

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 89

A Comparison on Similarity Distances and

Prioritization Techniques for Early Fault Detection

Rate

Safwan Abd Razak, Mohd Adham Isa and Dayang Norhayati Abang Jawawi
Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

safwan7@live.utm.my

Abstract—Nowadays, the Software Product Line (SPL) had

replaced the conventional product development system. Many

researches have been carried out to ensure the SPL usage prune

the benefits toward the recent technologies. However, there are

still some problems exist within the concept itself, such as

variability and commonality. Due to its variability, exhaustive

testing is not possible. Various solutions have been proposed to

lessen this problem. One of them is prioritization technique, in

which it is used to arrange back the test cases to achieve a

specific performance goal. In this paper, the early fault detection

is selected as the performance goal. Similarity function is used

within our prioritization approach. Five different types of

prioritization techniques are used in the experiment. The

experiment results indicate that the greed-aided-clustering

ordered sequence (GOS) shows the highest rate of early fault

detection.

Index Terms—Product-Line Testing; Prioritization; Software

Product Lines.

I. INTRODUCTION

Software Product Line (SPL) is a group of software-intensive

systems that sharing an identical, managed group of features

that fulfill the needs of a certain market section or goal and

are build up from a familiar set of core assets in a

recommended way [1]. SPL can give many benefits toward

various organizations due to its implementation of business

and technical strategy. Such benefit in software development

is that SPL approach can make enhancements in time to

market, cost, and reliability. This benefit not only helps the

organizational, but also individual SPL practitioner [1]. Thus,

numerous software organizations alter their development of

software from single systems to SPLs [2].

In achieving these benefits, a complete set of activities that

validate and verify the correctness of the product built should

be defined. Thus, the testing approach is introduced. The

product line testing is about extracting a set of products and

testing each of it [3]. Testing an SPL is a hard task. This is

because of the combinatorial explosion faced due to a great

number of possible combination features. Exhaustive testing

is infeasible. Exhaustive testing is a test approach in which all

possible data combinations are used for testing. Time

consuming and cost issues arise when exhaustive testing in

SPLs is conducted. Many attempts have been done to solve

the issues. One of them is the test case prioritization.

Test case prioritization techniques arrange test cases for

execution in an order that achieves to increase their

effectiveness at meeting certain performance goals [4][5].

Various goals can be specified. For examples, the software

testers may want to order their test cases in an order that can

attain full code coverage as soon as possible or in an order

that can increase the rate of fault detection. State a goal first,

then several ordering criteria can be considered. For an

example, given the goal is to increase the rate of fault

detection of the test cases. Software testers could order the

test cases according to the presumed dispose error of the

component under test or they also could order the test cases

according to the number of faults detected by the previous

executed test cases.

This paper presents some test case prioritization

approaches for the SPLs. We explore the applicability of the

similarity distance with the prioritization technique to

increase the rate of early fault detection. Four type of

similarity functions are used. These functions are Hamming

distance, Jaccard distance, Counting function, and Sorensen-

Dice. The reason we used prioritization based on similarity

function is that it has higher feature coverage and higher fault

detection rate [6]. Each of these similarity functions then are

prioritized with five different prioritization techniques.

For the evaluation, we used the set of configurations and

fault metric provided by Al-Hajjaji et al. [7]. Fault metric is

the distribution of fault found in each configuration.

Configuration is a valid combination of features. For each of

the configuration, we calculated the similarity distances

between the configurations. The result will be a table of

distances between each configuration. Four tables of four

similarity functions are obtained. The distances obtained are

used to prioritize the configurations. Five prioritization

techniques are used to prioritize each of the four tables

produced. Finally, after the prioritization process is complete,

we calculate the average percentage of faults detected.

The rest of the paper are organized as follows. Section II

contain the related works. Section III is about the similarity

distances used for the evaluation. Section IV is for the

prioritization techniques used for the evaluation. The

evaluation of the approaches is described in section V. Lastly,

the conclusions and future work plan in Section VI.

II. RELATED WORKS

Similarity function is introduced to maximize the diversity

of configurations. On the other hand, test case prioritization

technique schedules the configurations for execution in an

order that attempts to maximize some objective function.

Hemmati et al. [6] and Henard et al. [10] investigated ways

to select an affordable subset with maximum fault detection

rate by maximizing diversity among configurations using the

Journal of Telecommunication, Electronic and Computer Engineering

90 e-ISSN: 2289-8131 Vol. 9 No. 3-3

dissimilarity measure. The results obtained in those papers

suggested that two dissimilar configurations have a higher

fault detection rate than similar ones since the former ones are

more likely to cover more components than the latter.

Hemmati et al. [6] proposed similarity-based techniques to

reduce the cost of model-based test case selection. Hemmati

et al [6] also stated that the similarity functions divided by

two, which are set-based and sequence-based. Henard et al.

[10] sample and prioritize products at the same time by

employing a search-based approach to generate products

based on similarity among them. Al-Hajjaji et al. [7] propose

a similarity-based product prioritization for SPL testing. The

prioritization selects the next configuration to be tested based

on the similarities between itself and previous tested

products. If one variant has been tested, the following

configuration is selected, such that it has the minimum

similarity with all previous tested configurations. Fang et al.

[9] introduced several similarity-based test case prioritization

techniques based on the edit distances of ordered sequences.

Their work show an increase toward the fault detection rate

and effectiveness in detecting faults in loops.

This paper focus toward the fault detection rate as the

objective function of the prioritization technique. To evaluate

how quick faults are detected during testing, the Average

Percentage of Faults Detected (APFD) metric [11], [13], [14]

are used. The APFD metric measures the weighted average

of the percentage of faults detected during the execution of

the test suite. A similar objective is pursued by Hemmati et

al. [6], Al-Hajjaji et al. [7] and Fang et al. [9]. Zhang et al.

[15] used the total and additional prioritization strategies to

prioritize based on the total numbers of elements covered per

test, and the numbers of additional which is the not-yet-

covered elements covered per test to increase the rate of fault

detection. As for Sanchez et al. [8] work, they present an

approach that can combine combinatorial testing and

different prioritization criteria to detect faults faster.

III. SIMILARITY DISTANCE

Similarity distance is a real-valued function that quantifies

the similarity between two objects. In testing, a similarity

distance is used for comparing similarity between two

configurations [8]. The purpose of similarity function is to

maximize the diversity of selected configurations. The

diversity of configurations is computed by a certain

dissimilarity measure between each pair of configurations.

Consequently, this will increase the chance of detecting faults

as early as possible if the diversity of the configurations is

maximized [9]. In this paper, four type of similarity distances

are used.

A. Hamming Distance

Generally, Hamming Distance is used to measure the two-

binary string. It used to denote the difference between them.

For this paper, we used the definition of Hamming Distance

by Al-Hajjaji et al. [7]. They define the distance between the

two configurations as below:

   

F

cjFciFcjci
Fcjcid

 
1),,((1)

Above function is define as ci and cj are the two given

configurations that relative to the set of features F. The values

of distance between configurations are between the number 0

and 1. The closer the value to 0, the more similar the two

configurations. If the value is equal to 1, it indicates that the

configurations are completely different from each other.

B. Jaccard Distance

The others name of Jaccard Distance is Jaccard Index and

known as Jaccard similarity coefficient. In statistic, it is use

to compare the similarity and diversity of sample sets. In this

paper, we used the Jaccard distance that is defined by Henard

et al. [10]. They define the d as a distance measure between

two configurations, which are ci and cj, to evaluate the degree

of similarity. The definition is given by:

 
cjci

cjci
cjcid




1,

(2)

The resulting distance varies between 0 and 1. More

particularly, a distance which equal to 1 indicates that the two

considered configurations are completely different.

Meanwhile, a distance which equal to 0 denotes that the two

configurations are same. It attempts to find similar members

from both chosen configurations, and divided with the total

members that are not similar between them.

C. Counting Function

The Counting function is used to compare two sets of

transitions. It is the simplest way of comparing two sets that

have reused. Hemmati et al. [6], define the counting function

as Cnt(ci, cj) is the number of same members in ci and cj,

divided by the average members in ci and cj.

)2)((
1),(




cjci

cjci
cjcid

 (3)

The ci and cj are respectively refer to the configurations.

The values of distance between configurations are between

the number 0 and 1. The closer the value to 0, the more similar

the two configurations. If the value is equal to 1, it indicates

that the configurations are completely different from each

other.

D. Sorensen Dice

The Sørensen-Dice index is a simple way to calculate a

measure of the similarity of two strings. The values produced

are bounded between 0 and 1. The algorithm works by

comparing the number of identical character pairs between

the two strings. It is beneficial for ecological community data

where justification for its use is primarily empirical rather

than theoretical. The Sorensen Dice is defined as below:

cjci

cjci
cjcid




2
1),((4)

The ci and cj are referring to the configuration. It attempts

to find the same members between the configurations, and

divide it by the total members that exist between both chosen

configurations.

IV. PRIORITIZATION TECHNIQUES

Prioritization technique arrange the configurations for

A Comparison on Similarity Distances and Prioritization Techniques for Early Fault Detection Rate

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 91

testing depending on the specified objectives or goals. In this

paper, the goal is on rate of fault detection. Configuration’s

rate of fault detection is a measure of how quick a

configuration detects fault during testing process [11]. This

goal aims to achieve a sequence of configurations to be run

in a way that faults are detected as soon as possible. In this

section, we consider five prioritization techniques, which all

of them had been used by previous researchers that related to

similarity-based prioritization.

A. All-yes-config Strategy

This strategy is common in the Linux community to test the

configuration with the maximum number of selected features

[12]. The general idea for this strategy is to select the

configuration that has the maximum number of selected

features to be tested first. If more than one configuration has

the same maximum number of selected features, we take the

first one that we found. The rationale of selecting the

configuration with the maximum number of selected features

as the first to test is to be assumed to cover most faults, which

may exist in an individual feature [7]. The selected

configuration is added to a list of prioritized configurations,

and removed from a list of remaining configurations.

The next step to select the second configuration that will be

added to prioritized list is the configuration with the

maximum distance to the first configuration that has been

selected. In case of two or more configurations with the same

distance value, the first configuration that get this value of

distance is selected.

There are two configurations now on the prioritized list.

The next step is to arrange the remaining configurations. In

this step, the distance for each configuration in the list of

remaining configurations respect to all in the list of prioritized

configurations are considered. The minimum distance

between the configurations are considered and placed for a

comparison to search for the maximum distance from these

distances. Thus, the configuration that has the maximum

distance is selected into prioritized list. The same process is

continued until all configurations are ordered. All these steps

in ordering the configurations are from the work of Al-Hajjaji

et al. [7].

B. Local Maximum Distance Prioritization

This prioritization technique is used by Henard et al. [10]

as its ability to cover t-sets. The similarity distances are used

for prioritizing the configurations. This approach iterates over

the initial unordered list of configurations, looking for the two

configurations that share the maximum distance. These two

configurations are added to the prioritized list and removed

from the unordered list of configurations. In case of two or

more configurations with the same distance value, the first

configuration that get this value of distance is selected. This

process is repeated until all the configurations from

unordered list are added to prioritized list.

C. Global Maximum Distance Prioritization

This prioritization technique also included within the

Henard et al. [10] work. Generally, this approach selects at

each step the configuration which is the most distant to all the

configurations already selected during the previous steps.

First step is to select two configurations inside the unordered

list that sharing the highest distance. These two

configurations are the first added to the prioritized list.

The next step is to sum the individual distances from the

unordered list, with the other configurations inside the

prioritized list. Thus, its giving a value for the set. Then the

maximum value is obtained by comparing these set values.

The configuration that has the maximum value is added to the

prioritized list. This process is repeated until the unordered

list is empty.

D. Farthest-first Ordered Sequence (FOS)

This prioritization technique is used by Fang et al. [9],

which is based on ordered sequences of program entities. It is

also used similarity-based as the distances between

configurations. This technique using the minimum strategy.

First, choose configurations that have a greatest code

coverage between them, which means the highest distance

from others configurations. Add them to the prioritized list.

 To choose the next configurations to be added, the total

distances between each configuration inside unordered list

with each configuration inside prioritized list need to be

calculated. The new values of set are obtained. Within the

values of the set, choose the configuration that inherit the

minimum value as the next configurations that need to be

added inside prioritized list. In case of two or more

configurations with the same distance value, the first

configuration that get this value of distance is selected.

Repeat the step until all the configurations are ordered.

E. Greed-aided-clustering Ordered Sequence (GOS)

For GOS process, configurations in each cluster are

prioritized by the additional greedy algorithm and then the

configurations are selected from each cluster according to the

ordering. This technique is implemented with similarity

based by the work of Fang et al. [9]. To find the first

configuration, obtain a pair of configurations which have

minimum distance from the others. Then, add the

configurations into the prioritized list. To choose the next

configurations to be added, additional greedy algorithm is

used. The first configuration that has maximum value will be

added to the prioritized list. Repeat until all the configurations

are ordered.

V. EXPERIMENTS AND RESULTS

Our implementation is about the similarity-based

prioritization. Our aim is to detect more faults as soon as

possible for the product lines under test. In our evaluation, we

focus on the following research questions.

RQ1: Which string distance shows better result in rate of

early fault detection?

RQ2: Does different prioritization techniques affect the rate

of early fault detection?

We begin by describing our experimental settings and then

we explain the experimental results.

A. Experimental settings

In SPL, to generate a set of configurations, a feature model

is needed. We used the feature model and generated

configurations from MobilePhone product line which is

created by Al-Hajjaji et al. [7].

The feature models usually represented graphically by

feature diagrams [16]. Figure 1 shows an example of feature

diagrams of a product line MobilePhone. Feature diagrams

are used to restrict the variability of a product line as not all

combinations of features are valid. A valid combination is

Journal of Telecommunication, Electronic and Computer Engineering

92 e-ISSN: 2289-8131 Vol. 9 No. 3-3

called as configuration [7].

Figure 1: Feature diagram of MobilePhone [7]

Table 1 exemplarily lists nine configurations that are

created from feature model MobilePhone using pairwise

sampling with ICPL [17]. Sampling algorithm typically

outputs an ordered list of configurations.

Table 1
Configurations of MobilePhone product line [7]

ID Configurations

C1 {Calls, Screen, Color}

C2 {Calls, GPS, Screen, HighResolution, Media, MP3}

C3 {Calls, Screen, HighResolution, Media, Camera}

C4 {Calls, Screen, Basic}

C5 {Calls, Screen, HighResolution, Media, Camera, MP3}

C6 {Calls, GPS, Screen, Color, Media, MP3}
C7 {Calls, GPS, Screen, HighResolution, Media, Camera}

C8 {Calls, Screen, Basic, Media, MP3}

C9 {Calls, GPS, Screen, HighResolution,}

To measure the effectiveness of our research, we evaluated

the ability of the string distances and prioritization techniques

to detect faults in the SPL under test. For this purpose, some

generated faults are needed. Thus, we used the faults that

already generated by Al-Hajjaji et al. [7].

Table 2 shows the distribution of six faults that had been

used by Al-Hajjaji et al. [7]. Lastly, to evaluate how quick

faults are detected during testing we used the APFD metric.

The APFD metric measures the weighted average of the

percentage of faults detected during the execution of the test

suite. APFD illustrate as the T as the test suite which contain

a numbers of n configurations, and let F a set of m faults

revealed by T. Let TFi be the position of the first test case in

ordering T’ of T which reveals the fault i. The equation of

APFD is given below:

nmn

TFnTFTF
APFD

2

1...21
1 




 (5)

APFD value ranges from 0 to 1. A prioritized test suite with

higher APFD value has faster fault detection rates than those

with lower APFD values.

Table 2

Fault Metric [7]

Configuration F1 F2
Fault

F3
F4 F5 F6

C1 X X

C2 X X

C3 X X X

C4 X X X X

C5 X X X

C6 X

C7 X

C8 X X

C9

B. Experiment 1. Implement the similarity distances

This experiment is conducted to apply the similarity

distances in Section III for the use of the next experiment. The

experimental setup and the results are reported.

1) Experimental Setup

In this experiment, we need to calculate the similarity

distances for each of the configuration. Table 1 plays a crucial

part to obtain the distances. First, we build a table that contain

the IDs of configuration. We build four tables due to each

distance has different similarity metric.

2) Experimental Results

Table 3 until Table 6 shows the different result for each of

similarity distance that we have calculated.

Table 3

Hamming Distance

 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.556 0.444 0.222 0.556 0.334 0.556 0.444 0.334

C2 0.556 0 0.334 0.556 0.222 0.222 0.222 0.334 0.222

C3 0.444 0.334 0 0.444 0.111 0.556 0.111 0.444 0.334

C4 0.222 0.556 0.444 0 0.556 0.556 0.556 0.222 0.337

C5 0.556 0.222 0.111 0.556 0 0.444 0.222 0.334 0.444

C6 0.334 0.222 0.556 0.556 0.444 0 0.444 0.334 0.444

C7 0.556 0.222 0.111 0.556 0.222 0.444 0 0.556 0.222

C8 0.444 0.334 0.444 0.222 0.334 0.334 0.556 0 0.556

C9 0.334 0.222 0.334 0.337 0.444 0.444 0.222 0.556 0

Table 4 until 6 show the calculated distances among each

of the configuration. The distances are important due to these

values will be used to determine the order of the configuration

during prioritization process.

Table 4

Jaccard Distance

 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.714 0.667 0.5 0.714 0.5 0.714 0.667 0.6

C2 0.714 0 0.429 0.714 0.286 0.286 0.286 0.429 0.333

C3 0.667 0.429 0 0.667 0.167 0.625 0.167 0.571 0.5

C4 0.5 0.714 0.667 0 0.714 0.714 0.714 0.4 0.6

C5 0.714 0.286 0.167 0.714 0 0.5 0.286 0.429 0.571

C6 0.5 0.286 0.625 0.714 0.5 0 0.5 0.429 0.571

C7 0.714 0.286 0.167 0.714 0.286 0.5 0 0.571 0.333

C8 0.667 0.429 0.571 0.4 0.429 0.429 0.571 0 0.714

C9 0.6 0.333 0.5 0.6 0.571 0.571 0.333 0.714 0

Table 5

Counting Function

 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.444 0.5 0.667 0.444 0.667 0.444 0.5 0.571

C2 0.444 0 0.727 0.444 0.833 0.833 0.833 0.727 0.8

C3 0.5 0.727 0 0.5 0.909 0.545 0.909 0.6 0.667

C4 0.667 0.444 0.5 0 0.444 0.444 0.444 0.75 0.571

C5 0.444 0.833 0.909 0.444 0 0.667 0.833 0.727 0.6

C6 0.667 0.833 0.545 0.444 0.667 0 0.667 0.727 0.6

C7 0.444 0.833 0.909 0.444 0.833 0.667 0 0.545 0.8

C8 0.5 0.727 0.6 0.75 0.727 0.727 0.545 0 0.444

C9 0.571 0.8 0.667 0.571 0.6 0.6 0.8 0.444 0

A Comparison on Similarity Distances and Prioritization Techniques for Early Fault Detection Rate

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 93

Table 6
Sorensen Dice

 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.556 0.5 0.333 0.556 0.333 0.556 0.5 0.429

C2 0.556 0 0.273 0.556 0.167 0.167 0.167 0.273 0.2

C3 0.5 0.273 0 0.5 0.09 0.455 0.09 0.4 0.333

C4 0.333 0.556 0.5 0 0.556 0.556 0.556 0.25 0.429

C5 0.556 0.167 0.09 0.556 0 0.333 0.167 0.273 0.4

C6 0.333 0.167 0.455 0.556 0.333 0 0.333 0.273 0.4

C7 0.556 0.167 0.09 0.556 0.167 0.333 0 0.455 0.2

C8 0.5 0.273 0.4 0.25 0.273 0.273 0.455 0 0.556

C9 0.429 0.2 0.333 0.429 0.4 0.4 0.2 0.556 0

C. Experiment 2. APFD of Similarity-based

Prioritization

To answer RQ1 and RQ2, we check the impact on the rate

of early fault detection for each of the similarity result

obtained with five of the prioritization techniques that are

defined in Section IV. The experimental setup and the results

are next reported.

1) Experimental Setup

The experimental procedure is to arrange the

configurations according to the prioritization technique. To

do that, we need to trace a table of the distances row by row,

to find which configuration that will be added to the

prioritized list. After prioritized list is completed, with Table

2 as reference, we calculate the APFD. Table 7 shows one of

the distance that traced manually by using table.

Table 7

Hamming Distance with GOS

 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.556 0.444 0.222 0.556 0.334 0.556 0.444 0.334

C2 0.556 0 0.334 0.556 0.222 0.222 0.222 0.334 0.222

C3 0.444 0.334 0 0.444 0.111 0.556 0.111 0.444 0.334

C4 0.222 0.556 0.444 0 0.556 0.556 0.556 0.222 0.337

C5 0.556 0.222 0.111 0.556 0 0.444 0.222 0.334 0.444

C6 0.334 0.222 0.556 0.556 0.444 0 0.444 0.334 0.444

C7 0.556 0.222 0.111 0.556 0.222 0.444 0 0.556 0.222

C8 0.444 0.334 0.444 0.222 0.334 0.334 0.556 0 0.556

C9 0.334 0.222 0.334 0.337 0.444 0.444 0.222 0.556 0

Table 7 illustrates the process of GOS technique toward the

result from Hamming distance. By referring the GOS

algorithm, the first configuration that need to be put into

prioritized list P, is the one that inherit minimum value. Thus,

C4 will be add first because it has smallest value among the

other rows. Next configuration will be the C1, because the

first minimum distance added to the P is from the distance

between C4 and C1. Now, two configurations that exist in

prioritized list are P= {C4, C1}.

According to GOS algorithm, the next configuration that

will be chosen is the configuration with the maximum value.

There are three configurations that have maximum value. In

case we have two or more configurations with the same

distance value, we select the first configuration that gets this

value of distance. Hence, the C2 (yellow color) is added first

as the third configuration inside P, followed by C5 and C7.

Now, the configurations that remain in a set C are C= {C3,

C6, C8, C9}. Repeat the process until the C is empty. Thus,

the new order that need to be tested is P= {C4, C1, C2, C5,

C7, C3, C8, C6, C9}.

The last step is to calculate the APFD for the new order of

configurations. Table 8 is created based on the fault metric in

Table 2.

Table 8
New order of fault matrix

Configuration
 Fault

F1 F2 F3 F4 F5 F6

C4 X X X X

C1 X

C2 X X
C5 X X X

C7 X

C3 X X X
C8 X X

C6 X

C9

Table 8 contains new faults positions after we prioritized

the Hamming distance result by using GOS algorithm. To

calculate the APFD, this table is required. The equation of the

APFD already given above in Section A in Experimental

Setting. The calculation for APFD shown below:

92

1

69

164111
1







APFD = 0.796 (6)

The TF1 is equal to 1 because the first fault that we found

from the first column of table is at the first row of the table.

TF is the position of the fault that first to emerge. Thus, it is

1 because the first fault that we encounter first is located at

the first row. Next, we look at the second column, which is

F2. At which row that the first fault, emerge. Again, the first

fault we encounter is at the first row. It goes the same way as

for F4 and F6. For the F4 column, the TF4 is equal to 4

because the first fault that can be found is at the row four.

Same concept also with the F5.

2) Experiment Results

The result will be four new sets of configurations that had

been reorder by each of the prioritization technique used.

Table 9 shows the APFD result for each similarity distance

with five prioritization techniques. Further explanation

related to this result will be discuss in the discussion section

below.

Table 9

APFD Result

Similarity

Distance

Prioritization Technique

All-

yes-

config

Local
Max.

Global
Max.

FOS GOS

Hamming 0.759 0.759 0.778 0.611 0.796
Jaccard 0.759 0.759 0.759 0.741 0.796

Counting Function 0.759 0.759 0.685 0.63 0.796

Sorensen-Dice 0.759 0.759 0.685 0.63 0.796

D. Discussion

In this section, we discuss about our obtained results. Our

first results are in Table 3 until Table 6. As we can see, these

distances between configurations are needed first.

Prioritization cannot be done without them. The value for

each pair of configuration is in between 0 and 1. The value

indicates the similarity between them. The value that near to

1 indicates that the more dissimilar the configurations are,

and vice versa. From the APFD result in Table 9, it shows

that the usage of similarity distance can affect the fault

detection rate. Jaccard distance shows the highest reading

among the others similarity distances. APFD value ranges

from 0 to 1. Sanchez et al. [8] state that prioritized test suite

Journal of Telecommunication, Electronic and Computer Engineering

94 e-ISSN: 2289-8131 Vol. 9 No. 3-3

with higher APFD value has faster fault detection rates than

those with lower APFD values. Thus, Jaccard distance shows

promising result in detecting fault faster, compared to others.

Hemmati et al. [6] work mentioned that Jaccard distance is

more practical due to its easier to use because it does not

require any parameter settings. The work also mentioned that

the Jaccard distance has low variation, low cost, and high

effectiveness. However, the Jaccard distance does not shine

most when ongoing the FOS prioritization technique.

As for the five prioritization techniques used, the GOS

prioritization technique shows the highest APFD value. The

value shows the same, which is 0.796. According to Fang et

al. [9], GOS algorithm is one of the group that use minimum

distance. The results from Jiang et al. [18] indicate that the

group using minimum strategy has the highest rate of fault

detection.

VI. CONCLUSION

Product line testing consumes a lot of time. Every testers

expectation is to increase probability of detecting faults as

soon as possible for the product line under test. Therefore,

several approaches have been proposed to prioritize products

to ensure the earlier products have a higher probability to

contain faults. With similarity-based prioritization, the

products prioritized based on similarity of their features. We

evaluate similarity-based prioritization by using four

different similarity metrics, with all five different

prioritization techniques. We evaluated all of them in term of

rate of early fault detection. The results show that the

difference between the effectiveness within the similarity

metrics and the prioritization techniques. The results showed

that the Jaccard distance has better rate of fault detection

among the three others similarity distance. For the

prioritization technique, GOS algorithm appear the best.

As future work, we plan to work with GOS algorithm to

improve the fault detection rate. We plan to enhance the

previous algorithm used to achieve a better APFD results than

the results shown on this paper.

ACKNOWLEDGMENT

Warm thanks for all the anonymous readers and reviewers

who read and review this paper. Comments and suggestions

are most welcome for improving the future works of this

paper. This research work relatively supported by Dr. Mohd

Adham bin Isa research's grant by Ministry of Education

Malaysia under the Fundamental Research Grant Scheme

(FRGS) with vot. R. J130000.7828.4F836.

REFERENCES

[1] P. Clements, and L. Northrop, Software product lines: Practices and

Patterns. USA: Addison-Wesley, 2002, pp. 5-6.

[2] D. M. Weiss, “The Product Line Hall of Fame,” in Proceedings of the
International Software Product Line Conference (SPLC), San

Francisco, 2008, pp. 395-395.

[3] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Budry, and Y. le Traon, “Pair-
wise testing for software product lines: comparison of two approaches,”

Software Quality Journal, vol. 20, no. 3-4, pp. 605-643, Sep. 2012.

[4] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping
study,” Software Quality Journal, vol. 21, no. 3, pp. 445-478, Sep.

2013.

[5] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case
prioritization: An empirical study,” in Proceedings IEEE International

Conference on Software Maintenance, Oxford, 1999, pp. 179-188.

[6] H. Hemmati, and L. Briand, “An industrial investigation of similarity
measures for model-based test case selection,” in Symposium IEEE 21st

International on Software Reliability Engineering (ISSRE), San Jose,

2010, pp. 141-150.
[7] M. Al-Hajjaji, T. Thüm, M. Lochau, J. Meinicke, and G. Saake,

“Effective product-line testing using similarity-based product

prioritization,” Software & Systems Modeling, vol. 16, pp. 1-23, Dec.
2016.

[8] A. B. Sánchez, S. Segura, and A. Ruiz-Cortés, “A comparison of test
case prioritization criteria for software product lines,” in Conference

IEEE Seventh International Conference on Software Testing,

Verification and Validation (ICST), Cleveland, 2014, pp. 41-50.
[9] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case

prioritization using ordered sequences of program entities,” Software

Quality Journal, vol. 22, no. 2, pp. 335-361, Jun 2014.
[10] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le

Traon, “Bypassing the combinatorial explosion: Using similarity to

generate and prioritize t-wise test configurations for software product
lines,” IEEE Transactions on Software Engineering, vol. 40, no. 7, pp.

650-670, Jul 2014.

[11] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE transactions on

software engineering, vol. 28, no. 2, pp. 159-182, Feb 2002.

[12] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and D. Lohmann,
“Understanding linux feature distribution,” in Proceedings of the 2012

workshop on Modularity in Systems Software, Potsdam, 2012, pp. 15-

20.
[13] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction

regression testing: A study of test case generation and prioritization,”

in Conference IEEE International Conference on Software
Maintenance (ICSM), Maison Internationale, 2007, pp. 255-264.

[14] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing

test cases for regression testing,” IEEE Transactions on software
engineering, vol. 27, no. 10, pp. 929-948, Oct 2001.

[15] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the

gap between the total and additional test-case prioritization strategies,”
in Proceedings of the 2013 International Conference on Software

Engineering, San Francisco, 2013, pp. 192-201.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
Feature-oriented domain analysis (FODA) feasibility study.

Pittsburgh, PA: Carnegie-Mellon University, 1990.

[17] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for
generating t-wise covering arrays from large feature models,” in

Proceedings of the 16th International Software Product Line

Conference, Salvador, 2012, pp. 46-55.
[18] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test

case prioritization,” in Proceedings of the 2009 IEEE/ACM

International Conference on Automated Software Engineering,
Auckland, 2009, pp. 233-244.

