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Abstract—Regression testing is done to test the modified 

version of a software, however re-testing all test cases are very 

inefficient. Test Case Prioritization is one of the techniques used 

to overcome this problem. It prioritizes the test cases in the test 

suite by ordering them according to a desired objective goal like 

revealing faults earlier and has various approaches in 

performing it. One of them is model-based approach which 

utilizes the system model to make prioritization. The advantages 

of this approach are cheaper execution cost and lesser 

prioritization time compared to code-based prioritization. In 

this paper, we propose a model-based test case prioritization 

approach using extended finite state machine. The proposed 

approach will be based on several related existing approaches 

with an extra criterion of degree of code changes. The 

contribution of the proposed approach is it overcomes the 

identified limitations from the related works and improve the 

prioritization result. 

 

Index Terms—Extended Finite State Machine; Model-Based; 

Regression Testing; Test Case Prioritization Technique. 

 

I. INTRODUCTION 

 

A software system that has passed the development phases 

cannot be counted as completely done because changes in a 

software system will continuously occur over time and are 

inevitable due to ever changing environment [1]. Parts of the 

system such as architectures, requirements and functions are 

modified, added and discarded to satisfy the changes. When 

changes are implemented to a system, its test cases are rerun 

for testing purpose to ensure that no new defects are 

introduced during the modification. This phase is necessary 

to ensure that the quality of the system is in top notch [1] and 

is particularly known as Regression Testing. The prime 

purpose of Regression Testing is to make sure that 

modification and changes made to the particular software 

system did not create any negative impacts on it [2]. 

The main issue in Regression Testing is that it has been 

proved to be among the costliest phases in a software 

development life cycle [3]. Hall et al. [4] claims that almost 

80% of testing budget is dominated by Regression Testing. 

This circumstance arises mostly because software always 

undergoes modifications and new version is released from 

time to time to cope with these changes. As a result, the test 

suite will have the tendency to grow in size because new test 

cases might be added to cover the modified or added elements 

for the testing purpose [5]. As a consequence, the testing cost 

will obviously escalate endlessly and there will be a point 

where re-testing all the test suite will not be relevant anymore. 

Furthermore, Regression Testing also requires a lot of times 

in the process. A report of an industrial collaborator is the 

prove of these issues stating that one of its products consisting 

of 20,000 lines of code involves an extremely long period of 

seven weeks for the whole test suite to be executed [6]. This 

inconvenient situation without a doubt will jeopardize the 

testing phase significantly in many factors. 

For these particular reasons, researchers had come up with 

assorted techniques in order to solve this issue. In their 

survey, Yoo et al. [2] explain and cluster Regression Testing 

techniques into three main categories which are Test Suite 

Minimization (TSM), Test Case Selection (TCS) and Test 

Case Prioritization (TCP). TCM discards any outdated or 

unnecessary test cases permanently from the test suite [7] 

while TCS select relevant test cases from the test suite 

according to certain criteria [8]. Lastly is the TCP which re-

arranges the test cases from the original test suite based on a 

specified purpose in a manner that the test cases that serve the 

purpose the most are given the highest priority [9]. All of 

these techniques possess their advantages and limitations in 

Regression Testing. However, in this paper we will be 

focusing on TCP technique, more specifically the model-

based approach. 

Korel et al. [10] are among the earliest researchers that 

propose Model-based TCP which implement a different 

approach in prioritizing test cases than the commonly used 

code-based techniques. In this particular approach, the system 

model is utilized to prioritize test cases instead of the system 

code itself. State machine diagram, activity diagram and 

sequence diagram are some of the basic models used in 

model-based prioritization. The advantage of model-based 

over code-based is cheaper execution cost [10]. Analyzing 

models would be faster than the source code and early 

feedback can be achieved since models are made before 

source code is implemented [3]. Despite that, the number of 

papers published related to developing new model-based 

approach is relatively low throughout the years. According to 

a study conducted, only four papers proposed or used model-

based approach between 2001 and 2009 and six were 

published during 2009 and 2010 period [3]. Therefore, the 

aim of this paper is to propose a model-based test cast 

prioritization approach using Extended Finite State Machine. 

The remainder of this paper presents our technical paper of 

the model-based Test Case Prioritization approach. A 

comprehensive elaboration of Extended Finite State Machine 

and Model-based Testing is given in Section II and III 

respectively. A detailed elaboration regarding model-based 

TCP is presented in Section IV. Section V shows the related 

works in model-based approach. Our proposed technique was 

presented in in Section VI while the empirical study is shown 

in Section VII. Lastly, Section VIII will conclude the 

technical paper. 
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II. EXTENDED FINITE STATE MACHINE 

 

The model that we are focusing in this study is the 

Extended Finite State Machine. The traditional Finite State 

Machine (FSM) is extended by Extended FSM (EFSM) by 

context variables, input parameters, output parameters and 

conditions when a transition can be fired. EFSM comprises 

of states and transitions between states [10]. Transitions 

consist of an event, a condition and a sequence of actions. A 

particular transition is executed when a specified event occurs 

and when an enabling condition related to the transition 

evaluates to true. As a result of a transition’s execution, 

actions associated to it are also executed. The formal 

definition of an EFSM taken from Tahat et al. [11] is a 7-tuple 

𝑀 = (𝛴, 𝑄, 𝑆𝑡𝑎𝑟𝑡, 𝐸𝑥𝑖𝑡, 𝑉, 𝑂, 𝑅′) where Σ denotes the set of 

events, 𝑄 denotes the set of states, 𝑆𝑡𝑎𝑟𝑡 ∈ 𝑄 denotes the start 

state, 𝐸𝑥𝑖𝑡 ∈ 𝑄 denotes the stop state, 𝑉 denotes a finite set 

of variables, O denotes the set of actions and R′ is the set of 

transitions. Each transition 𝑇 is denoted by the tuple: 𝑇 =
(𝐸, 𝐶, 𝐴, 𝑆𝑏 , 𝑆𝑒) where 𝐸 ∈ Σ is an event, 𝐶 denotes an 

enabling condition described over 𝑉, 𝐴 is a series of actions, 

𝐴 = 〈𝑎1, 𝑎2, … , 𝑎𝑗〉, where 𝑎𝑖 ∈ 𝑂, 𝑆𝑏 ∈ 𝑄 denotes 

transition’s starting state, 𝑆𝑒 ∈ 𝑄 is the transition’s exiting 

state. 

For instance, an example of EFSM quoted from Tahat et al. 

[12] is shown. Figure 1 illustrates an EFSM model of a 

simplified ATM system which provides three types of 

functionalities: balance inquiry, withdrawal and deposit. 

These experimental functions do not represent a real-world 

operation of an ATM system. To start a transaction, a user 

must enter a bank card which contains the actual PIN number 

and money balance represented by the event 𝐶𝑎𝑟𝑑(𝑥, 𝑦) 

where transition 𝑇1 is triggered. To enter the main menu, a 

matching prompted Pin number with the actual one must be 

entered with a maximum of three attempts. For example, 

transition 𝑇2 is executed when the system is at state S1 and 

event 𝑃𝐼𝑁(𝑝) is received, the enabling conditions are true 

when a mismatch PIN is entered where (𝑝! = 𝑝𝑖𝑛) and 

(𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 < 3), next the series of actions are displaying 

error message, increment 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 value by one and prompt 

user to enter another PIN number. 

 

III. MODEL-BASED TESTING 

 

The aim of testing in the context of software engineering is 

to show that whether the intended and the actual behaviors of 

a system differ or not and to gain confidence that that they do 

not [13]. In general terms, failure detection is the major goal 

of testing which is done by searching the noticeable 

distinction between the behaviors of implementation and the 

planned behaviors of the system under test (SUT), as 

indicated by its requirements. Shafique et al. [14] states that 

software testing which is the evaluation of a SUT by spotting 

its executions on valued inputs is probably the most 

commonly utilized verification technique. Black-box testing 

and white-box testing are the two main categories of software 

testing depending on whether they rely entirely on the 

specifications of the SUT or exclusively on its 

implementation. Model-based Testing (MBT) is a branch of 

software testing that relies on the exact behavior models that 

encode the intended behaviors of the SUT which is a black-

box testing. In MBT, a SUT models can be utilized to 

automatically generate test cases, unlike conventional testing 

where each test case must be coded by the test engineer [15]. 

 

 

Figure 1: Example EFSM model of a simplified Automated Teller Machine 
system 

 

The process of MBT consists of several crucial steps in it 

[13]. The first step is (1) building the models which are often 

called as test model are built from the informal requirements 

or specification documents of the SUT. It is crucial that the 

test models to be simpler (more abstract) than the SUT or else 

the attempt to validate the models would be equivalent to the 

efforts of validating the SUT itself. The second step as 

addressed by Utting et al. [13] is (2) to choose test selection 

criteria. This step is done to guide the automatic test 

generation in order to produces a quality test suite, the one 

that can satisfy the test policy described for the SUT. After 

the test selection criteria are chosen, they are (3) transformed 

into test case specifications that describe the notion of test 

selection criteria and turn them to be operational. 

The fourth step in MBT is where (4) a set of test cases is 

generated using automatic test case generator given model 

and a test case specification, which aims is to satisfy all of the 

test case specifications. Finally, (5) once the test suite has 

been generated, it is run. The execution may be manual which 

is run by a person, or may be automated by a test execution 

environment that support the ability to automatically execute 

the tests and record their verdicts. In the process of running 

the test cases, the test inputs are first concretized and then the 

concrete data are sent to the SUT. Then, the resulting concrete 

outputs from the SUT will be abstracted to obtain the high-

level actual result. This actual result will be compared with 

the expected result to determine the verdict. This process of 

concretization and abstraction is the duty delegated to a 

component called adapter. Figure 2 illustrates the overall 

process of MBT with the corresponding steps labelled. 

 

 

Figure 2: MBT overall process 

 

IV. MODEL-BASED TEST CASE PRIORITIZATION 

 

Test Case Prioritization is a technique under regression 

testing in which test cases are re-ordered from the original test 
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suite according to a particular purpose in a manner that the 

test cases that serve the purpose the most is given the highest 

priority [9]. We took the definition of Test Case Prioritization 

problem proposed by Elbaum et al. [16] into consideration for 

this systematic review which is stated below: 

Given: T, a test suite; PT, the set of permutations of T; f, a 

function from PT to the real number. 

Problem: Find T ∈ PT such that 

 

(∀𝑇′′)(𝑇′′ ∈ 𝑃𝑇)(𝑇′′ ≠ 𝑇′)[𝑓(𝑇′) ≥ 𝑓(𝑇′′)] (1) 

 

In this definition, PT serves as the set of all possible 

sequences of T, while f is the function when implemented to 

any of the sequences, yields an award value for that particular 

sequence. In short, the definition expect that the higher award 

values are more preferable than the lower ones. There are a 

number of possible goals when referring to prioritization in 

this context. Elbaum et al. [16] also states some of the goals 

in their study which are (1) to increase the rate of early faults 

detection when executing test suite, (2) to increase the code 

coverage under test at a faster pace when executing test suite, 

(3) to increase their confidence in the system’s reliability at a 

faster rate and (4) to increase possibility of revealing faults 

associated to particular code changes earlier in testing 

process. 

Over time, researchers have proposed numerous 

approaches for Test Case Prioritization. All of these 

approaches can be divided into two main categories which are 

code-based and model based. In code-based Test Case 

Prioritization, test cases are prioritized by utilizing the source 

code information of the software system. A survey conducted 

by Mahdian et al. [5] states that the vast majority of test 

selection strategies are code-based. A study carried out by 

Catal et al. [3] also proved that the most investigated 

prioritization method was coverage-based that conquered 40 

percent of all the various techniques they had gathered. 

Coverage-based is a kind of code-based prioritization where 

the more coverage achieved by a test suite, the more chances 

faults can be revealed earlier during testing process. Coverage 

in this context means the code coverage of the software 

system for example statement, function or code block. The 

downside of code-based is that code knowledge is needed in 

order to prioritize test cases [5] which means prioritization 

cannot begin until the source code is available. Another 

drawback of code-based is that most of them are language 

dependent [5] so testing process will become troublesome in 

cases where the program is written in various programming 

languages. 

On the other hand, model-based prioritization manipulates 

the model of the software system to perform prioritization 

[17]. Generally, any kind of Test Case Prioritization approach 

that uses the system model in it can be categorized as model-

based approach. Some examples of system models are use 

case diagram, sequence diagram, state machine diagram and 

activity diagram. The primary advantage of model-based 

prioritization is that execution of the system models is rather 

faster than the execution of the system codes itself during 

testing [10]. This is because system models are at a higher 

level of abstraction thus capturing system’s behavior and 

structure is less complex compared with the source code [11]. 

Therefore, model-based prioritization is considerably 

inexpensive compared to code-based prioritization which is 

both resource-wise and time-wise [10]. Nevertheless, model-

based prioritization also possesses their own weaknesses. 

One of the major flaws is its dependence on the correctness 

and completeness of the system models [18]. As the space is 

limited, this topic regarding model-based weaknesses will not 

be discussed in this study. 

 

V. RELATED WORKS 

 

Al-Herz et al. [19] proposed three approaches in their 

study. One of them is named Degree Measure Method 

(DMM) which utilized the Object Relation Diagram (ORD) 

model which represents the design structure of web 

application. This particular technique ranks components 

based on fan-in degree then prioritizes test cases that cover 

the highest ranked components. Fan in degree in this context 

means the number of components that lead to this particular 

component. The rationale behind this technique is that most 

of the other components will fail to get services if this high 

fan-in degree component break down [19]. The flaw in this 

technique is which one should be given highest priority when 

two components have the same fan-in degree. Their 

suggestion to solve this problem is by adding more criteria 

such as component type and fan-in edge type. 

In addition, an approach namely Model Dependence-based 

Test Prioritization was invented by Korel et al. [10] which 

make use of Extended Finite State Machine (EFSM) to 

perform prioritization. This approach was elaborated by them 

in further details in their extended version of studies for 

modification made both in software system and models and 

for modification for which models are not modified (only 

source code is modified) [11, 12]. In brief, this approach 

utilizes the model dependence analysis to determine the 

patterns of how added and deleted transitions communicate 

with the modified model and lastly utilizes this information 

to prioritize test cases. Despite that, this approach increases 

execution time because it needs more analysis and gather 

extra information from the model from other models 

proposed by them. Furthermore, the whole model execution 

trace must be stored to compute the interaction patterns thus 

raising resources usage. 

Another approach in model-based TCP is by using the 

Structural Aspects of Use Case & Activity Diagram proposed 

by Sapna et al. [18]. In their approach, the UML model use 

case diagram and activity diagram are used as the input for 

prioritization. The process starts with capturing data from all 

use case diagrams to calculate use case priority. Next, 

scenarios are extracted from activity diagram and assigned 

weights to their nodes and edges. The weight of path 

(scenario) is calculated then finally prioritize by summing the 

sum of the priorities starting at level 1 of the schema and 

moving down adding the weights of all the nodes up to the 

scenario weight. The downside in this approach is its 

dependence on the correctness and completeness of the use 

case diagram and activity diagram. For example, if the 

activity diagram is not complete, there will be possibilities 

where some requirements are not captured. As the result, the 

scenarios will not be generated and this will affect the overall 

prioritization. 

 

VI. PROPOSED APPROACH 

 

Before elaborating the proposed approach, some related 

existing approaches proposed by Tahat et al. [11] are clarified 

for further understanding in the sub sections. The formal 
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definitions which will be used throughout the following sub 

sections are described as follow. 𝑇𝐶𝐻 is the set with high 

priority tests, 𝑇𝐶𝐿 is the set with low priority tests, 𝑇𝐶𝐻 ∩
𝑇𝐶𝐿 = ∅, 𝑇𝑆 = 〈𝑡1, 𝑡2, … , 𝑡𝑁〉 is an ordered test suite of size 

𝑁 tests, 𝑡𝑖 is a test case, 𝑖 is the test case number, 𝑇𝑆𝑃  is a 

prioritized ordered test suite, R′ = {𝑇1, 𝑇2, … , 𝑇𝑗 , 𝑇𝑂} is the set 

of all transitions of size 𝑂 transitions and 𝑗 is the transition 

number, 𝑀𝑇 is a set of all modified transitions, 𝑆(𝑡𝑖) is a 

sequence of transitions traversed by 𝑡𝑖, 𝐴(𝑡𝑖) is a set of 

modified transitions executed by test 𝑡𝑖. Example 1 described 

below is utilized to show the example of possible result of 

prioritization for the approaches mentioned later. 

Example 1: Suppose that 𝑀𝑇 = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5}, 𝑇𝑆 =
〈𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉. For each test the following 

modified transitions are traversed, 
(𝑡1: 𝑇1, 𝑇2, 𝑇1, 𝑇2, 𝑇3) (𝑡2: 𝑇3, 𝑇4, 𝑇5) (𝑡3: 𝑇3, 𝑇4) (𝑡4: 𝑇5) (𝑡5: 𝑇1) 

(𝑡6: 𝑇1, 𝑇2, 𝑇1, 𝑇2) (𝑡7: 𝑇2, 𝑇4) (𝑡8: 𝑇3, 𝑇4, 𝑇2, 𝑇4) (𝑡8: ∅) (𝑡9: ∅)
. Suppose 𝐴(𝑡1) = {𝑇1, 𝑇2, 𝑇3}; 𝐴(𝑡2) = {𝑇3, 𝑇4, 𝑇5}; 𝐴(𝑡3) =
{𝑇3, 𝑇4}; 𝐴(𝑡4) = {𝑇5}; 𝐴(𝑡5) = {𝑇1}; 𝐴(𝑡6) = {𝑇1, 𝑇2}; 

𝐴(𝑡7) = {𝑇2, 𝑇4}; 𝐴(𝑡8) = {𝑇2, 𝑇3, 𝑇4}; 𝐴(𝑡9) = ∅; 𝐴(𝑡10) =
∅. 

 

A. Selective Test Prioritization #1 

In this approach, high priority is assigned to tests that 

executed modified transitions in the model. Which means if a 

test case includes at least one modified transition in its 

execution, the test case will be given high priority. On the 

other hand, low priority is assigned to the test cases that does 

not execute any modified transition in its execution. In case 

if during the execution of a test 𝑡𝑖, transition 𝑇𝑗 which is a 

modified transition, 𝑇𝑗 ∈ 𝑀𝑇, is traversed, the 𝑡𝑖 will be put 

into the high priority set, 𝑡𝑖 ∈ 𝑇𝐶𝐻. If not, the test case is 

assigned to low priority set, 𝑡𝑖 ∈ 𝑇𝐶𝐿. All test cases in high 

priority set will be executed first and randomly then all the 

test cases in low priority set will be executed randomly. . 

Therefore, a possible prioritized test suite using this particular 

approach will be 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉. 
 

B. Even Spread Count-based Test Prioritization #2 

The idea of this approach is that all modified transitions 

must be given same chance to be covered during testing. 

Meaning that it tries to balance the number of executions of 

modified transitions during testing. Higher priority is given 

to a test that executes a modified transition which is traversed 

the least number of times at any point of testing. 

An additional definition of a function 𝑐𝑜𝑢𝑛𝑡(𝑇, 𝑆′) that 

describes the number of tests in 𝑆′ on which 𝑇 is executed is 

used in this approach. The equation of the function is: 

 

𝑐𝑜𝑢𝑛𝑡(𝑇, 𝑆′) = ∑ 𝐹 (𝑇, 𝑡𝑖𝑗
)

𝑚

𝑗=1

 (2) 

 

where function 𝐹(𝑇, 𝑡𝑖𝑗
) returns 1 if 𝑇 ∈ 𝐴(𝑡𝑖), if not 0 is 

returned. Let assumes 𝑇𝑖  and 𝑇𝑘 are two modified transitions. 

𝑇𝑘 would has a higher priority than 𝑇𝑖  if 𝑐𝑜𝑢𝑛𝑡(𝑇𝑘 , 𝑆′) <

𝑐𝑜𝑢𝑛𝑡(𝑇𝑗 , 𝑆′) which means transition with lowest 

𝑐𝑜𝑢𝑛𝑡(𝑇, 𝑆′) will be the highest priority. 

Refer to Example 1. Suppose firstly the approach select and 

execute test 𝑡4 containing 𝑇5 from its algorithm which is, 

select randomly test 𝑡𝑖 ∈ 𝐴(𝑡𝑖) for which 𝐴(𝑡𝑖) ≠ ∅ and 

remove 𝑡𝑖 from 𝑇𝑆. Then transition counts for each modified 

transition are then updated as follow: 𝑐𝑜𝑢𝑛𝑡(𝑇1) =
0, 𝑐𝑜𝑢𝑛𝑡(𝑇2) = 0, 𝑐𝑜𝑢𝑛𝑡(𝑇3) = 0, 𝑐𝑜𝑢𝑛𝑡(𝑇4) =
0, 𝑐𝑜𝑢𝑛𝑡(𝑇5) = 1. Then, the approach identified four 

modified transitions with minimum count, 𝐸 =
{𝑇1, 𝑇2, 𝑇3, 𝑇4}. Next, suppose the approach select 𝑇2, the tests 

that execute 𝑇2 are identified, 𝑇2: 𝑡1, 𝑡6, 𝑡7, 𝑡8. Assumes test 𝑡6 

is selected and executed, the transition counts for each 

modified transition are updated again as follow: 𝑐𝑜𝑢𝑛𝑡(𝑇1) =
1, 𝑐𝑜𝑢𝑛𝑡(𝑇2) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇3) = 0, 𝑐𝑜𝑢𝑛𝑡(𝑇4) =
0, 𝑐𝑜𝑢𝑛𝑡(𝑇5) = 1. Then, the approach identified two 

modified transitions with minimum count, 𝐸 = {𝑇3, 𝑇4}. 

Next, suppose the approach select 𝑇4, the tests that execute 𝑇4 

are identified, 𝑇4: 𝑡2, 𝑡3, 𝑡7, 𝑡8. Assumes test 𝑡3 is selected and 

executed, the transition counts for each modified transition 

are updated again as follow: 𝑐𝑜𝑢𝑛𝑡(𝑇1) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇2) =
1, 𝑐𝑜𝑢𝑛𝑡(𝑇3) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇4) = 1, 𝑐𝑜𝑢𝑛𝑡(𝑇5) = 1. The 

approach will continue looping until all tests that triggered at 

least one marked transition is selected. Lastly, 𝑡10 and 𝑡9 that 

do not traverse any modified transition are executed 

randomly. Therefore, a possible prioritized test suite using 

this particular approach will be 𝑇𝑆𝑃 =
〈𝑡4, 𝑡6, 𝑡3, 𝑡2, 𝑡1, 𝑡5, 𝑡8, 𝑡7, 𝑡9, 𝑡10〉. 

 

C. Proposed Approach 

The proposed approach is inspired by these approaches 

mentioned earlier while trying to overcome limitations 

discussed in the related works. The idea of the proposed 

approach is that higher priority is assigned to tests that 

executed more modified transitions in the model while 

balancing the number of executions of modified transitions 

during testing. A modified transition will also be assigned a 

degree of code changes where the higher the degree of code 

changes of a transition, the higher its priority will be. 

Modified transitions that have high degree of code changes 

executed the least number of times will be given higher 

priority. Figure 3 illustrated the overall implementation of the 

proposed approach for a better visualization. 

For clarification purpose, refer to Example 1. Suppose the 

transition score 𝑆𝑐𝑇(𝑇𝑗) for each modified transition is 

calculated where 𝑆𝑐𝑇(𝑇1) = 2; 𝑆𝑐𝑇(𝑇2) = 1; 𝑆𝑐𝑇(𝑇3) = 1; 
𝑆𝑐𝑇(𝑇4) = 1; 𝑆𝑐𝑇(𝑇5) = 3. Then the test case score 𝑆𝑐𝑡(𝑡𝑖) 

for each test case is calculated based on transition score 

calculated earlier where 𝑆𝑐𝑡(𝑡1) = 4; 𝑆𝑐𝑡(𝑡2) = 5; 
𝑆𝑐𝑡(𝑡3) = 2; 𝑆𝑐𝑡(𝑡4) = 3; 𝑆𝑐𝑡(𝑡5) = 2; 𝑆𝑐𝑡(𝑡6) = 3; 
𝑆𝑐𝑡(𝑡7) = 2; 𝑆𝑐𝑡(𝑡8) = 3; 𝑆𝑐𝑡(𝑡9) = 0; 𝑆𝑐𝑡(𝑡10) = 0. It can 

be observed that 𝑆𝑐𝑡(𝑡2) has the highest value therefore it will 

be appended first into the last position of the prioritized test 

suite, 𝑇𝑆𝑃 = 〈𝑡2〉. Next the set 𝐸 where modified transitions 

that have been appended into 𝑇𝑆𝑃  are determined where 𝐸 =
{𝑇3, 𝑇4, 𝑇5}. Then the test case score 𝑆𝑐𝑡(𝑡) for each test case 

is updated. If a test case in 𝑇𝑆 contains the modified 

transitions in set 𝐸, then the transition score of those modified 

transitions in the test case will be eliminated. Thus, 𝑆𝑐𝑡(𝑡1) =
3; 𝑆𝑐𝑡(𝑡2) = 0; 𝑆𝑐𝑡(𝑡3) = 0; 𝑆𝑐𝑡(𝑡4) = 0; 𝑆𝑐𝑡(𝑡5) = 2; 
𝑆𝑐𝑡(𝑡6) = 3; 𝑆𝑐𝑡(𝑡7) = 1; 𝑆𝑐𝑡(𝑡8) = 1; 𝑆𝑐𝑡(𝑡9) = 0; 
𝑆𝑐𝑡(𝑡10) = 0. Based on the updated 𝑆𝑐𝑡(𝑡) values, it can be 

observed that 𝑆𝑐𝑡(𝑡1) and 𝑆𝑐𝑡(𝑡6) has the highest value. 

Therefore, one random test case between these two is 

appended into the last position of the prioritized test suite 𝑇𝑆𝑃  

and assume that 𝑡1 is chosen, then 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1〉. The set 𝐸 

will be updated as 𝐸 = {𝑇3, 𝑇4, 𝑇5, 𝑇1, 𝑇2}. The updated test 

case score will be 𝑆𝑐𝑡(𝑡1) = 0; 𝑆𝑐𝑡(𝑡2) = 0; 𝑆𝑐𝑡(𝑡3) = 0; 
𝑆𝑐𝑡(𝑡4) = 0; 𝑆𝑐𝑡(𝑡5) = 0; 𝑆𝑐𝑡(𝑡6) = 0; 𝑆𝑐𝑡(𝑡7) = 0; 
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𝑆𝑐𝑡(𝑡8) = 0; 𝑆𝑐𝑡(𝑡9) = 0; 𝑆𝑐𝑡(𝑡10) = 0. Considering that all 

test cases scores are 0, the remaining test cases in 𝑇𝑆 will be 

selected randomly to be appended in 𝑇𝑆𝑃 . Therefore, a 

possible prioritized test suite using this particular approach 

will be 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉. 
 

 
 

Figure 3: Flowchart of the proposed approach 
 

The results of a possible prioritized test suite for all existing 

approaches including the proposed approach obtained using 

Example 1 are shown in the Table 1. Column three shows the 

number of test cases required for all modified transitions to 

be covered completely. From the result, it can be observed 

that the proposed approach requires the smallest number of 

test cases to cover all modified transition completely which 

are two test cases. Here we hypothesize that when an 

approach can produce a test suite that covers all modified 

transitions faster, all bugs in the system can be detected more 

effectively. To prove this assumption, an experiment has been 

done which is explained in the next section. 
 

Table 1 
 Prioritized test suite for Example 1 

 

Approach Possible Prioritized Test Suite 

Num. of 𝑡 

required for 

100% 𝑇 cov. 

#1 𝑇𝑆 = 〈𝑡4, 𝑡1, 𝑡5, 𝑡2, 𝑡3, 𝑡6, 𝑡8, 𝑡7, 𝑡9, 𝑡10〉 4 

#2 𝑇𝑆𝑃 = 〈𝑡4, 𝑡6, 𝑡3, 𝑡2, 𝑡1, 𝑡5, 𝑡8, 𝑡7, 𝑡9, 𝑡10〉 3 
P. Approach 𝑇𝑆𝑃 = 〈𝑡2, 𝑡1, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9, 𝑡10〉  

 

VII. EMPIRICAL STUDY 

 

The aim of this empirical study is to evaluate and compare 

the effectiveness of early faults detection of prioritized test 

suite resulted from the implementation of the prioritization 

approaches presented earlier: selective test prioritization, 

even spread count-based test prioritization and the proposed 

approach. This experiment is also aimed to prove that when 

all modified transitions are covered faster in the test suite, the 

detections of all faults would also be quicker. We created a 

simple ATM model which we referred the ATM model in 

Figure 1 and made some modifications. In our model, a user 

can only deposit money once for a particular session and a 

user’s maximum balance can only be less than or equal 100. 

The system’s EFSM model is constructed using Spec 

Explorer tool. A model program which is a set of rules written 

in Spec# [20], an extension of C# is where the model’s 

behaviours are described. Using a complete model program, 

the tool produces a set of test cases using path coverage where 

all transitions in the model will be traversed by at least one 

test case. Using the test suite obtained, the tool then generates 

the test code that can be run with the implementation of SUT 

which is created using C#. Faults are seeded into the 

implementation by making incorrect modifications while the 

model is not modified. For each function where the faults are 

seeded, its corresponding transition is marked as modified 

transition. Mutation testing technique is used to seed faults 

using value mutations, decision mutations and statement 

mutations. Figure 4 shows the partial model of login scenario 

generated by the tool using the model program written for the 

ATM implementation. The test input for function 

𝑖𝑛𝑠𝑒𝑟𝑡𝐶𝑎𝑟𝑑𝑇1(𝑖𝑛𝑡 𝑝𝑖𝑛, 𝑖𝑛𝑡 𝑏𝑎𝑙𝑎𝑛𝑐𝑒) and 

𝑝𝑟𝑜𝑚𝑝𝑡𝑃𝑖𝑛𝑇2(𝑖𝑛𝑡 𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑃𝑖𝑛) are as follow: 𝑝𝑖𝑛 = 1, 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 50, 𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑃𝑖𝑛 = 1,2. Figure 5 shows the test 

cases produced by the tool by exploring all the possible paths 

in the model. The full model is not shown because the size is 

considerably large with many possible paths and states but it 

will be used for the evaluation purpose.  

The full model consists of 10 transitions where each of 

them represents a function in the implementation,  
R′ = {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9, 𝑇10}. A total of six faults 

are seeded into the implementation of the ATM where only 

one fault is seeded at a time to observe which test cases detect 

it. A total of 19 test cases are generated from the full model 

of the ATM. The modified transitions where the faults are 

seeded are 𝑀𝑇 = {𝑇5, 𝑇6, 𝑇7, 𝑇8}. The transition score for the 

modified transitions are: 𝑆𝑐(𝑇5) = 3, 𝑆𝑐(𝑇6) = 1, 𝑆𝑐(𝑇7) =
1, 𝑆𝑐(𝑇8) = 2. The modified transitions traversed by each 

test case is as follow: 𝐴(𝑡1) = ∅, 𝐴(𝑡2) = {𝑇5, 𝑇8}, 𝐴(𝑡3) =
{𝑇5, 𝑇8}, 𝐴(𝑡4) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡5) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡6) =
{𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡7) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡8) = {𝑇5, 𝑇7, 𝑇8}, 

𝐴(𝑡9) = {𝑇5, 𝑇6, 𝑇7, 𝑇8}, 𝐴(𝑡10) = {𝑇5, 𝑇6, 𝑇7, 𝑇8}, 𝐴(𝑡11) =
{𝑇5, 𝑇6, 𝑇8}, 𝐴(𝑡12) = {𝑇5}, 𝐴(𝑡13) = {𝑇5, 𝑇7, 𝑇8}, 𝐴(𝑡14) =
{𝑇5, 𝑇7}, 𝐴(𝑡15) = {𝑇5, 𝑇7}, 𝐴(𝑡16) = {𝑇5, 𝑇6, 𝑇7}, 𝐴(𝑡17) =
{𝑇5, 𝑇6}, 𝐴(𝑡18) = {𝑇5}, 𝐴(𝑡19) = {𝑇5}. Table 2 depicts the 

faults with the corresponding test cases that detect them. 
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Figure 4: Model of login scenario 

 

 
 

Figure 5: Test cases for login scenario 

 
Table 2. 

Faults detected by test cases 

 

 

Test case 

1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

F
au

lt
 

1 ✓ X X X X X X X X X X ✓ X X X X ✓ ✓ ✓ 

2 ✓ X X X X X X X X X X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3 ✓ X X X X X X X X X X ✓ X X X X ✓ ✓ ✓ 

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ X X ✓ ✓ 

5 ✓ ✓ ✓ X ✓ X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ X X ✓ ✓ 

 
Using the information obtained, we implement the 

prioritization approaches mentioned earlier to get one 

possible prioritized test suite 𝑇𝑆𝑃  that can be generated by 

each approach. Then, the prioritized test suites are evaluated 

by how rapid the they can detect faults using the Average of 

the Percentage of Faults Detected (APFD) [16]. APFD is a 

metric used to quantify how effective a prioritized test suite 

detects faults. The value of APFD result range from 0 to 100 

where higher value means better faults detection rates. The 

equation for calculating the APFD value acquired from 

Elbaum et al. [21] is shown as follows where T is a test suite 

containing n test cases an F is a set of m faults revealed by T. 

𝑇𝐹𝑖 is the first test case in ordering T’ of T which reveals fault 

i and the APFD value of T’ is: 

 

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝐹1 + 𝑇𝐹2 + ⋯ + 𝑇𝐹𝑚

𝑛𝑚
+

1

2𝑛
 (3) 

 

Note that calculation the APFD can only be accomplished 

when advance knowledge of faults and test cases result is 

available. Therefore, it can only be used for evaluation 

purpose to determine the effectiveness of an approach in 

revealing faults so that in the future the best approach can be 

utilized to increase the possibility of revealing faults earlier 

during testing where the position of faults is unknown. Table 

3 shows the prioritized test suite resulted from the 

implementation of the prioritization approaches to the ATM 

model. Column three shows the number of test cases required 

for all modified transitions to be covered completely. 
 

Table 3: Prioritized test suite for ATM model 

 

Approach Possible Prioritized Test Suite 

Num. of 𝑡 

required for 

100% 𝑇 cov. 

#1 𝑇𝑆 = 〈
𝑡13, 𝑡15, 𝑡12, 𝑡18, 𝑡4, 𝑡2, 𝑡19,
𝑡14, 𝑡9, 𝑡10, 𝑡7, 𝑡8, 𝑡11, 𝑡16,

𝑡6, 𝑡17, 𝑡3, 𝑡5, 𝑡1

〉 9 

#2 𝑇𝑆 = 〈
𝑡18, 𝑡17, 𝑡15, 𝑡2, 𝑡10, 𝑡16, 𝑡6,

𝑡11, 𝑡9, 𝑡14, 𝑡4, 𝑡7, 𝑡8, 𝑡3,
𝑡13, 𝑡5, 𝑡12, 𝑡19, 𝑡1

〉 4 

P. Approach 𝑇𝑆 = 〈
𝑡9, 𝑡15, 𝑡18, 𝑡4, 𝑡2, 𝑡8, 𝑡7,

𝑡19, 𝑡16, 𝑡5, 𝑡1, 𝑡17, 𝑡10, 𝑡6,
𝑡11, 𝑡3, 𝑡12, 𝑡13, 𝑡14

〉 1 

 

The calculation of APFD for each prioritized test suite is 

shown as follows: 

 

𝐴𝑃𝐹𝐷(#1) = 1 −
1 + 5 + 1 + 9 + 5 + 9

(19)(6)
+

1

2(19)
= 0.76 

𝐴𝑃𝐹𝐷(#2) = 1 −
3 + 4 + 3 + 2 + 7 + 2

(19)(6)
+

1

2(19)
= 0.84 

𝐴𝑃𝐹𝐷(𝑃. 𝐴. ) = 1 −
1 + 1 + 1 + 1 + 4 + 1

(19)(6)
+

1

2(19)
= 0.94 

 

From the calculation above, proposed approach has the 

highest detection rate of 94 % followed by even spread count-

based test prioritization and selective test prioritization with 

84% and 76 % detection rate respectively. Figure 6 – 8 

illustrate percentage of test suite executed over the percentage 

of faults detected to visualize the progress of test cases 

execution using the prioritized test suites. By observing Table 

3, the proposed approach requires only one test case to cover 

all modified transitions while the selective test prioritization 

and even spread count-based test prioritization require nine 

and four test cases respectively. Based on the APFD result 

and the graph, the proposed approach clearly outperforms the 

other two approaches in term of early faults detection. The 

proposed approach only requires to execute four test cases to 

capture all the faults seeded while the selective test 

prioritization and even spread count-based test prioritization 

require nine and seven test cases respectively. Therefore, the 
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result approves our assumption that when an approach can 

produce a test suite that covers all modified transitions faster, 

all bugs in the system can be detected more effectively. 

 

 
 

Figure 6: APFD graph for selective test prioritization approach 

 

 
 

Figure 7: APFD graph for even spread count-based test prioritization 

 

 
 

Figure 8: APFD graph for proposed approach 

 

VIII. CONCLUSION 

 

This paper presents a model-based approach in Test Case 

Prioritization using EFSM. A brief description on each of the 

related subjects, such as EFSM, model-based testing and 

model-based TCP is provided. In order to identify the gaps in 

the existing approaches, a number of related works in model-

based TCP are critically reviewed. These approaches are 

considered as theoretical basis or foundations for the 

proposed approach. Next, we present our proposed approach 

that aims at improving the limitations found in the related 

work. An empirical study is conducted to evaluate the 

effectiveness of the proposed approach and to prove that 

when an approach can produce a test suite that covers all 

modified transitions faster, all bugs in the system can be 

detected more effectively. The result obtained showed that 

the assumption is correct and the proposed approach 

outperforms the other two existing approaches in term of 

faults detection. For future works, the proposed approach will 

be experimented using publicly available dataset of larger 

size and compared will more approaches to evaluate its 

effectiveness. 
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