes

executed the least number of times will be given higher

priority. Figure 3 illustrated the overall implementation of the

proposed approach for a better visualization.

For clarification purpose, refer to Example 1. Suppose the

transition score 𝑆𝑐𝑇(𝑇𝑗) for each modified transition is

calculated where 𝑆𝑐𝑇(𝑇1) = 2; 𝑆𝑐𝑇(𝑇2) = 1; 𝑆𝑐𝑇(𝑇3) = 1;
𝑆𝑐𝑇(𝑇4) = 1; 𝑆𝑐𝑇(𝑇5) = 3. Then the test case score 𝑆𝑐𝑡(𝑡𝑖)

for each test case is calculated based on transition score

calculated earlier where 𝑆𝑐𝑡(𝑡1) = 4; 𝑆𝑐𝑡(𝑡2) = 5;
𝑆𝑐𝑡(𝑡3) = 2; 𝑆𝑐𝑡(𝑡4) = 3; 𝑆𝑐𝑡(𝑡5) = 2; 𝑆𝑐𝑡(𝑡6) = 3;
𝑆𝑐𝑡(𝑡7) = 2; 𝑆𝑐𝑡(𝑡8) = 3; 𝑆𝑐𝑡(𝑡9) = 0; 𝑆𝑐𝑡(𝑡10) = 0. It can

be observed that 𝑆𝑐𝑡(𝑡2) has the highest value therefore it will

be appended first into the last position of the prioritized test

suite, 𝑇𝑆𝑃 = 〈𝑡2〉. Next the set 𝐸 where modified transitions

that have been appended into 𝑇𝑆𝑃 are determined where 𝐸 =
{𝑇3, 𝑇4, 𝑇5}. Then the test case score 𝑆𝑐𝑡(𝑡) for each test case

is updated. If a test case in 𝑇𝑆 contains the modified

transitions in set 𝐸, then the transition score of those modified

transitions in the test case will be eliminated. Thus, 𝑆𝑐𝑡(𝑡1) =
3; 𝑆𝑐𝑡(𝑡2) = 0; 𝑆𝑐𝑡(𝑡3) = 0; 𝑆𝑐𝑡(𝑡4) = 0; 𝑆𝑐𝑡(𝑡5) = 2;
𝑆𝑐𝑡(𝑡6) = 3; 𝑆𝑐𝑡(𝑡7) = 1; 𝑆𝑐𝑡(𝑡8) = 1; 𝑆𝑐𝑡(𝑡9) = 0;
𝑆𝑐𝑡(𝑡10) = 0. Based on the updated 𝑆𝑐𝑡(𝑡) values, it can be

observed that 𝑆𝑐𝑡(𝑡1) and 𝑆𝑐𝑡(𝑡6) has the highest value.

Therefore, one random test case between these two is

appended into the last position of the prioritized test suite 𝑇𝑆𝑃

and assume that 𝑡1 is chosen, then 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1〉. The set 𝐸

will be updated as 𝐸 = {𝑇3, 𝑇4, 𝑇5, 𝑇1, 𝑇2}. The updated test

case score will be 𝑆𝑐𝑡(𝑡1) = 0; 𝑆𝑐𝑡(𝑡2) = 0; 𝑆𝑐𝑡(𝑡3) = 0;
𝑆𝑐𝑡(𝑡4) = 0; 𝑆𝑐𝑡(𝑡5) = 0; 𝑆𝑐𝑡(𝑡6) = 0; 𝑆𝑐𝑡(𝑡7) = 0;

Test Case Prioritization based on Extended Finite State Machine Model

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 129

𝑆𝑐𝑡(𝑡8) = 0; 𝑆𝑐𝑡(𝑡9) = 0; 𝑆𝑐𝑡(𝑡10) = 0. Considering that all

test cases scores are 0, the remaining test cases in 𝑇𝑆 will be

selected randomly to be appended in 𝑇𝑆𝑃 . Therefore, a

possible prioritized test suite using this particular approach

will be 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉.

Figure 3: Flowchart of the proposed approach

The results of a possible prioritized test suite for all existing

approaches including the proposed approach obtained using

Example 1 are shown in the Table 1. Column three shows the

number of test cases required for all modified transitions to

be covered completely. From the result, it can be observed

that the proposed approach requires the smallest number of

test cases to cover all modified transition completely which

are two test cases. Here we hypothesize that when an

approach can produce a test suite that covers all modified

transitions faster, all bugs in the system can be detected more

effectively. To prove this assumption, an experiment has been

done which is explained in the next section.

Table 1
 Prioritized test suite for Example 1

Approach Possible Prioritized Test Suite

Num. of 𝑡

required for

100% 𝑇 cov.

#1 𝑇𝑆 = 〈𝑡4, 𝑡1, 𝑡5, 𝑡2, 𝑡3, 𝑡6, 𝑡8, 𝑡7, 𝑡9, 𝑡10〉 4

#2 𝑇𝑆𝑃 = 〈𝑡4, 𝑡6, 𝑡3, 𝑡2, 𝑡1, 𝑡5, 𝑡8, 𝑡7, 𝑡9, 𝑡10〉 3
P. Approach 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉

VII. EMPIRICAL STUDY

The aim of this empirical study is to evaluate and compare

the effectiveness of early faults detection of prioritized test

suite resulted from the implementation of the prioritization

approaches presented earlier: selective test prioritization,

even spread count-based test prioritization and the proposed

approach. This experiment is also aimed to prove that when

all modified transitions are covered faster in the test suite, the

detections of all faults would also be quicker. We created a

simple ATM model which we referred the ATM model in

Figure 1 and made some modifications. In our model, a user

can only deposit money once for a particular session and a

user’s maximum balance can only be less than or equal 100.

The system’s EFSM model is constructed using Spec

Explorer tool. A model program which is a set of rules written

in Spec# [20], an extension of C# is where the model’s

behaviours are described. Using a complete model program,

the tool produces a set of test cases using path coverage where

all transitions in the model will be traversed by at least one

test case. Using the test suite obtained, the tool then generates

the test code that can be run with the implementation of SUT

which is created using C#. Faults are seeded into the

implementation by making incorrect modifications while the

model is not modified. For each function where the faults are

seeded, its corresponding transition is marked as modified

transition. Mutation testing technique is used to seed faults

using value mutations, decision mutations and statement

mutations. Figure 4 shows the partial model of login scenario

generated by the tool using the model program written for the

ATM implementation. The test input for function

𝑖𝑛𝑠𝑒𝑟𝑡𝐶𝑎𝑟𝑑𝑇1(𝑖𝑛𝑡 𝑝𝑖𝑛, 𝑖𝑛𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒) and

𝑝𝑟𝑜𝑚𝑝𝑡𝑃𝑖𝑛𝑇2(𝑖𝑛𝑡 𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑃𝑖𝑛) are as follow: 𝑝𝑖𝑛 = 1,

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 50, 𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑃𝑖𝑛 = 1,2. Figure 5 shows the test

cases produced by the tool by exploring all the possible paths

in the model. The full model is not shown because the size is

considerably large with many possible paths and states but it

will be used for the evaluation purpose.

The full model consists of 10 transitions where each of

them represents a function in the implementation,
R′ = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9, 𝑇10}. A total of six faults

are seeded into the implementation of the ATM where only

one fault is seeded at a time to observe which test cases detect

it. A total of 19 test cases are generated from the full model

of the ATM. The modified transitions where the faults are

seeded are 𝑀𝑇 = {𝑇5, 𝑇6, 𝑇7, 𝑇8}. The transition score for the

modified transitions are: 𝑆𝑐(𝑇5) = 3, 𝑆𝑐(𝑇6) = 1, 𝑆𝑐(𝑇7) =
1, 𝑆𝑐(𝑇8) = 2. The modified transitions traversed by each

test case is as follow: 𝐴(𝑡1) = ∅, 𝐴(𝑡2) = {𝑇5, 𝑇8}, 𝐴(𝑡3) =
{𝑇5, 𝑇8}, 𝐴(𝑡4) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡5) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡6) =
{𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡7) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡8) = {𝑇5, 𝑇7, 𝑇8},

𝐴(𝑡9) = {𝑇5, 𝑇6, 𝑇7, 𝑇8}, 𝐴(𝑡10) = {𝑇5, 𝑇6, 𝑇7, 𝑇8}, 𝐴(𝑡11) =
{𝑇5, 𝑇6, 𝑇8}, 𝐴(𝑡12) = {𝑇5}, 𝐴(𝑡13) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡14) =
{𝑇5, 𝑇7}, 𝐴(𝑡15) = {𝑇5, 𝑇7}, 𝐴(𝑡16) = {𝑇5, 𝑇6, 𝑇7}, 𝐴(𝑡17) =
{𝑇5, 𝑇6}, 𝐴(𝑡18) = {𝑇5}, 𝐴(𝑡19) = {𝑇5}. Table 2 depicts the

faults with the corresponding test cases that detect them.

Journal of Telecommunication, Electronic and Computer Engineering

130 e-ISSN: 2289-8131 Vol. 9 No. 3-3

Figure 4: Model of login scenario

Figure 5: Test cases for login scenario

Table 2.

Faults detected by test cases

Test case

1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

F
au

lt

1 ✓ X X X X X X X X X X ✓ X X X X ✓ ✓ ✓

2 ✓ X X X X X X X X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ X X X X X X X X X X ✓ X X X X ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ X X ✓ ✓

5 ✓ ✓ ✓ X ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ X X ✓ ✓

Using the information obtained, we implement the

prioritization approaches mentioned earlier to get one

possible prioritized test suite 𝑇𝑆𝑃 that can be generated by

each approach. Then, the prioritized test suites are evaluated

by how rapid the they can detect faults using the Average of

the Percentage of Faults Detected (APFD) [16]. APFD is a

metric used to quantify how effective a prioritized test suite

detects faults. The value of APFD result range from 0 to 100

where higher value means better faults detection rates. The

equation for calculating the APFD value acquired from

Elbaum et al. [21] is shown as follows where T is a test suite

containing n test cases an F is a set of m faults revealed by T.

𝑇𝐹𝑖 is the first test case in ordering T’ of T which reveals fault

i and the APFD value of T’ is:

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1 + 𝑇𝐹2 + ⋯ + 𝑇𝐹𝑚

𝑛𝑚
+

1

2𝑛
 (3)

Note that calculation the APFD can only be accomplished

when advance knowledge of faults and test cases result is

available. Therefore, it can only be used for evaluation

purpose to determine the effectiveness of an approach in

revealing faults so that in the future the best approach can be

utilized to increase the possibility of revealing faults earlier

during testing where the position of faults is unknown. Table

3 shows the prioritized test suite resulted from the

implementation of the prioritization approaches to the ATM

model. Column three shows the number of test cases required

for all modified transitions to be covered completely.

Table 3: Prioritized test suite for ATM model

Approach Possible Prioritized Test Suite

Num. of 𝑡

required for

100% 𝑇 cov.

#1 𝑇𝑆 = 〈
𝑡13, 𝑡15, 𝑡12, 𝑡18, 𝑡4, 𝑡2, 𝑡19,
𝑡14, 𝑡9, 𝑡10, 𝑡7, 𝑡8, 𝑡11, 𝑡16,

𝑡6, 𝑡17, 𝑡3, 𝑡5, 𝑡1

〉 9

#2 𝑇𝑆 = 〈
𝑡18, 𝑡17, 𝑡15, 𝑡2, 𝑡10, 𝑡16, 𝑡6,

𝑡11, 𝑡9, 𝑡14, 𝑡4, 𝑡7, 𝑡8, 𝑡3,
𝑡13, 𝑡5, 𝑡12, 𝑡19, 𝑡1

〉 4

P. Approach 𝑇𝑆 = 〈
𝑡9, 𝑡15, 𝑡18, 𝑡4, 𝑡2, 𝑡8, 𝑡7,

𝑡19, 𝑡16, 𝑡5, 𝑡1, 𝑡17, 𝑡10, 𝑡6,
𝑡11, 𝑡3, 𝑡12, 𝑡13, 𝑡14

〉 1

The calculation of APFD for each prioritized test suite is

shown as follows:

𝐴𝑃𝐹𝐷(#1) = 1 −
1 + 5 + 1 + 9 + 5 + 9

(19)(6)
+

1

2(19)
= 0.76

𝐴𝑃𝐹𝐷(#2) = 1 −
3 + 4 + 3 + 2 + 7 + 2

(19)(6)
+

1

2(19)
= 0.84

𝐴𝑃𝐹𝐷(𝑃. 𝐴.) = 1 −
1 + 1 + 1 + 1 + 4 + 1

(19)(6)
+

1

2(19)
= 0.94

From the calculation above, proposed approach has the

highest detection rate of 94 % followed by even spread count-

based test prioritization and selective test prioritization with

84% and 76 % detection rate respectively. Figure 6 – 8

illustrate percentage of test suite executed over the percentage

of faults detected to visualize the progress of test cases

execution using the prioritized test suites. By observing Table

3, the proposed approach requires only one test case to cover

all modified transitions while the selective test prioritization

and even spread count-based test prioritization require nine

and four test cases respectively. Based on the APFD result

and the graph, the proposed approach clearly outperforms the

other two approaches in term of early faults detection. The

proposed approach only requires to execute four test cases to

capture all the faults seeded while the selective test

prioritization and even spread count-based test prioritization

require nine and seven test cases respectively. Therefore, the

Test Case Prioritization based on Extended Finite State Machine Model

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 131

result approves our assumption that when an approach can

produce a test suite that covers all modified transitions faster,

all bugs in the system can be detected more effectively.

Figure 6: APFD graph for selective test prioritization approach

Figure 7: APFD graph for even spread count-based test prioritization

Figure 8: APFD graph for proposed approach

VIII. CONCLUSION

This paper presents a model-based approach in Test Case

Prioritization using EFSM. A brief description on each of the

related subjects, such as EFSM, model-based testing and

model-based TCP is provided. In order to identify the gaps in

the existing approaches, a number of related works in model-

based TCP are critically reviewed. These approaches are

considered as theoretical basis or foundations for the

proposed approach. Next, we present our proposed approach

that aims at improving the limitations found in the related

work. An empirical study is conducted to evaluate the

effectiveness of the proposed approach and to prove that

when an approach can produce a test suite that covers all

modified transitions faster, all bugs in the system can be

detected more effectively. The result obtained showed that

the assumption is correct and the proposed approach

outperforms the other two existing approaches in term of

faults detection. For future works, the proposed approach will

be experimented using publicly available dataset of larger

size and compared will more approaches to evaluate its

effectiveness.

ACKNOWLEDGEMENT

The authors would like to express their deepest gratitude to

Ministry of Higher Education Malaysia (MOHE) for their

financial support under Fundamental Research Grant Scheme

(Vot number R.J130000.7816.4F824).

REFERENCES

[1] M. Rava and W. M. Wan-Kadir, “A review on prioritization
techniques in regression testing,” International Journal of Software

Engineering and Its Applications, vol. 10, no. 1, pp. 221-232, 2016.

[2] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and

Reliability, vol. 22, no. 2, pp. 67-120, 2012.

[3] C. Catal and D. Mishra, “Test case prioritization: a systematic
mapping study,” Software Quality Journal, vol. 21, no. 3, pp. 445-

478, 2013.

[4] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in

software engineering,” IEEE Transactions on Software Engineering,

vol. 38, no. 6, pp. 1276-1304, 2012.
[5] A. Mahdian, A. A. Andrews, and O. J. Pilskalns, “Regression testing

with UML software designs: a survey,” Journal of Software

Maintenance and Evolution: Research and Practice, vol. 21, no. 4, pp.
253-286, 2009.

[6] S. Elbaum, P. Kallakuri, A. Malishevsky, G. Rothermel, and S.

Kanduri, “Understanding the effects of changes on the cost‐
effectiveness of regression testing techniques,” Software Testing,

Verification and Reliability, vol. 13, no. 2, pp. 65-83, 2003.

[7] C.-T. Lin, K.-W. Tang, and G. M. Kapfhammer, “Test suite reduction
methods that decrease regression testing costs by identifying

irreplaceable tests,” Information and Software Technology, vol. 56,

no. 10, pp. 1322-1344, 2014.
[8] M. Grindal, B. Lindström, J. Offutt, and S. F. Andler, “An evaluation

of combination strategies for test case selection,” Empirical Software

Engineering, vol. 11, no. 4, pp. 583-611, 2006.
[9] Y. Singh, A. Kaur, B. Suri, and S. Singhal, “Systematic Literature

Review on Regression Test Prioritization Techniques,” Informatica

(Slovenia), vol. 36, no. 4, pp. 379-408, 2012.
[10] B. Korel, L. H. Tahat, and M. Harman, “Test prioritization using

system models,” in 21st IEEE International Conference on Software
Maintenance (ICSM'05), 2005, pp. 559-568.

[11] L. Tahat, B. Korel, G. Koutsogiannakis, and N. Almasri, “State-based

models in regression test suite prioritization,” Software Quality
Journal, vol. 25, no. 3, pp. 703-742, 2016.

[12] L. Tahat, B. Korel, M. Harman, and H. Ural, “Regression test suite

prioritization using system models,” Software Testing, Verification
and Reliability, vol. 22, no. 7, pp. 481-506, 2012.

[13] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-

based testing approaches,” Software Testing, Verification and
Reliability, vol. 22, no. 5, pp. 297-312, 2012.

[14] M. Shafique and Y. Labiche, “A systematic review of state-based test

tools,” International Journal on Software Tools for Technology
Transfer, vol. 17, no. 1, pp. 59-76, 2015.

[15] J. Ernits, R. Roo, J. Jacky, and M. Veanes, “Model-based testing of

web applications using NModel,” in Testing of Software and
Communication Systems. 2009, pp. 211-216.

[16] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test

cases for regression testing,” in ISSTA '00 Proceedings of the 2000
ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2000, pp. 102-112.

[17] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Application of
system models in regression test suite prioritization,” in IEEE

International Conference on Software Maintenance, 2008, pp. 247-

256.
[18] P. Sapna and H. Mohanty, “Prioritizing use cases to aid ordering of

scenarios,” in Third UKSim European Symposium on Computer

Modeling and Simulation, 2009, pp. 136-141.

Journal of Telecommunication, Electronic and Computer Engineering

132 e-ISSN: 2289-8131 Vol. 9 No. 3-3

[19] A. Al-Herz and M. Ahmed, “Model-based web components testing: a
prioritization approach,” in International Conference on Software

Engineering and Computer Systems, 2011, pp. 25-40.

[20] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec# programming
system: An overview,” in International Workshop on Construction

and Analysis of Safe, Secure, and Interoperable Smart Devices, 2004,
pp. 49-69.

[21] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case

prioritization: A family of empirical studies,” IEEE Transactions on
Software Engineering, vol. 28, no. 2, pp. 159-182, 2002.

