

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 101

Framework for Inspection-Based: Checking the

Effectiveness and Efficiency in PHP Source Code

Jamilah Din and Saipul Bahari Hasan
Department of Software Engineering and Information System, Faculty of Computer Science and Information System,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

jamilahd@upm.edu.my

Abstract—Code inspection process is one of the software

inspection processes that is used to find faults, check, increase,

and maintain the quality of the software. Typically, the source

code inspection process will be conducted in order to find

sources code-related issues such as Logical Errors, and

Structured Query Language (SQL) Injections. Currently,

source code inspection process is being done manually by the

developer which leads to taking a long time to find faults as well

as time-delay. Based on the literature reviews that had been

done, many researchers have done a lot of work in this domain,

but none of them have developed prototype containing Logical

Errors and SQL Injections for Hypertext Preprocessor (PHP)

structure source code in one prototype. Therefore, this research

proposed a framework for identifying Logical Errors and SQL

Injections. A prototype is developed to proof the concept of the

framework. The proposed framework is evaluated using the

prototype in terms of effectiveness and efficiency by comparing

the manual code inspection and the prototype-based code

inspection. The result shows the prototype-based is more

effective and efficient compared to current practice (manual).

Index Terms—Code Inspection; Logical Errors; PHP; SQL

Injections.

I. INTRODUCTION

Software inspection is one of the activities that should be

emphasized to ensure the quality of software products based

on reducing the number of source code [13] and in terms of

controlling and increasing software quality during the

development process [10]. Source code and design document

can be inspected by system developer before the testing phase

is conducted [13]. Fagan [7] expresses inspections as a

“formal, efficient and cost-effective technique of discovery

errors in design and code”.

Code inspection process is used to find faults and to check,

increase, and maintain the quality of the software. Typically,

the source code will be inspected after the code is written,

before testing is done. It is usually performed by different

person [13]. The preceding statements show that code

inspection is an extremely important process to companies in

saving time and increasing productivity.

“Inspection and acceptance testing prior to delivery

(verification and validation) should be completed before it is

handed over to the next stage. All submissions shall be

certified in accordance with any of the following methods of

inspection, analysis, demonstration or testing. For the

development of application systems, inspection and testing

shall be made throughout the project.” [15].

A survey done by Ganssle [5] presents some striking

example of the value for source code inspections as follows:

i. International Business Machines Corporation (IBM)

was able to remove 82% of all defects before testing

even takes place.

ii. American Telephone & Telegraph Company (AT &

T) found that inspections led to 14% increase in

productivity and tenfold increase in quality.

iii. Hewlett Packard Enterprise Company (HP) found

80% of the errors detected during inspection were

unlikely to be caught by testing.

Based on above surveys, it can be concluded that many

benefits will be obtained from the inspection such as reducing

the debugging times during the inspection process and

spending less time in the mind-numbing weariness of

maintenance.

The main objective of this paper is to evaluate the proposed

framework using prototype in terms of effectiveness and

efficiency through comparing the manual-based way of doing

code inspection and the proposed prototype-based

experiment that the proof of concept of the framework. The

paper focuses on the related work in Section II. Section III

explains about design and implementation of the prototype.

Method used for both experiment (manual-based experiment

and prototype-based experiment) is discussed in Section IV

and Section V is about the discussion of the whole results,

while Section VI states the conclusion and recommendations.

II. RELATED WORKS

This section discusses the various processes, techniques,

methods, solutions, framework and models used by previous

researches. It is suggested in the process of improving

inspection of PHP structure source codes; this is done in order

to gain sight and comprehension of the previous similar

solutions in the current problem and solutions which are

being investigated. The problems and the solutions that are

being investigated in this research is how to inspect the

Logical Error and SQL Injection for PHP source code.

A. Logical Errors

Deulkar et.al. [4] proposed a new model to detect logical

and syntactical errors using machine learning and data mining

for Java source code. This study was done because it is

difficult to recognize the syntactical and logical error during

generating a program by programmers. Many steps need to

be done in this study as; 1) compiler construction, 2)

programming construction, 3) comparing the programs, 4)

deducing the errors, 5) classifying the errors, 6)

recommending and giving the right solution and 7)

embedding the correct solution in a program, to produce the

new model. Kästner [9] produced a tool named as Varis for

PHP source code. It was used for PHP-based web application.

mailto:epulhasan@gmail.com

Journal of Telecommunication, Electronic and Computer Engineering

102 e-ISSN: 2289-8131 Vol. 9 No. 3-3

It delivers editor services on the client-side code to support

syntax error highlighting, code auto-completion and “jump to

declaration”. Three (3) approaches have to be performed to

complete the whole process which consists of: 1) symbolic

execution, 2) variability-aware parsing and 3) analysis.

Nguyen and Chua [12] focused on logical error detector for

PHP source code. On their research, framework has been

designed in order to assist the PHP developers to classify

logic error in source code and to mechanize the steps of

noticing errors of the new prototype application that are being

developed. Three (3) types of logical error in PHP were

detected, 1) equality condition formulation, 2) while-loop

condition formulation and 3) for loop expression formulation.

Stergiopoulos er. al [19] aimed to detect logical error of

source code and explore vulnerabilities in a fuzzy logic using

Java source code. In the fuzzy logic, researchers joint some

information about flow analysis to generate new code

profiling. While, symbolic execution is used to check

crosschecking for dynamic invariant. This study was done

because the authors believed to decrease faults in software

inspection, it will be one of the most cost-effective methods

that can be used. The method involves in this study list as, 1)

for an Applications Under Test (AUT), dynamic variants’

form is used to create a symbol of performance program, 2)

to collect some data about a set of execution paths and

program states along these paths and input data vectors a map

of all program points can be executed in different paths, Java

Pathfinder (JPF) tools from NASA Ames Research Center

(NASA) was used in the analysis and 3) logical error

identified by crosschecking data accumulated with the

dynamic invariants gathered.

B. SQL Injections

Jingling and Rulin [8] suggests a new framework for PHP

application which is detecting the security vulnerabilities. It

is a combination of two (2) analyses which consists of static

and dynamic analysis. It has been completed in order to

ensure the detection is more efficient. It has been known as

HHVM (HipHop Virtual Machine) Based Static Analysis.

This study was produced because of difficulty to detect

security vulnerabilities. The vulnerabilities are focused on

SQL Injection, Cross-Site Scripting (XSS) and any file

inclusion. Shahriar et. al. [16] presents how to identify SQL

Injection (SQLI) vulnerabilities by client-side in three PHP

applications. Typically, inputted value from user is one of the

SQL queries accepting by client-side. SQLI occurs on

vulnerabilities found in the source code during the process of

data input is ended. We believed that a client-side (browser)

is a first point of SQLI attack. This framework provides

detection of malicious inputs causing SQLI at the client-side

early, but also relieves the server-side for additional checking

and acts as a complementary solution to other existing

approaches but it uncovers for a complex form of SQL

queries and a stored procedure after the attack takes place.

Garg and Singh [6] focused and studied the vulnerabilities

of web applications. Five (5) vulnerabilities were explained

in this study. It can give some information for a lot of new

researchers to solve the associated problem. We believe that

server-side mechanisms really important for common

distributed system and web application to ensure a security at

the higher level. Based on the problem of this research study,

the vulnerabilities had been identified as remote code

execution, SQL injection, format string vulnerabilities, cross

site scripting (XSS) and username enumeration. Researcher

said attackers give more attention in SQL injection. Attacker

can retrieve some important information through database for

the system. In this study, researcher just demonstrated the

vulnerabilities, countermeasure and the critically without

produced any model to solve the vulnerabilities. Das et. al.

[3] proposes a solution on how to solve SQL Injection

Attacks (SQLIA) according to weaknesses in web

application. The solution was given based on current method

to identify the SQLIA and produces a new effective method

which is called as an effective detection method (DUD). This

method can detect the same problem in line with dynamic

query matching. The DUD has high detection rate, simple

detection tool and also suitable for notice syntactical rules,

valid trusted string database and static or pre-generated

program code checking. This study identified the

susceptibilities in web application associated with SQLIA

like, 1) Bypassing Web Application Authentication, 2)

Getting Knowledge of Database, 3) Injection with UNION

query, 4) Damaging with additional injected query and 5)

Remote execution of stored procedure.

Based on the above explanation, it can be concluded that

some researchers conducted studies in the PHP structure

source code in terms of Logical Errors and SQL Injections

but the researcher could not find one of the researcher who

combined both of the Logical Errors and SQL Injections in

order to develop inspection prototype based on the combined

approaches (Logical Errors and SQL Injections). It was

mentioned previously, Logical Errors and SQL Injections are

very important in problem that must be considered during the

programming of software. Most of developers always use

those techniques during system development in order to

check Logical Errors and SQL Injections of source code. It is

always used by novice programmer as well as expert

programmer [12]. SQL Injections inspection is very useful for

tracing SQL Injection attempts by hackers which can be

prevented from getting access to any important records from

unauthorized users [16]. On the other hand, it is also related

to illegality-related issues [16]. For Logical Errors inspection,

it is very useful to detect any bugs, errors, faults or defects

which programmers are unaware during system development.

For instance, Logical Errors can give the wrong value to user

without conscious. It is reliability -related problem in terms

of software quality. In this paper, we proposed inspection

process that combine the Logical Errors and SQL Injections

for PHP structure source code and develop prototype because

both of them are important in assisting the programmer to

detect any bugs, faults and defect in the early stages of

software development.

III. DESIGN AND IMPLEMENTATION

A. Proposed Framework

The framework for Logical Errors and SQL Injection is the

process to show how both of characteristics can run until the

result will be showed. For Logical Errors, all lines of source

code will be read line by line in order to ensure that source

code will be detected while SQL Injections can only examine

through input data by users. Many processes in the

framework need to be executed to produce the result to user.

Figure 1 shows the proposed framework.

Framework for Inspection-Based: Checking the Effectiveness and Efficiency in PHP Source Code

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 103

Figure 1: Proposed Framework

1) PHP Program Module

Any PHP structure program is used to inspect in this

framework.

2) PHP Interface Module

Interface is used to accept the uploaded program file by

programmer.

3) Input Data Modul

 SQL Injections will use in this module to check the

faults/vulnerability from the input data by users.

4) Compiled Code and Executing Tracing Module

A process in the program. The program can be inspected

for two characteristics only which are Logical Errors and

SQL Injections.

5) Detection Result / Display Information Module

Result from the program will be displayed on the screen to

show whether it has an error or errors-free.

B. Prototype Design

Prototype design of the framework is defined in detail. This

section covers information on the use case, activity diagram

and screenshots of the framework interface.

1) Use Case

A prototype will be designed to prove the concept of the

proposed framework. The prototype can only be used to

inspect the Logical Errors and SQL Injections characteristics.

At the same time, those characteristics can check the source

code in one program. After the development is finished, the

prototype will be measured based on effectiveness and

efficiency for Logical Errors and SQL Injections as a quality

of software.

Figure 2 shows the use case diagram of the prototype. This

diagram shows the functionality of the prototype.

2) Activity Diagram

The workflow of the prototype process has been illustrated

as Figure 3. The first process, prototype will trace any fault

from the file uploaded by the user in terms of Logical Errors.

After tracing Logical Errors has been done, the user will be

asked through pop up window from framework whether to

continue for SQL Injections or no. If the user clicks button

‘Yes’, interface for input data will be displayed and users can

inspect SQL Injections through this screen using input data.

Three (3) characteristics in Logical Error will be examined

based on Equality Condition Formulation (ECF), While-loop

Condition Formulation (WCF) and For Loop Expression

Formulation (FEF) showed in Figure 4 and input data with ‘

or 1=1--, ‘or 1 =1 # ' and ' or '1' = '1' criteria for SQL

Injections showed in Figure 5.

Figure 2: Use Case of Prototype

START

DISPLAY INSPECTION CODE
PAGE

Click Inspection Code
Menu?

DISPLAY HOME

Upload File

Click Run button?

Run Logical Errors Module

Detect SQL Injection?

Run SQL Injections Module

END

Yes

No

No

No

Yes

Yes

Figure 3: Activity Program of Prototype

Journal of Telecommunication, Electronic and Computer Engineering

104 e-ISSN: 2289-8131 Vol. 9 No. 3-3

START

1. Examine Equality Condition
Formulation (ECF)

Have an Error?

Display error result with:
1. Error Syntax

2. Error Message: ECF
3. Error Line

2. Examine While-loop
Condition Formulation (WCF)

Have an Error?

Display error result with:
1. Error Syntax

2. Error Message: ECF
3. Error Line

3. Examine For-loop Expression
Formulation (FEF)

Have an Error?

Display error result with:
1. Error Syntax

2. Error Message: ECF
3. Error Line

START

Display result No
Error Found

Display result No
Error Found

Display result No
Error Found

Yes

Yes

Yes

No

No

No

Figure 4: Activity Program of Logical Error Modules

START

Detect SQL Injection?

View from SQL Injection?

Input Data?

Display SQL Injection Result:
1. Error Type

2. Input Name
3. Input Value

Display result No
SQL Injection

Detected

END

No

No

Have an SQL Injection?

No

No

Yes

Yes

Yes

Yes
No

Figure 5: Activity Program of SQL Injections Modules

3) Prototype Interface

The screenshot of prototype is illustrated in Figure 6. It is

used to prove the functionality of framework. At the end of

the process, the result will be display whether ‘No Error

Found’ or ‘A PHP Error was encountered’.

Figure 6: Prototype Interface

IV. EVALUATION

For the purpose to evaluate the prototype that has been

developed to proof the framework, ten (10) programmers

from Information Management Division, Ministry of Health

Malaysia (IMD, MOH) who have 3-4 years programming

experiences in PHP structure source codes have been chosen.

All programmers were given five (5) samples programs

which consist some errors for Logical Errors. The SQL

Injections are tested through input data. Those programs were

provided to measure the effectiveness and efficiency of the

prototype. The samples were taken from a system

(eTempahan Bilik Mesyuarat) using PHP structure source

code in IMD, MOH. The programs have many lines to ensure

the accuracy of the experiment. Explanation of the samples is

shown in Table 1 below:

Table 1

Selection of Samples

ID

Files Name

Samples of Programs

LOC
(Lines of

Codes)

Total

No. of
Errors

(Logical

Errors)

Total No. of

Vulnerabiliti

es (SQL
Injections)

1 pengguna_sistem.php 255 5 6

2 tambah_pengguna.php 346 7 18

3 borang_tempahan.php 609 9 24
4 tambah_bahagian.php 142 6 3

5 tukarkatalaluan.php 268 6 3

Logical Errors and SQL Injections of PHP structure source

code can only be inspected in this paper. Logical Errors from

Nguyen and Chua [12], have three (3) criteria were provided

which are Equality Condition Formulation (ECF), While-

loop Condition Formulation (WCF) and For Loop Expression

Formulation (FEF) while SQL Injections from Sharma [18]

were provided for attacking through input field with these

conditions ‘ or 1=1--, ‘or 1 =1 # ' and ' or '1' = '1'. Detail

experimental procedures are explained below.

A. Procedure of Manual-Based Experiment

1) Logical Errors

All of programmers had been given five (5) samples which

have some errors in those programs in softcopy form. After

that, those programmers need to identify all errors in the

Framework for Inspection-Based: Checking the Effectiveness and Efficiency in PHP Source Code

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 105

source codes per hour. The result will be recorded for

calculating the effectiveness and efficiency manually. These

steps are used for manual-based experiment.

2) SQL Injections

The same samples with Logical Errors were given to

programmers. Programmers need to identify which input

field is vulnerable to hack by hackers per hour. Next,

vulnerability identification by programmer will be inspected

through real system to know that the vulnerability

identification is correct or wrong. Based on the result,

effectiveness and efficiency are calculated manually. Detail

steps of Manual-Based Experiment are illustrated in Figure 7.

Figure 7: Steps of Manual-Based Experiment.

B. Procedure of Prototype-Based Experiment

1) Logical Errors

All programmers were given five (5) samples to be

inspected. Those programmers will inspect the source code

using the same laptop. Result based on effectiveness and

efficiency automatically displayed by the prototype. A same

laptop is used in order to get the consistent result.

2) SQL Injections

Through the previously listed vulnerability identification

that was identified by programmers in manual-based

experiment. It will also be inspected using this prototype to

know the vulnerability of input field in those samples source

code. Based on the result that was obtained by programmers,

effectiveness and efficiency are calculated manually. Lastly

comparison will be done for the result using real system and

this prototype. Detail steps of Manual-Based Experiment are

illustrated in Figure 8.

C. Evaluation on Effectiveness and Efficiency

Both of the results from manual-based experiment and

prototype-based experiment will be compared to know which

one is better. The comparison is evaluated and judged based

on the effectiveness and efficiency of the Logical Errors and

SQL Injections. Method for comparison of results followed

the previous study by Oladele [14]. All results must be free

false positive to obtain the accurate results. In the study

Oladele [14], a false positive means the result should be

correct even those programmers can find all the errors

(Logical Errors and SQL Injections) as mentioned in specific

time-frame. Method to calculate the effectiveness and

efficiency for prototype-based experiment and manual-based

experiment are shown as below.

Figure 8: Steps of Prototype-Based Experiment.

1) Logical Errors

a. Percentage of Effectiveness Calculation

Effectiveness refers to how many faults can be found by

prototype dividing by total number of existing faults on the

source code [14].

100 X
b

a
 (%) essEffectiven  (1)

where: a = No of found fault in source code

 b = Total number of existing fault

b. Percentage of Efficiency Calculation

Efficiency is referred as the number of found faults per

hour [14].

100 X
f

e
 (%) Efficiency  (2)

where: e = No of found fault in source code

 f = 3600 seconds (per hour)

c. Average of Samples Calculation

Average will be calculated to all result samples.

10

result of ssefectivene All
 (%) essEffectiven Average  (3)

10

result of efficiency All
 (%) Efficiency Average  (4)

2) For SQL Injections

a. Percentage of Effectiveness Calculation

Effectiveness refers to the number of real vulnerabilities

Journal of Telecommunication, Electronic and Computer Engineering

106 e-ISSN: 2289-8131 Vol. 9 No. 3-3

detected dividing by total number of reported [11].

100 X
h

g
 (%) essEffectiven  (5)

where: g = No of real vulnerabilities detected

 h = Total number of reported

b. Percentage of Efficiency Calculation

Efficiency is referred to the number of revealed

vulnerabilities by programmers/hackers dividing by total

number of revealed vulnerabilities by programmers/hackers

reported [17].

100 X
j

i
 (%) Efficiency  (6)

where: i = No of revealed by hackers

 j = Total number by hackers need to reveal

c. Average of Samples Calculation

Average will be calculated to all result samples.

V. RESULT AND DISCUSSION

For prototype-based experiment, effectiveness and

efficiency results are generated by the prototype for Logical

Errors. The formula is included in source code during process

of system development. While, SQL Injections are counted

manually because the method that was used unsuitable to

count the result automatically.

Table 2 shows the comparison of the users for logical

errors, and Table 3 shows the result for SQL injection.

Table 2

Comparison Result of Logical Errors

Manual Experiment Prototype Experiment
ID

Programs

Effectiveness

(%)

Efficiency

(%)

Effectiveness

(%)

Efficiency

(%)

1 90.000 0.125 100.000 0.139
2 97.142 0.185 100.000 0.194

3 90.000 0.225 100.000 0.250

4 94.500 0.159 100.000 0.167

5 96.667 0.161 100.000 0.167

Table 3

Comparison Result of SQL Injections

Manual Experiment Prototype Experiment

ID
Programs

Effectiveness
(%)

Efficiency
(%)

Effectiveness
(%)

Efficiency
(%)

1 94.500 1.103 100.000 11.025

2 95.556 3.327 100.000 33.269

3 95.833 4.448 100.000 44.874
4 90.000 0.522 100.000 5.222

5 93.333 0.541 100.000 5.609

Figure 9 shows the prototype-based experiment which

present clear result compared to manual-based experiment.

The result of prototype-based experiment shows 100% of all

samples where it could identify all existing errors in program

files compared to manual-based experiment. While, the result

obtained from the manual-based experiment is 90% (sample

1), 97.142% (sample 2), 90% (sample 3), 94.5% (sample 4)

and 96.667% (sample 5). For the Logical Errors, the

prototype-based experiment that was proposed is more

effective rather than manual-based experiment method.

Similarly, Figure 10 presents that prototype-based

experiment is really good in terms of efficiency compared to

manual-based experiment. The difference result is

insignificant between both experiments but prototype-based

experiment result has higher result than manual-based

experiment. All errors can be found in one hour by prototype-

based experiment faster than manual-based method.

Figure 9: Comparison of Effectiveness for Logical Errors

Figure 10: Comparison of Efficiency for Logical Errors

Figure 11 revealed that all samples to detect vulnerability

of SQL Injection using prototype-based experiment were

more effective than manual-based experiment. 100% was

obtained by prototype-based experiment and 94.5% (sample

1), 95.556% (sample 2), 95.833% (sample 3), 90% (sample

4) and 93.333% (sample 5) were obtained from manual-based

method. Prototype-based method can detect all total number

of vulnerabilities reported. Figure 12 demonstrates slight

difference between both experiments for SQL Injections but

prototype-based method used by programmers is still more

efficient than manual-based method. All results of samples

are shown by prototype-based method is higher than manual-

based method. Prototype-based experiment can inspect all

previously identified vulnerability suggested by

programmers. To sum up, the proposed and developed

prototype-based experimented can address the problems of

both characteristics (Logical Errors and SQL Injections) for

PHP structure source code. On the other hand, it is more

effective and efficient compared with manual-based method.

It can be seen through analysis and result from Figure 9 to

Figure 12.

Figure 11: Comparison of Effectiveness for SQL Injections

85

90

95

100

1 2 3 4 5Ef
fe

ct
iv

e
n

e
ss

 (
%

)

ID Programs

Manual
Experiment

Prototype
Experiment

0

0.2

0.4

1 2 3 4 5

Ef
fi

ci
en

cy
 (

%
)

ID Programs

Manual
Experiment

Prototype
Experiment

80

100

1 2 3 4 5

Ef
fe

ct
iv

en
es

s
(%

)

ID Programs

Manual
Experiment

Prototype
Experiment

Framework for Inspection-Based: Checking the Effectiveness and Efficiency in PHP Source Code

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 107

Figure 12: Comparison of Efficiency for SQL Injections

VI. CONCLUSION AND RECOMMENDATIONS

The inspection process is divided into two (2) categories

which are requirement inspection and source code inspection.

This study focuses on source code inspection. Referring to the

main objective, this research proposed a framework for

identifying Logical Errors and SQL Injections for PHP

structure source code. The PHP structure source code area

had been chosen because there are only a few researchers

involved in this area. Most of them focused on JAVA or C#

source code. Some modules were produced to ensure the

framework can inspect Logical Errors and SQL Injections

accurately.

Five (5) modules have been identified consisting of PHP

Program Module, PHP Interface Module, Input Data Module,

Compiled Code and Execution Tracing Module and

Detection Result/Display Information Module. Those

modules play pivotal roles respectively to make sure the

results are correct. To prove that the framework and the two

(2) developed prototypes are efficient and effective for

checking Logical Errors and SQL Injection, Equality

Condition Formula (ECF), While Loop Condition

Formulation (WCF) and For Loop Expression Formulation

(FEF) were used as characteristic in Logical Errors to be

tackled while SQL Injections focused to input data by users

with or 1=1--, ‘or 1 =1 # ' and ' or '1' = '1' criteria. Two (2)

experiments were conducted to measure the effectiveness and

efficiency of developed prototype. Manual-based experiment

involves programmers in Information Management Division,

Ministry of Health Malaysia which were needed to inspect

the source code and input data manually. For prototype-based

experiment, those programs were examined using this

framework. Comparison for both results were performed to

prove that the prototype is better compared to the manual

based in terms of effectiveness and efficiency. There are

several findings and recommendations to be highlighted in

order to enhance this framework in further research which are

add more criteria for SQL Injections to ensure that the

framework is precise, conduct the experiment in large number

of programmers and subject code and PHP Object Oriented

Programming can be inspected using this framework.

ACKNOWLEDGMENT

Thank you to the Ministry of Education (MOE) and

Research Management Center, Universiti Putra Malaysia

(UPM) for the financial supports through FRGS Vote No: 08-

01-15-1726FR.

REFERENCES

[1] O. S. Akinola, and A. O. Osofisan, “An empirical comparative study of

checklist- based and ad hoc code reading techniques in a distributed

groupware environment,” International Journal of Computer Science
and Information Security, vol. 5, no. 1, pp. 25–35, 2009.

[2] A. Bacchelli, and C. Bird, “Expectations, outcomes, and challenges of

modern code review,” in Proc. International Conference on Software
Engineering, 2013, pp. 712–721.

[3] D. Das, U. Sharma, and D. Bhattacharyya, “An approach to detection

of SQL injection attack based on dynamic query matching,”
International Journal of Computer, vol. 1, no. 25, pp. 28–34, 2010.

[4] K. Deulkar, J. Kapoor, P. Gaud, and H. Gala, “A novel approach to

error detection and correction of c programs using machine learning
and data mining,” International Journal on Cybernetics & Informatics,

vol. 5, no. 2, pp. 31–39, 2016.

[5] J. G. Ganssle, “A guide to code inspection,” Available at

http://www.ganssle.com/Inspections.pdf, Retrieved on 02 June 2017,

2001.

[6] A. Garg, and S. Singh, “A review on web application security
vulnerabilities,” International Journal, vol. 3, no. 1, pp. 226, 2013.

[7] M.E. Fagan, “Design and code inspections to reduce errors in program

development,” IBM Systems Journal, vol. 15, no.3, pp. 182–211, 1976.
[8] Z. Jingling, and G. Rulin, “A new framework of security vulnerabilities

detection in PHP web application,” in Proc. 9th International
Conference on Innovative Mobile and Internet Services in Ubiquitous

Computing, 2015, pp. 271–276.

[9] H.V. Nguyen, C. Kästner, and T.N. Nguyen, “Varis: IDE support for
embedded client code in PHP web applications,” in Proc. International

Conference on Software Engineering, 2015, pp. 693-696.

[10] P. G. Koneri, G. De. Vreede, D. L. Dean, A. L. Fuhling and P. Wolcott,
“The design and field evaluation of a repeatable collaborative software

code inspection process,” in International Conference on

Collaboration and Technology, 2005, pp. 325–340.

[11] A.P.S. Matsunaga, N. Antunes, and R. Moraes, “Coverage metrics and

detection of injection vulnerabilities: an experimental study,” in Proc.

12th European Dependable Computing Conference (EDCC), 2016, pp.
45–52.

[12] T. Nguyen and C. Chua, “A logical error detector for novice PHP

programmers,” in Proc of IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC, 2014, pp. 215–216.

[13] A. Nuc, and C. Ivan, “REVEDERE – Distributed support system for

code review process,” International Journal of Computer Application,
vol. 115, no.14, pp. 1–6, 2015.

[14] R. O. Oladele, and H. D. Adedayo, “On empirical comparison of

checklist-based reading and adhoc reading for code inspection,”
International Journal of Computer Application, vol. 87, no. 1, pp. 35–

39, 2014.

[15] Pekeliling, S., and Bil, P. (2013). Pemilikan Kod Sumber (Source
Code) dan/atau Intellectual Pemindahan Teknologi (Transfer of

Technology) - Pemindahan, 1(iii).

[16] H. Shahriar, S. North, and W. Chen, “Early Detection of Sql Injection
Attacks,” International Journal of Network Security and its

Application, vol. 5, no. 4, pp. 53–65, 2013.

[17] A. A. M. Sharadqeh, M. Alnaser, O. Al. Heyasat, A. A. Abu-ein, and
H. Moh, “Review and measuring the efficiency of SQL injection

method in preventing e-mail hacking,” International Journal of

Network Security and its Application, vol. 5, no. 6, pp. 337–342, 2012.
[18] C. Sharma and C.S. Jain, “SQL injection attacks on web applications,”

International Journal of Advanced Research in Computer Science and

Software Engineering, vol. 4, no. 3, 1268–1272, 2014.
[19] G. Stergiopoulos, P. Katsaros, and D. Gritzalis, “Automated detection

of logical errors in programs,” in Lecture Notes in Computer Science

(LNCS), Springer-Verlag Berlin Heidelberg, vol. 8924, 2014, pp. 35-
51.

[20] H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto, “Analyzing

individual performance of source code review using reviewers’ eye
movement,” in Proc. Eye Tracking Research & Applications (ETRA),

2006, pp. 133–140.

0

50

1 2 3 4 5Ef
fi

ci
e

n
cy

 (
%

)

ID Programs

Manual
Experiment

Prototype
Experiment

