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Abstract—Nowadays, the Software Product Line (SPL) had 

replaced the conventional product development system. Many 

researches have been carried out to ensure the SPL usage prune 

the benefits toward the recent technologies. However, there are 

still some problems exist within the concept itself, such as 

variability and commonality. Due to its variability, exhaustive 

testing is not possible. Various solutions have been proposed to 

lessen this problem. One of them is prioritization technique, in 

which it is used to arrange back the test cases to achieve a 

specific performance goal. In this paper, the early fault detection 

is selected as the performance goal. Similarity function is used 

within our prioritization approach. Five different types of 

prioritization techniques are used in the experiment. The 

experiment results indicate that the greed-aided-clustering 

ordered sequence (GOS) shows the highest rate of early fault 

detection. 

 

Index Terms—Product-Line Testing; Prioritization; Software 

Product Lines. 

 

I. INTRODUCTION 

 

Software Product Line (SPL) is a group of software-intensive 

systems that sharing an identical, managed group of features 

that fulfill the needs of a certain market section or goal and 

are build up from a familiar set of core assets in a 

recommended way [1]. SPL can give many benefits toward 

various organizations due to its implementation of business 

and technical strategy. Such benefit in software development 

is that SPL approach can make enhancements in time to 

market, cost, and reliability. This benefit not only helps the 

organizational, but also individual SPL practitioner [1]. Thus, 

numerous software organizations alter their development of 

software from single systems to SPLs [2]. 

In achieving these benefits, a complete set of activities that 

validate and verify the correctness of the product built should 

be defined. Thus, the testing approach is introduced. The 

product line testing is about extracting a set of products and 

testing each of it [3]. Testing an SPL is a hard task. This is 

because of the combinatorial explosion faced due to a great 

number of possible combination features. Exhaustive testing 

is infeasible. Exhaustive testing is a test approach in which all 

possible data combinations are used for testing. Time 

consuming and cost issues arise when exhaustive testing in 

SPLs is conducted. Many attempts have been done to solve 

the issues. One of them is the test case prioritization. 

Test case prioritization techniques arrange test cases for 

execution in an order that achieves to increase their 

effectiveness at meeting certain performance goals [4][5]. 

Various goals can be specified. For examples, the software 

testers may want to order their test cases in an order that can 

attain full code coverage as soon as possible or in an order 

that can increase the rate of fault detection. State a goal first, 

then several ordering criteria can be considered. For an 

example, given the goal is to increase the rate of fault 

detection of the test cases. Software testers could order the 

test cases according to the presumed dispose error of the 

component under test or they also could order the test cases 

according to the number of faults detected by the previous 

executed test cases.  

This paper presents some test case prioritization 

approaches for the SPLs. We explore the applicability of the 

similarity distance with the prioritization technique to 

increase the rate of early fault detection. Four type of 

similarity functions are used. These functions are Hamming 

distance, Jaccard distance, Counting function, and Sorensen-

Dice. The reason we used prioritization based on similarity 

function is that it has higher feature coverage and higher fault 

detection rate [6]. Each of these similarity functions then are 

prioritized with five different prioritization techniques.  

For the evaluation, we used the set of configurations and 

fault metric provided by Al-Hajjaji et al. [7]. Fault metric is 

the distribution of fault found in each configuration. 

Configuration is a valid combination of features. For each of 

the configuration, we calculated the similarity distances 

between the configurations. The result will be a table of 

distances between each configuration. Four tables of four 

similarity functions are obtained. The distances obtained are 

used to prioritize the configurations. Five prioritization 

techniques are used to prioritize each of the four tables 

produced. Finally, after the prioritization process is complete, 

we calculate the average percentage of faults detected. 

The rest of the paper are organized as follows. Section II 

contain the related works. Section III is about the similarity 

distances used for the evaluation. Section IV is for the 

prioritization techniques used for the evaluation. The 

evaluation of the approaches is described in section V. Lastly, 

the conclusions and future work plan in Section VI. 

 

II. RELATED WORKS 

 

Similarity function is introduced to maximize the diversity 

of configurations. On the other hand, test case prioritization 

technique schedules the configurations for execution in an 

order that attempts to maximize some objective function. 

Hemmati et al. [6] and Henard et al. [10] investigated ways 

to select an affordable subset with maximum fault detection 

rate by maximizing diversity among configurations using the 
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dissimilarity measure. The results obtained in those papers 

suggested that two dissimilar configurations have a higher 

fault detection rate than similar ones since the former ones are 

more likely to cover more components than the latter. 

Hemmati et al. [6] proposed similarity-based techniques to 

reduce the cost of model-based test case selection. Hemmati 

et al [6] also stated that the similarity functions divided by 

two, which are set-based and sequence-based. Henard et al. 

[10] sample and prioritize products at the same time by 

employing a search-based approach to generate products 

based on similarity among them. Al-Hajjaji et al. [7] propose 

a similarity-based product prioritization for SPL testing. The 

prioritization selects the next configuration to be tested based 

on the similarities between itself and previous tested 

products. If one variant has been tested, the following 

configuration is selected, such that it has the minimum 

similarity with all previous tested configurations. Fang et al. 

[9] introduced several similarity-based test case prioritization 

techniques based on the edit distances of ordered sequences. 

Their work show an increase toward the fault detection rate 

and effectiveness in detecting faults in loops.  

This paper focus toward the fault detection rate as the 

objective function of the prioritization technique. To evaluate 

how quick faults are detected during testing, the Average 

Percentage of Faults Detected (APFD) metric [11], [13], [14] 

are used. The APFD metric measures the weighted average 

of the percentage of faults detected during the execution of 

the test suite. A similar objective is pursued by Hemmati et 

al. [6], Al-Hajjaji et al. [7] and Fang et al. [9]. Zhang et al. 

[15] used the total and additional prioritization strategies to 

prioritize based on the total numbers of elements covered per 

test, and the numbers of additional which is the not-yet-

covered elements covered per test to increase the rate of fault 

detection. As for Sanchez et al. [8] work, they present an 

approach that can combine combinatorial testing and 

different prioritization criteria to detect faults faster. 

 

III. SIMILARITY DISTANCE 

 

Similarity distance is a real-valued function that quantifies 

the similarity between two objects. In testing, a similarity 

distance is used for comparing similarity between two 

configurations [8]. The purpose of similarity function is to 

maximize the diversity of selected configurations. The 

diversity of configurations is computed by a certain 

dissimilarity measure between each pair of configurations. 

Consequently, this will increase the chance of detecting faults 

as early as possible if the diversity of the configurations is 

maximized [9]. In this paper, four type of similarity distances 

are used.  

 

A. Hamming Distance 

Generally, Hamming Distance is used to measure the two-

binary string. It used to denote the difference between them. 

For this paper, we used the definition of Hamming Distance 

by Al-Hajjaji et al. [7]. They define the distance between the 

two configurations as below: 
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Above function is define as ci and cj are the two given 

configurations that relative to the set of features F. The values 

of distance between configurations are between the number 0 

and 1. The closer the value to 0, the more similar the two 

configurations. If the value is equal to 1, it indicates that the 

configurations are completely different from each other.  

 

B. Jaccard Distance 

The others name of Jaccard Distance is Jaccard Index and 

known as Jaccard similarity coefficient. In statistic, it is use 

to compare the similarity and diversity of sample sets. In this 

paper, we used the Jaccard distance that is defined by Henard 

et al. [10]. They define the d as a distance measure between 

two configurations, which are ci and cj, to evaluate the degree 

of similarity. The definition is given by: 

 

 
cjci

cjci
cjcid




1,  

(2) 

 

The resulting distance varies between 0 and 1. More 

particularly, a distance which equal to 1 indicates that the two 

considered configurations are completely different. 

Meanwhile, a distance which equal to 0 denotes that the two 

configurations are same. It attempts to find similar members 

from both chosen configurations, and divided with the total 

members that are not similar between them. 

 

C. Counting Function 

The Counting function is used to compare two sets of 

transitions. It is the simplest way of comparing two sets that 

have reused. Hemmati et al. [6], define the counting function 

as Cnt(ci, cj) is the number of same members in ci and cj, 

divided by the average members in ci and cj.  
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The ci and cj are respectively refer to the configurations. 

The values of distance between configurations are between 

the number 0 and 1. The closer the value to 0, the more similar 

the two configurations. If the value is equal to 1, it indicates 

that the configurations are completely different from each 

other.  

 

D. Sorensen Dice 

The Sørensen-Dice index is a simple way to calculate a 

measure of the similarity of two strings. The values produced 

are bounded between 0 and 1. The algorithm works by 

comparing the number of identical character pairs between 

the two strings. It is beneficial for ecological community data 

where justification for its use is primarily empirical rather 

than theoretical. The Sorensen Dice is defined as below: 
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The ci and cj are referring to the configuration. It attempts 

to find the same members between the configurations, and 

divide it by the total members that exist between both chosen 

configurations.  

 

IV. PRIORITIZATION TECHNIQUES 

 

Prioritization technique arrange the configurations for 
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testing depending on the specified objectives or goals. In this 

paper, the goal is on rate of fault detection. Configuration’s 

rate of fault detection is a measure of how quick a 

configuration detects fault during testing process [11]. This 

goal aims to achieve a sequence of configurations to be run 

in a way that faults are detected as soon as possible. In this 

section, we consider five prioritization techniques, which all 

of them had been used by previous researchers that related to 

similarity-based prioritization. 

 

A.  All-yes-config Strategy 

This strategy is common in the Linux community to test the 

configuration with the maximum number of selected features 

[12]. The general idea for this strategy is to select the 

configuration that has the maximum number of selected 

features to be tested first. If more than one configuration has 

the same maximum number of selected features, we take the 

first one that we found. The rationale of selecting the 

configuration with the maximum number of selected features 

as the first to test is to be assumed to cover most faults, which 

may exist in an individual feature [7]. The selected 

configuration is added to a list of prioritized configurations, 

and removed from a list of remaining configurations.  

The next step to select the second configuration that will be 

added to prioritized list is the configuration with the 

maximum distance to the first configuration that has been 

selected. In case of two or more configurations with the same 

distance value, the first configuration that get this value of 

distance is selected.  

There are two configurations now on the prioritized list. 

The next step is to arrange the remaining configurations. In 

this step, the distance for each configuration in the list of 

remaining configurations respect to all in the list of prioritized 

configurations are considered. The minimum distance 

between the configurations are considered and placed for a 

comparison to search for the maximum distance from these 

distances. Thus, the configuration that has the maximum 

distance is selected into prioritized list. The same process is 

continued until all configurations are ordered. All these steps 

in ordering the configurations are from the work of Al-Hajjaji 

et al. [7].  

 

B. Local Maximum Distance Prioritization 

This prioritization technique is used by Henard et al. [10] 

as its ability to cover t-sets. The similarity distances are used 

for prioritizing the configurations. This approach iterates over 

the initial unordered list of configurations, looking for the two 

configurations that share the maximum distance. These two 

configurations are added to the prioritized list and removed 

from the unordered list of configurations. In case of two or 

more configurations with the same distance value, the first 

configuration that get this value of distance is selected. This 

process is repeated until all the configurations from 

unordered list are added to prioritized list.  

 

C. Global Maximum Distance Prioritization 

This prioritization technique also included within the 

Henard et al. [10] work. Generally, this approach selects at 

each step the configuration which is the most distant to all the 

configurations already selected during the previous steps. 

First step is to select two configurations inside the unordered 

list that sharing the highest distance. These two 

configurations are the first added to the prioritized list.  

The next step is to sum the individual distances from the 

unordered list, with the other configurations inside the 

prioritized list. Thus, its giving a value for the set. Then the 

maximum value is obtained by comparing these set values. 

The configuration that has the maximum value is added to the 

prioritized list. This process is repeated until the unordered 

list is empty.  

 

D. Farthest-first Ordered Sequence (FOS)  

This prioritization technique is used by Fang et al. [9], 

which is based on ordered sequences of program entities. It is 

also used similarity-based as the distances between 

configurations. This technique using the minimum strategy. 

First, choose configurations that have a greatest code 

coverage between them, which means the highest distance 

from others configurations. Add them to the prioritized list. 

 To choose the next configurations to be added, the total 

distances between each configuration inside unordered list 

with each configuration inside prioritized list need to be 

calculated. The new values of set are obtained. Within the 

values of the set, choose the configuration that inherit the 

minimum value as the next configurations that need to be 

added inside prioritized list. In case of two or more 

configurations with the same distance value, the first 

configuration that get this value of distance is selected. 

Repeat the step until all the configurations are ordered. 

 

E. Greed-aided-clustering Ordered Sequence (GOS)  

For GOS process, configurations in each cluster are 

prioritized by the additional greedy algorithm and then the 

configurations are selected from each cluster according to the 

ordering. This technique is implemented with similarity 

based by the work of Fang et al. [9]. To find the first 

configuration, obtain a pair of configurations which have 

minimum distance from the others. Then, add the 

configurations into the prioritized list. To choose the next 

configurations to be added, additional greedy algorithm is 

used. The first configuration that has maximum value will be 

added to the prioritized list. Repeat until all the configurations 

are ordered. 

 

V. EXPERIMENTS AND RESULTS 

 

Our implementation is about the similarity-based 

prioritization. Our aim is to detect more faults as soon as 

possible for the product lines under test. In our evaluation, we 

focus on the following research questions. 

RQ1: Which string distance shows better result in rate of 

early fault detection? 

RQ2: Does different prioritization techniques affect the rate 

of early fault detection? 

We begin by describing our experimental settings and then 

we explain the experimental results. 

 

A. Experimental settings 

 

In SPL, to generate a set of configurations, a feature model 

is needed. We used the feature model and generated 

configurations from MobilePhone product line which is 

created by Al-Hajjaji et al. [7].  

The feature models usually represented graphically by 

feature diagrams [16]. Figure 1 shows an example of feature 

diagrams of a product line MobilePhone. Feature diagrams 

are used to restrict the variability of a product line as not all 

combinations of features are valid. A valid combination is 
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called as configuration [7].  

 

 
 

Figure 1: Feature diagram of MobilePhone [7] 

 

Table 1 exemplarily lists nine configurations that are 

created from feature model MobilePhone using pairwise 

sampling with ICPL [17]. Sampling algorithm typically 

outputs an ordered list of configurations.  
 

Table 1 
Configurations of MobilePhone product line [7] 

 

ID Configurations 

C1 {Calls, Screen, Color} 

C2 {Calls, GPS, Screen, HighResolution, Media, MP3} 

C3 {Calls, Screen, HighResolution, Media, Camera} 

C4 {Calls, Screen, Basic} 

C5 {Calls, Screen, HighResolution, Media, Camera, MP3} 

C6 {Calls, GPS, Screen, Color, Media, MP3} 
C7 {Calls, GPS, Screen, HighResolution, Media, Camera} 

C8 {Calls, Screen, Basic, Media, MP3} 

C9 {Calls, GPS, Screen, HighResolution,} 

 

To measure the effectiveness of our research, we evaluated 

the ability of the string distances and prioritization techniques 

to detect faults in the SPL under test. For this purpose, some 

generated faults are needed. Thus, we used the faults that 

already generated by Al-Hajjaji et al. [7].  

Table 2 shows the distribution of six faults that had been 

used by Al-Hajjaji et al. [7]. Lastly, to evaluate how quick 

faults are detected during testing we used the APFD metric. 

The APFD metric measures the weighted average of the 

percentage of faults detected during the execution of the test 

suite. APFD illustrate as the T as the test suite which contain 

a numbers of n configurations, and let F a set of m faults 

revealed by T. Let TFi be the position of the first test case in 

ordering T’ of T which reveals the fault i. The equation of 

APFD is given below: 

 

nmn

TFnTFTF
APFD

2

1...21
1 




  (5) 

 

APFD value ranges from 0 to 1. A prioritized test suite with 

higher APFD value has faster fault detection rates than those 

with lower APFD values. 
 

Table 2 

Fault Metric [7] 
 

Configuration F1 F2 
Fault 

F3 
F4 F5 F6 

C1  X    X 

C2  X X    

C3    X X X 

C4 X X X   X 

C5 X   X  X 

C6     X  

C7   X    

C8  X    X 

C9       

B. Experiment 1. Implement the similarity distances 

This experiment is conducted to apply the similarity 

distances in Section III for the use of the next experiment. The 

experimental setup and the results are reported. 

 

1) Experimental Setup 

In this experiment, we need to calculate the similarity 

distances for each of the configuration. Table 1 plays a crucial 

part to obtain the distances. First, we build a table that contain 

the IDs of configuration. We build four tables due to each 

distance has different similarity metric.  

 

2) Experimental Results 

Table 3 until Table 6 shows the different result for each of 

similarity distance that we have calculated. 

 
Table 3 

Hamming Distance 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0.556 0.444 0.222 0.556 0.334 0.556 0.444 0.334 

C2 0.556 0 0.334 0.556 0.222 0.222 0.222 0.334 0.222 

C3 0.444 0.334 0 0.444 0.111 0.556 0.111 0.444 0.334 

C4 0.222 0.556 0.444 0 0.556 0.556 0.556 0.222 0.337 

C5 0.556 0.222 0.111 0.556 0 0.444 0.222 0.334 0.444 

C6 0.334 0.222 0.556 0.556 0.444 0 0.444 0.334 0.444 

C7 0.556 0.222 0.111 0.556 0.222 0.444 0 0.556 0.222 

C8 0.444 0.334 0.444 0.222 0.334 0.334 0.556 0 0.556 

C9 0.334 0.222 0.334 0.337 0.444 0.444 0.222 0.556 0 

 

Table 4 until 6 show the calculated distances among each 

of the configuration. The distances are important due to these 

values will be used to determine the order of the configuration 

during prioritization process.  
 

Table 4 

Jaccard Distance 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0.714 0.667 0.5 0.714 0.5 0.714 0.667 0.6 

C2 0.714 0 0.429 0.714 0.286 0.286 0.286 0.429 0.333 

C3 0.667 0.429 0 0.667 0.167 0.625 0.167 0.571 0.5 

C4 0.5 0.714 0.667 0 0.714 0.714 0.714 0.4 0.6 

C5 0.714 0.286 0.167 0.714 0 0.5 0.286 0.429 0.571 

C6 0.5 0.286 0.625 0.714 0.5 0 0.5 0.429 0.571 

C7 0.714 0.286 0.167 0.714 0.286 0.5 0 0.571 0.333 

C8 0.667 0.429 0.571 0.4 0.429 0.429 0.571 0 0.714 

C9 0.6 0.333 0.5 0.6 0.571 0.571 0.333 0.714 0 

 
Table 5 

Counting Function 

 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0.444 0.5 0.667 0.444 0.667 0.444 0.5 0.571 

C2 0.444 0 0.727 0.444 0.833 0.833 0.833 0.727 0.8 

C3 0.5 0.727 0 0.5 0.909 0.545 0.909 0.6 0.667 

C4 0.667 0.444 0.5 0 0.444 0.444 0.444 0.75 0.571 

C5 0.444 0.833 0.909 0.444 0 0.667 0.833 0.727 0.6 

C6 0.667 0.833 0.545 0.444 0.667 0 0.667 0.727 0.6 

C7 0.444 0.833 0.909 0.444 0.833 0.667 0 0.545 0.8 

C8 0.5 0.727 0.6 0.75 0.727 0.727 0.545 0 0.444 

C9 0.571 0.8 0.667 0.571 0.6 0.6 0.8 0.444 0 
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Table 6 
Sorensen Dice 

 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0.556 0.5 0.333 0.556 0.333 0.556 0.5 0.429 

C2 0.556 0 0.273 0.556 0.167 0.167 0.167 0.273 0.2 

C3 0.5 0.273 0 0.5 0.09 0.455 0.09 0.4 0.333 

C4 0.333 0.556 0.5 0 0.556 0.556 0.556 0.25 0.429 

C5 0.556 0.167 0.09 0.556 0 0.333 0.167 0.273 0.4 

C6 0.333 0.167 0.455 0.556 0.333 0 0.333 0.273 0.4 

C7 0.556 0.167 0.09 0.556 0.167 0.333 0 0.455 0.2 

C8 0.5 0.273 0.4 0.25 0.273 0.273 0.455 0 0.556 

C9 0.429 0.2 0.333 0.429 0.4 0.4 0.2 0.556 0 

 

C. Experiment 2. APFD of Similarity-based 

Prioritization 

To answer RQ1 and RQ2, we check the impact on the rate 

of early fault detection for each of the similarity result 

obtained with five of the prioritization techniques that are 

defined in Section IV. The experimental setup and the results 

are next reported. 

 

1) Experimental Setup 

The experimental procedure is to arrange the 

configurations according to the prioritization technique. To 

do that, we need to trace a table of the distances row by row, 

to find which configuration that will be added to the 

prioritized list. After prioritized list is completed, with Table 

2 as reference, we calculate the APFD. Table 7 shows one of 

the distance that traced manually by using table. 

 
Table 7 

Hamming Distance with GOS 
 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0 0.556 0.444 0.222 0.556 0.334 0.556 0.444 0.334 

C2 0.556 0 0.334 0.556 0.222 0.222 0.222 0.334 0.222 

C3 0.444 0.334 0 0.444 0.111 0.556 0.111 0.444 0.334 

C4 0.222 0.556 0.444 0 0.556 0.556 0.556 0.222 0.337 

C5 0.556 0.222 0.111 0.556 0 0.444 0.222 0.334 0.444 

C6 0.334 0.222 0.556 0.556 0.444 0 0.444 0.334 0.444 

C7 0.556 0.222 0.111 0.556 0.222 0.444 0 0.556 0.222 

C8 0.444 0.334 0.444 0.222 0.334 0.334 0.556 0 0.556 

C9 0.334 0.222 0.334 0.337 0.444 0.444 0.222 0.556 0 

 

Table 7 illustrates the process of GOS technique toward the 

result from Hamming distance. By referring the GOS 

algorithm, the first configuration that need to be put into 

prioritized list P, is the one that inherit minimum value. Thus, 

C4 will be add first because it has smallest value among the 

other rows. Next configuration will be the C1, because the 

first minimum distance added to the P is from the distance 

between C4 and C1. Now, two configurations that exist in 

prioritized list are P= {C4, C1}.  

According to GOS algorithm, the next configuration that 

will be chosen is the configuration with the maximum value. 

There are three configurations that have maximum value. In 

case we have two or more configurations with the same 

distance value, we select the first configuration that gets this 

value of distance. Hence, the C2 (yellow color) is added first 

as the third configuration inside P, followed by C5 and C7. 

Now, the configurations that remain in a set C are C= {C3, 

C6, C8, C9}. Repeat the process until the C is empty. Thus, 

the new order that need to be tested is P= {C4, C1, C2, C5, 

C7, C3, C8, C6, C9}.  

The last step is to calculate the APFD for the new order of 

configurations. Table 8 is created based on the fault metric in 

Table 2.  

 

Table 8 
New order of fault matrix 

 

Configuration 
  Fault   

F1 F2 F3 F4 F5 F6 

C4 X X X   X 

C1  X     

C2  X X    
C5 X   X  X 

C7   X    

C3    X X X 
C8  X    X 

C6     X  

C9       

 

Table 8 contains new faults positions after we prioritized 

the Hamming distance result by using GOS algorithm. To 

calculate the APFD, this table is required. The equation of the 

APFD already given above in Section A in Experimental 

Setting. The calculation for APFD shown below: 

 

92
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69
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
APFD = 0.796 (6) 

 

The TF1 is equal to 1 because the first fault that we found 

from the first column of table is at the first row of the table. 

TF is the position of the fault that first to emerge. Thus, it is 

1 because the first fault that we encounter first is located at 

the first row. Next, we look at the second column, which is 

F2. At which row that the first fault, emerge. Again, the first 

fault we encounter is at the first row. It goes the same way as 

for F4 and F6. For the F4 column, the TF4 is equal to 4 

because the first fault that can be found is at the row four. 

Same concept also with the F5. 

 

2) Experiment Results 

The result will be four new sets of configurations that had 

been reorder by each of the prioritization technique used. 

Table 9 shows the APFD result for each similarity distance 

with five prioritization techniques. Further explanation 

related to this result will be discuss in the discussion section 

below. 

 
Table 9 

APFD Result 

 

Similarity 

Distance 

Prioritization Technique 

All-

yes-

config 

Local 
Max. 

Global 
Max. 

FOS GOS 

Hamming  0.759 0.759 0.778 0.611 0.796 
Jaccard 0.759 0.759 0.759 0.741 0.796 

Counting Function 0.759 0.759 0.685 0.63 0.796 

Sorensen-Dice 0.759 0.759 0.685 0.63 0.796 

 

D. Discussion 

In this section, we discuss about our obtained results. Our 

first results are in Table 3 until Table 6. As we can see, these 

distances between configurations are needed first. 

Prioritization cannot be done without them. The value for 

each pair of configuration is in between 0 and 1. The value 

indicates the similarity between them. The value that near to 

1 indicates that the more dissimilar the configurations are, 

and vice versa. From the APFD result in Table 9, it shows 

that the usage of similarity distance can affect the fault 

detection rate. Jaccard distance shows the highest reading 

among the others similarity distances. APFD value ranges 

from 0 to 1. Sanchez et al. [8] state that prioritized test suite 
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with higher APFD value has faster fault detection rates than 

those with lower APFD values. Thus, Jaccard distance shows 

promising result in detecting fault faster, compared to others. 

Hemmati et al. [6] work mentioned that Jaccard distance is 

more practical due to its easier to use because it does not 

require any parameter settings. The work also mentioned that 

the Jaccard distance has low variation, low cost, and high 

effectiveness. However, the Jaccard distance does not shine 

most when ongoing the FOS prioritization technique. 

As for the five prioritization techniques used, the GOS 

prioritization technique shows the highest APFD value. The 

value shows the same, which is 0.796. According to Fang et 

al. [9], GOS algorithm is one of the group that use minimum 

distance. The results from Jiang et al. [18] indicate that the 

group using minimum strategy has the highest rate of fault 

detection. 

 

VI. CONCLUSION 

 

Product line testing consumes a lot of time. Every testers 

expectation is to increase probability of detecting faults as 

soon as possible for the product line under test. Therefore, 

several approaches have been proposed to prioritize products 

to ensure the earlier products have a higher probability to 

contain faults. With similarity-based prioritization, the 

products prioritized based on similarity of their features. We 

evaluate similarity-based prioritization by using four 

different similarity metrics, with all five different 

prioritization techniques. We evaluated all of them in term of 

rate of early fault detection. The results show that the 

difference between the effectiveness within the similarity 

metrics and the prioritization techniques. The results showed 

that the Jaccard distance has better rate of fault detection 

among the three others similarity distance. For the 

prioritization technique, GOS algorithm appear the best. 

As future work, we plan to work with GOS algorithm to 

improve the fault detection rate. We plan to enhance the 

previous algorithm used to achieve a better APFD results than 

the results shown on this paper. 
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