

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 45

A Hybrid Approach for Reverse Engineering GUI

Model from Android Apps for Automated Testing

Ibrahim Anka Salihu, Rosziati Ibrahim and Aida Mustapha
Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

hi130015@siswa.uthm.edu.my

Abstract—Nowadays, smartphone users are increasingly

relying on mobile applications to complete most of their daily

tasks. As such, mobile applications are becoming more and more

complex. Therefore, software testers can no longer rely on

manual testing methods to test mobile applications. Automated

model-based testing techniques are recently used to test mobile

applications. However, the models generated by existing

techniques are of insufficient quality. This paper proposed a

hybrid technique for reverse engineering graphical user

interface (GUI) model from mobile applications. It performs

static analysis of application’s bytecode to extract GUI

information followed by a dynamic crawling to systematically

explore and reverse engineer a model of the application under

test. A case study was performed on real-world mobile apps to

evaluate the effectiveness of the technique. The results showed

that the proposed technique can generate a model with high

coverage of mobile apps behaviour.

Index Terms—Graphical User Interface Testing; Mobile

Application; Reverse Engineering; Test Automation.

I. INTRODUCTION

Over the years, mobile devices are rapidly replacing

traditional computers for an increasing number of users for

various computational tasks, such as access to emails, mobile

banking, e-services, social networks, etc. The popularity of

these devices has impacted the area of software development

with a huge increase in the development of mobile

applications in recent years [1] to meet the respective needs

of their users.

Mobile applications (Mobile Apps) are software systems

designed for mobile devices (smart phones, tablets and other

handheld devices). They belong to the class of event-driven

graphical user interface (GUI) applications where the GUIs

serves as the main user interface for interacting with the

application. Though mobile apps are initially simpler and

smaller with less complex design architecture and having a

small set of functionalities, they are recently increasing in

capacity, functionality, structure and behaviour [2]. They are

now becoming more and more complex [3]. The reliance on

mobile apps in everyday life has brought concerns about the

quality of mobile apps such as correctness, performance and

security [4-7]. However, the increased complexity of mobile

apps has brought several challenges for the software

engineering community in understanding mobile apps’

behaviour and testing them [8-10].

GUI testing is typically an important activity that is aimed

at detecting faults that lead to failures in the GUI or an

application in general [11], and it plays a significant role in

improving the quality of software systems [12]. Specifically,

GUI test automation is essential in testing today’s mobile

apps because the GUIs are increasingly becoming more

complex. Several techniques are used to automate GUI

testing for mobile apps such as script-based, capture/replay,

random-walk, systematic exploration and automated model-

based [13-15]. Model-based testing (MBT) is one of the

popular ways of automating the testing process for mobile

apps [16].

MBT is becoming increasingly popular among the software

engineering community [17-19] as an approach for testing

mobile apps. In MBT, the test cases are automatically derived

from the model of an application under test (AUT) [13, 15,

20]. It can enhance the creation of test scripts and test

coverage of an application, and reduce the time and cost for

testing [13, 19, 21, 22]. However, such model is not always

available or of insufficient quality. The model can be

constructed manually or using automated techniques.

Constructing the model manually is tedious and error-prone.

On the other hand, building the model fully automatically for

mobile apps is challenging due to the dynamic behaviour of

their GUIs [11, 23, 24]. One way to relieve the effort in

constructing GUI model is to automatically reverse engineer

the model from a given mobile app. The latter is the focus of

this study.

This paper described a technique that reverse engineers

mobile apps to automatically generate a high quality model

representing the GUI behaviour. The proposed technique is

based on a hybrid approach that performs static analysis of

mobile app source code followed by dynamic analysis at

runtime. The contributions of this paper are summarised as

follows.

i. A hybrid technique for reverse engineering of mobile

apps is proposed and implemented in a prototype tool.

ii. We proposed a crawler for the dynamic model

exploration of GUI from mobile apps.

iii. An evaluation was performed on real world mobile

app based on code coverage analysis.

The rest of the paper is organised as follows. Section II

discusses the state-of-the-art in GUI reverse engineering.

Section III presents the related work. Section IV presents the

proposed technique. A case study on real-world mobile apps

is shown in section V. The conclusion is presented in section

VI.

II. STATE OF THE ART

Reverse engineering (RE) is gaining more popularity from

the research community as an act of analysing a software

system, either in whole or in part, to extract design and

implementation information [25] that can be useful for

several tasks such as software comprehension,

documentation, maintenance, and re-engineering [26].

Nowadays, RE is used for various purposes other than

Journal of Telecommunication, Electronic and Computer Engineering

46 e-ISSN: 2289-8131 Vol. 9 No. 3-3

software comprehension such as software testing, software

reusability, updating user interfaces, migration and porting

user interfaces to new platforms [27, 28]. There are two

approaches to reverse engineering GUI applications; the

static approach and dynamics approach. The static approach

performs an analysis on the application’s source code or

binary code without executing the application [11, 29]. On

the other hand, dynamic approach extracts information from

an application by executing and analysing its external

behaviour [21, 30].

Both static and dynamic approaches for reverse

engineering GUI applications have their strengths and

weaknesses. The static approach is capable of retrieving more

accurate and complete information from an application but

the dynamic object-oriented nature of GUI applications can

sometimes complicate the analysis, which makes it very

difficult or even impossible to retrieve comprehensive

information about the behaviour of GUIs by just analysing

their source code [2, 12]. This is because access to some

components depends on other components and some

components are only reachable from a particular state. In

addition, information about overlapping windows is not

accessible through static analysis. On the other hand, the

dynamic approach to reverse engineering GUI applications is

easier to implement. One of the most challenging issue in

dynamic reverse engineering is how events are found and

fired in controlling the model exploration [9, 21, 31] and the

inability to explore certain GUI due to the presence of

infeasible paths that requires user inputs such as user

credentials [21]. Hence, the extracted information about the

behaviour of the application could be inaccurate and

incomplete, which affects the quality of model generated [21,

31, 32].

Recently, the hybrid approach has been the focus of

researchers in the area of GUI reverse engineering

particularly for the Android apps [31, 33]. The hybrid

approach can provide enhancement in terms of the scope,

completeness and precision of the process as it exploits the

capabilities of both static and dynamic approaches while

trying to maximise the quality of the extracted information

[34]. Several researchers believed that using static analysis to

generate meaningful input for the dynamic exploration can

ensure the generation of a high quality model [31, 35].

However, the static analysis in existing hybrid approaches

such as Orbit [9] is not comprehensive, which affects the

quality of the model generated.

III. RELATED WORKS

Several model reverse engineering techniques and tools

were proposed for automated testing of Android apps over the

last decade. Most of these techniques are pure black-box

techniques that are based on dynamic analysis of mobile apps,

with few that are based on the hybrid approach. One of the

earliest techniques is GUI ripping [39] that was implemented

as part of GUITAR tool [40] for testing desktop applications.

The technique reverse engineers a model of an application by

automatically executing and exercising the applications’

GUI. An extension of the tool has been proposed for the

Android platform known as Android GUITAR [36]. The

technique is not able to capture the rich set of user inputs

associated with a mobile app (such as swiping, pinching etc).

It also produces many false event sequences which may need

to be weeded out later.

A2T2 (Android Automatic Testing Tool) [7] is based on a

crawler that simulates real user events on the user interface to

generate test cases that can be automatically executed on an

app for crash testing and regression testing. It constructs GUI

tree model which can be used for driving the test cases. The

technique manages only a small subset of widgets and does

not have support for the rich set of user inputs associated with

an Android app. AndroidRipper tool [37] is based on a ripper

that systematically analyses and rips mobile app’s GUI to

obtain event sequences that can be fired on the GUI, with each

sequence representing an executable test. It automatically

generates GUI tree model. The exploration is not

comprehensive and it can sometimes lead to unexpected

faults. ICRAWLER tool [41] systematically reverse

engineers a state model from iOS applications. The technique

does not capture some UI elements such as the toolbar, slide

bar, search bar, and advanced gestures such as swiping pages

and pinching. Swifthand [42] dynamically crawl a given

mobile app and systematically reverse engineer state machine

model of a mobile app. The technique only generates default

touching and scrolling events of the GUI but does not

consider system events.

ORBIT tool [9] is based on hybrid static/dynamic analysis

of an application. It performs static analysis on the source

code of an app to generate set of user actions supported by an

app. A crawler is used to dynamically fire actions on the GUI

objects of a running app to extract a state model of the

application. However, the static analysis in the ORBIT is not

comprehensive as the one proposed in this paper. Our

technique performs static analysis on the bytecode of an app

(considering fact that source code of mobile app is rarely or

not available) to extract all supported events and used them

for the dynamic exploration. Tao and Gao [36] proposed a

test automation system that models GUI dependencies

between various scenarios in mobile apps. Their aim is to

avoid test case failures coming from test cases having

scenario dependencies between GUI components.

IV. PROPOSED APPROACH

This section discussed the hybrid technique for the reverse

engineering of mobile apps. The technique consists of a static

analyser that extracts set of events supported by a mobile app

and a dynamic crawler that is responsible for dynamically

exercising the events to record their states. It performs static

analysis of application’s bytecode to extract set of events

supported by an application and used the events set as input

to the dynamic crawler, whose main goal is to systematically

fire events on the running application to explore and reverse

engineer a model of the mobile app. The proposed technique

was implemented in a prototype tool called AMOGA

(Automated Model Generator for Android Apps). Figure 1

shows the framework of the proposed approach.

Figure 1: Framework of the proposed approach

A Hybrid Approach for Reverse Engineering GUI Model from Android Apps for Automated Testing

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 47

A. Static Analyser

The static analyser is implemented on top of GATOR [37],

a static analysis tool for Android. To analyse a mobile app,

the technique receives as input, the apk file of an application

and decompile it to bytecode. The analyser starts the analysis

on the application’s bytecode to construct windows transition

graph (WTG) of an application which can be used to create

the events list that can be used as input to the dynamic

crawler. Figure 2 shows workflow of the static analyser.

Figure 2: Workflow of the static analyser

B. Dynamic Crawler

The dynamic crawler is responsible for executing the

mobile app to trigger the events and explore app’s states. The

crawler is built on top of Robotium testing framework [38]

which has the capability to extract GUIs (such as test views,

check boxes, buttons, spinners etc.) and fire action on the

event handlers. It also has the functionality for editing and

clearing text boxes, clicking on home, menu and back button.

The proposed crawler exploits the capability in Robotium to

extracts the GUI widgets of the running Activity and the event

Handlers that implemented the Activity.

Events List
Crawler

Install application

Intialise

emulator

Crawling

App

exploration

Model

generation

In
stall craw

ler an
d

ev
en

tsL
ist

GUI Model

App’s states

Figure 3: Workflow of the dynamic crawling

The crawling algorithm systematically extracts the GUI

widgets associated with each event and fire action on the GUI

to trigger state transition. It produces a data structure

describing the obtained GUI state model, based on the

description of the identified Interfaces and of the triggered

events.

Figure 4 provides a detailed description of the application

crawling. First, it starts the app from the launcher node, and

then the algorithm starts with the events list generated from

the static analysis. It takes an event from the events set and

fire the event to trigger a transition to the next state (Line 2-

5). When a new state is discovered it will be added to the

model with its trigger conditions (Lines 7-9). The algorithm

continues to the next open state iteratively (Lines 11). The set

of states and transitions is updated accordingly and added to

the model (Line 12) to reflect the changes.

Algorithm 1. App crawling

Input: A: app under test, eS: event set,

Output: M: generated model

 1 Initialisation M←∅;e←getEventsSet(A)

 2 Start the app

 3 foreach event e ∈ eS do

 4 s←getCurrentWindow(A)//get state of event

 5 while s ≠ null do

 6 newS ← is new state(eS,A)

 7 if s is newS

 8 APPLICATIONCRAWLING(A,eS)

 9 addToModel(newS,M)//add newState to

model

10 end if

11 get next e to explore

12 updateModel(newS, e, m)

13 end

14 end

15 end

Figure 4: The application crawling algorithm

C. Model Definition

Finite state machines (FSM) are widely used to model the

behaviour of event-driven, interactive system, in particular,

GUI applications [9, 39]. The proposed technique model the

GUI behaviour using a finite state machine. A FSM is

composed of states, actions and transitions, and can be

represented using a diagram [40]. The FSM maps events and

related conditions to a list of GUI actions references. The

FSM is defined as follows.

Definition: Finite state machine for a mobile app MA is

defined as a graph <V, A, T>

where:

• V is a finite set of nodes representing all possible

states. Each v ∈ V represents a state in MA.

• A represents user events on a MA

• a ∈ A ⊆ V × V is a set of directed arcs between

vertices. Event e2 follows e1 if e2 can be executed

immediately after e1.

• w ∈ V is a set of vertices representing those windows

of MA that are ready for user interaction when the

mobile app is launched.

• T defines all transitions from a state to another

through.

V. EXPERIMENTAL EVALUATION

Several experiments were conducted on selected mobile

apps to evaluate the performance of the model reverse

engineering technique. A total of eight (8) mobile apps were

selected that were used by previous techniques on automated

model generation [9, 24, 41]. In other to avoid being bias, the

selection covered a range of popular real-world open source

mobile apps benchmarks that were used in the evaluation of

the tools selected for the comparison and fall across different

categories of apps such as productivity, business, etc. Test

cases were derived from the generated model from each of

Journal of Telecommunication, Electronic and Computer Engineering

48 e-ISSN: 2289-8131 Vol. 9 No. 3-3

the selected mobile apps and were used to test the application.

Table 1 presented the characteristics of selected apps. The

lines of code in an app is shown in column 2, the Activities in

column 3 and the last column shows the number of

downloads based on Google Play analytics as of January

2017. The experiments intend to answer the following

question. Does the crawler offer good coverage in a

reasonable time?

Table 1

Characteristics of mobile apps used in evaluation

Apps #LOCs Activities Category Download

TippyTipper 2248 6 Tool 100K–500K

ToDoManager 5623 2 Productivity 100K–500K

ContactManager 802 2 Productivity 1K–5K
Tomdroid 5038 5 Business 10K–50K

AardDict
5097 4 Books &

Ref.
10K–50K

OpenManager 3647 6 Business 5M–10M

Notepad 8172 8 Productivity 500K–1M
Aagtl 43105 3 Tool 500K–1M

A. Results

To answer the research question, experiments were

conducted on all the selected mobile apps and the code

coverage and time taken to crawl each application were

recorded. The proposed technique and AndroidRipper [24,

42], were also used to run an experiment on applications used

by the existing techniques in their published articles. Seven

(7) apps were selected from the apps used to evaluate Orbit

[9], and 6 from MCrawlT [43]. However, due to the

unavailability of Orbit [9] tool, and difficulty in the setup of

other tools, MCrawlT [43], and Android GUITAR [41] the

results published in their articles was used. The effectiveness

of our technique was measured and compared with the

selected tools.

Table 2 presents the percentage code coverage obtained

with each tool on the eight (8) applications. The coverage

result showed that our technique achieved 45%-93%

coverage across the 8 applications.

Table 3 presented the execution time recorded for each of

the selected tools on all the applications. The results showed

that AMOGA explored all the applications within 102

seconds – 370 seconds maximum. This indicated that

AMOGA took an average time of 102 seconds to explore all

the applications. The time along with the coverage obtained

showed that AMOGA tool offers good coverage against all

the tools on the selected mobile apps.

Table 2

Comparison of code coverage

Apps

A
n

d
ro

id

G
U

IT
A

R

A
n

d
ro

id

R
ip

p
er

O
R

B
IT

M
C

ra
w

lT

A
M

O
G

A

TippyTipper 47 - 78 79 83

ToDoManager 71 - 75 81 84
ContactManager 61 - 91 68 93

Tomdroid - 40 70 76 83

AardDict - 27 65 67 71

OpenManager - - 63 65 72

Notepad - - 82 88 91

Aagtl - - - 25 45

Table 3
Comparison of exploration time

Apps

A
n

d
ro

id

G
U

IT
A

R

A
n

d
ro

id

R
ip

p
er

O
R

B
IT

M
C

ra
w

lT

A
M

O
G

A

TippyTipper 322 - 198 110 102

ToDoManager 194 - 121 210 116

ContactManager 247 - 125 135 114

Tomdroid - 529 340 196 180

AardDict - 694 124 580 120

OpenManager - - 480 489 370

Notepad - - 102 175 110

Aagtl - - - 920 220

VI. CONCLUSION

This paper has presented a hybrid approach for reverse

engineering a model of mobile apps. We described our

prototype tool called AMOGA that implements the hybrid

approach which consists of static analyser that generates a list

of application’s supported events and dynamic crawling to

explore the state of events in an application. AMOGA can

generate a model that represents the behaviour of a mobile

app. The model can be used to create test cases for testing an

application.

We applied AMOGA to 8 mobile applications and reverse

engineer a FSM of the GUI. We used the model to generate

test cases that we used to test the applications. The

experimental results showed that AMOGA can generate a

model with high coverage for testing mobile apps.

ACKNOWLEDGMENT

This project is sponsored by Universiti Tun Hussein Onn

Malaysia via the Contract Grant Vot U436.

REFERENCES

[1] F. Nayebi, J.-M. Desharnais, and A. Abran, “The state of the art of

mobile application usability evaluation,” in 2012 25th IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), 2012,

pp. 1-4.

[2] R. Islam, R. Islam, and T. Mazumder, “Mobile application and its
global impact,” International Journal of Engineering & Technology

IJET-IJENS, vol. 10, no. 6, pp. 72-78, 2010.

[3] R. Minelli and M. Lanza, “Software Analytics for Mobile Applications-
Insights & Lessons Learned,” in 2013 17th European Conference on

Software Maintenance and Reengineering, 2013, pp. 144-153.

[4] C. Hu and I. Neamtiu, “Automating GUI testing for Android
applications,” in Proceedings of the 6th International Workshop on

Automation of Software Test, 2011, pp. 77-83.

[5] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source android

apps,” in 17th European Conference on Software Maintenance and

Reengineering (CSMR), 2013, pp. 133-143.
[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth, “TaintDroid: an information-flow tracking system for

realtime privacy monitoring on smartphones,” in OSDI’10 Proceedings
of the 9th USENIX Conference on Operating Systems Design and

Implementation, 2010, pp. 393-407.

[7] A. Rountev and D. Yan, “Static reference analysis for GUI objects in

android software,” in CGO’14 Proceedings of Annual IEEE/ACM

International Symposium on Code Generation and Optimization,

Orlando, FL, USA, 2014, pp. 143.
[8] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for

systematic testing of android apps,” in Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, 2013, pp. 641-660.

[9] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for

automated GUI-model generation of mobile applications,” in

A Hybrid Approach for Reverse Engineering GUI Model from Android Apps for Automated Testing

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 49

Fundamental Approaches to Software Engineering, V. Cortellessa, and
D. Varró, Eds. Berlin Heidelberg: Springer, 2013, pp. 250-265.

[10] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-

flow analysis of user-driven callbacks in android applications,” in 2015
IEEE/ACM 37th IEEE International Conference on Software

Engineering, 2015, pp. 89-99.

[11] A. P. Grilo, A. R. Paiva, and J. P. Faria, “Reverse engineering of GUI
models for testing,” in 2010 5th Iberian Conference on Information

Systems and Technologies (CISTI), 2010, pp. 1-6.

[12] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A GUI crawling-
based technique for android mobile application testing,” in 2011 IEEE

Fourth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW), 2011, pp. 252-261.
[13] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: An

innovative tool for automated testing of GUI-driven software,”

Automated Software Engineering, vol. 21, no. 1, pp. 65-105, 2014.
[14] A. Méndez-Porras, C. Quesada-López, and M. Jenkins, “Automated

testing of mobile applications: A systematic map and review,” in XVIII

Ibero-American Conference on Software Engineering, Lima-Peru,
2015, pp. 195-208.

[15] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input

generation for android: Are we there yet? (E),” in ASE '15 Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE), 2015, pp. 429-440.

[16] G. de Cleva Farto and A. T. Endo, “Evaluating the model-based testing
approach in the context of mobile applications,” Electronic Notes in

Theoretical Computer Science, vol. 314, pp. 3-21, 2015.
[17] M. Young, Software Testing and Analysis: Process, Principles, and

Techniques. John Wiley & Sons, 2008.

[18] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user
interface (GUI) testing: Systematic mapping and repository,”

Information and Software Technology, vol. 55, no. 10, pp. 1679-1694,

2013.
[19] L. Lu and Y. Huang, “Automated GUI test case generation,” in 2012

International Conference on Computer Science & Service System

(CSSS) , 2012, pp. 582-585.
[20] P. Aho, M. Suarez, A. Memon, and T. Kanstrén, “Making GUI testing

practical: Bridging the gaps,” in 2015 12th International Conference

on Information Technology - New Generations (ITNG), 2015, pp. 439-
444.

[21] A. Kull, “Automatic GUI model generation: State of the art,” in 2012

IEEE 23rd International Symposium on Software Reliability
Engineering Workshops (ISSREW), 2012, pp. 207-212.

[22] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach. Morgan Kaufmann, 2010.
[23] A. M. Memon, “An event-flow model of GUI-based applications for

testing,” Software Testing Verification and Reliability, vol. 17, no. 3,

pp. 137-158, 2007.
[24] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and A.

M. Memon, “Using GUI ripping for automated testing of android

applications,” in 012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, Essen, Germany,

2012, pp. 258-261.

[25] T. Cipresso and M. Stamp, “Software reverse engineering,” in

Handbook of Information and Communication Security, P.

Stavroulakis, and M. Stamp, Eds. Springer, 2010, pp. 659-696.

[26] E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson, “User interface
reverse engineering in support of interface migration to the web,”

Automated Software Engineering, vol. 10, no. 3, pp. 271-301, 2003.

[27] G. Canfora, M. D. Penta, and L. Cerulo, “Achievements and challenges
in software reverse engineering,” Communications of the ACM, vol. 54,

no. 4, pp. 142-151, 2011.

[28] J. Krijnen, “Software reverse engineering,” 2013. Available at
https://pdfs.semanticscholar.org/41f7/8442ab7032ec90f2890c99a2ac8

435bad924.pdf

[29] J. C. Campos, J. Saraiva, C. Silva, and J. C. Silva, “GUIsurfer: A
reverse engineering framework for user interface software,” Reverse

Engineering-Recent Advances and Applications, pp. 31-54, 2012.

[30] M. M. Moore, “Rule-based detection for reverse engineering user
interfaces,” in Proceedings of the Third Working Conference on

Reverse Engineering 1996, 1996, pp. 42-48.

[31] C. E. Silva and J. C. Campos, “Combining static and dynamic analysis
for the reverse engineering of web applications,” in EICS '13

Proceedings of the 5th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems, London, United Kingdom, 2013, pp.
107-112.

[32] P. Aho, T. Raty, and N. Menz, “Dynamic reverse engineering of GUI

models for testing,” in 2013 International Conference on Control,
Decision and Information Technologies (CoDIT), 2013, pp. 441-447.

[33] P. Aho, M. Suarez, T. Kanstren, and A. M. Memon, “Murphy tools:

Utilizing extracted gui models for industrial software testing,” in 2014
IEEE Seventh International Conference on Software Testing,

Verification and Validation Workshops (ICSTW) , 2014, pp. 343-348.
[34] I. C. Morgado, A. C. Paiva, and J. P. Faria, “Dynamic reverse

engineering of graphical user interfaces,” International Journal On

Advances in Software, vol. 5, no. 3 and 4, pp. 224-236, 2012.
[35] S. Yang, D. Yan, and A. Rountev, “Testing for poor responsiveness in

android applications,” in 2013 1st International Workshop on the

Engineering of Mobile-Enabled Systems (MOBS) , 2013, pp. 1-6.
[36] C. Tao and J. Gao, “Building a model-based GUI test automation

system for mobile applications,” International Journal of Software

Engineering and Knowledge Engineering, vol. 26, no. 09n10, pp. 1605-
1615, 2016.

[37] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, and A. Rountev,

“GATOR: Program analysis toolkit for android,” 2016, Available at
http://web.cse.ohio-state.edu/presto/software/gator/.

[38] U. Apache, “Robotium,” Available at

http://code.google.com/p/robotium.
[39] M. E. Joorabchi and A. Mesbah, “Reverse engineering iOS mobile

applications,” in 2012 19th Working Conference on Reverse

Engineering (WCRE), 2012, pp. 177-186.
[40] R. J. Jacob, “Using formal specifications in the design of a human-

computer interface,” Communications of the ACM, vol. 26, no. 4, pp.

259-264, 1983.
[41] “Android GUITAR,” Available at

https://sourceforge.net/projects/guitar/.

[42] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and G.
Imparato, “A toolset for GUI testing of android applications,” in 2012

28th IEEE International Conference on Software Maintenance (ICSM),

2012, pp. 650-653.

[43] S. Salva, P. Laurençot, and S. R. Zafimiharisoa, “Model inference of

mobile applications with dynamic state abstraction,” in Software

Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing 2015, 2016, pp. 177-193.

