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Abstract—Static Context Code Coverage Program (SCCCP) 

is a program developed to calculate the coverage of context code 

in a Java file of an Android application. The database built for 

SCCCP includes records on location and speech context, 

exclusive to Android. There is a huge need for string matching 

algorithm since strings from the source codes and database have 

to be checked for any similarity first before moving on to the 

calculation of context coverage. Therefore, three different string 

metrics were analyzed prior to choosing the most suitable one 

for SCCCP. In this paper, the results obtained from using Jaro-

Winkler, Levenshtein, and Strike a Match string distance 

metrics are analyzed based on the task of matching the source 

codes with database records and other pair of strings. Some 

issues related during our experiment on source code matching 

are discussed in this paper. The findings conclude that Strike a 

Match algorithm is the best option since it gives the highest 

accuracy among others. 

 

Index Terms—Comparative Evaluation; Context Ontology; 

String Matching; String Similarity. 

 

I. INTRODUCTION 

 

Context aware mobile application is highly capable in 

adapting itself according to its surrounding such as change in 

location, tracking user’s movement, geofencing, adapting to 

situation with voice over command, sudden change in battery 

or power level, and adapting or interacting with other 

accessible devices. Since mobile application is a growing 

technology, some consideration should be taken during 

development and testing so that all aspects related to context-

awareness can be developed and tested efficiently. Therefore, 

a context code coverage focusing on location and speech to 

help novice developer understand and easily identify the 

location and speech-based codes in the applications, as well 

as guiding them in writing better codes that could optimize 

context-awareness in mobile apps, is proposed. To achieve 

this goal, a similarity algorithm is needed to scan for 

necessary context codes inside a Java file. Then, the similarity 

between the codes and the records from database is 

calculated. When the similarity reaches a certain point, the 

codes are concluded to be context codes. Next, the context 

coverage present in mobile apps will be calculated. Three 

string metrics are compared in terms of precision, recall, and 

accuracy before the best is chosen to be implemented in 

SCCCP. Levenstein and Jaro Winkler are based on edit 

distances while Strike a Match is based on dice’s coefficient. 

These string metrics are chosen because they measure the 

operation on string sequences and character composition. 

Figure 1 shows the design of the SCCCP. 

 

 
 

Figure 1: Static Context Code Coverage Program design 
 

Similarity measurement between texts is highly important 

in research related to text and other similar works such as 

retrieving information, classification of text, document 

gathering, topic tracking and detection, machine translation, 

text summarization and others [1]. Two words are considered 

similar if they share the same pattern of alphabet in words, 

whether opposite of each other, or an inversion of each other. 

Experts from different fields like Mathematics and Computer 

Science propose different string metrics to calculate 

similarity between different strings such as approximate 

string matching, Bitap algorithm, Damerau–Levenshtein 

distance, edit distance, hamming distance, Jaro–Winkler 

distance, Lee distance, and Levenshtein distance. This paper 

nevertheless, will focus on Levenshtein, Jaro-Winkler, and 

Strike a Match.  

The concept behind edit distance is to calculate the 

minimum number of operations taken to convert one string 

into another. It heavily concentrates on frequent typing errors, 

character insertion, omissions (deletion), substitutions, and 

reversals. 

Levenshtein distance is used to measure the difference 

between two strings. The Levenshtein distance between two 

strings is the minimum number of change in single-character 

such as insertion, deletion, and substitutions [2, 3]. It works 

by changing one character into the other.  

Jaro-Winkler, a variant of Jaro distance, focuses on 

duplication detection in two different strings [4]. The prefix 

scale used by Jaro-Winkler allows more appropriate 

assessment to strings that match from the start for a set of 

prefix length [4].  

Simon White proposes a new algorithm based on lexical 

similarity, alteration in word’s order, and language 

independence [5]. Lexical similarity is the degree of 

similarity measurement of sets of two given languages based 

on words.  
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The rest of the paper is organized as follows. Section II, III, 

and IV discuss the formula of the string metrics in details. 

Section V presents the evaluation results of the mentioned 

string metrics. Section VI discusses the experimentation 

results, and finally Section VII concludes the overall findings 

of this study. 

 

II. LEVENSHTEIN 

 

Levenstein distance counts the number of operations 

needed to match two strings [2]. The operations involved 

during transformation are insertion, deletion, or substitution. 

Figure 2 depicts the Levenshtein algorithm. 

 
Set n as length of a. 

Set m as length of b. 

If n = 0, return m and exit. 
If m = 0, return n and exit. 

Construct a matrix; [0..m] as the row and [0..n] as the column. 

Set the first row to 0..n. 
Set the first column to 0..m. 

Check one by one character in a (i from 1 to n). 
Check one by one character in b (j from 1 to m). 

If a[i] equals to b[j], the cost is 0. 

If a[i] does not equal to b[j], the cost is 1. 
Matrix d[i,j] is equal to the minimum of: 

a) Deletion: d[i-1,j] + 1. 

b) Insertion: d[i,j-1] + 1. 
c) Substitution: d[i-1,j-1] + cost. 

Return d[n,m] 

 
Figure 2: Levenshtein algorithm 

 

From Figure 2, the difference in length between two strings 

is used to calculate the number of operation that take place to 

transform String 1 into String 2. If the length of String 1 is 

smaller than String 2, insertion and substitution will be 

performed. If the length of String 1 is bigger than String 2, 

deletion and substitution will be performed. 

For characters’ substitution, the number is calculated 

according to the following formula: 

 

𝑀𝑖𝑛 (𝑆𝑡𝑟𝑖𝑛𝑔 1, 𝑆𝑡𝑟𝑖𝑛𝑔 2) − ∑ {
∃𝑥, ∃𝑦, 𝑡 𝑖𝑓 𝑥 = 𝑦     0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 1

 (1) 

 

Levenshtein distance can be computed through dynamic 

programming using Wagner-Fischer algorithm for 

editdistance by initializing (n+1) x (m+1) matrix in a (m, n) 

cell where m and n are the lengths of both string. The matrix 

needs to be filled from upper left to the lower right corner. 

Transition from one cell to another is parallel to insertion, 

deletion, or substitution. For each insertion, deletion, or 

substitution that occur, the cost is set to 1. If each character 

from two strings matches each other in respective sequence, 

it will return 0. Table 1 shows an example of comparison of 

two strings; ‘abcdef’ on X axis and ‘agced’ on Y axis, using 

dynamic programming. 
 

Table 1 
Two Pairs of Strings Used 

 
  a b c d e f 

 0 1 2 3 4 5 6 

a 1 0 1 2 3 4 5 

g 2 1 1 2 3 4 5 

c 3 2 2 1 2 3 4 

e 4 3 3 2 2 2 3 

d 5 4 4 3 2 3 3 

 

The Levenshtein distance for turning ‘agced’ to ‘abcdef’ is 

3. Replace g with b at position 2, insert d at position 3, and 

replace d with f at position 5. 

 

1. agced  abced (g is replaced with b) 

2. abced  abcded (insert d) 

3. abcded abcdef (replace d with f) 

 

Besides dynamic programming, Levenhstein distance can 

also be calculated using similarity measurement. The formula 

for similarity measurement in Levenshtein is presented 

below.  

 

simld(String 1, String 2) =  1.0 −
distld(String 1, String2)

max(|String 1|, |String 2|)
 (2) 

 

By implementing the formula, the similarity measurement 

of string ‘agced’ and ‘abcdef’ is calculated to be 0.50. In 

second example, as shown in Figure 3, the similarity from one 

line of Android source codes with the records from database 

is calculated. String 1 is a line from Android source code and 

string 2 is a record from the context ontology database.  

 
 

Figure 3: Example of String 1 and String 2 
 

Both strings have “requestLocationUpdates” as a part of 

them but because Levenshtein’s operation only includes 

insertion, deletion, and substitution, these two are deemed to 

be only 0.19 similar. 81 operations are needed to transform 

String 1 into String 2. 

Being an edit distance, Levenshtein is much more practical 

in detecting plagiarism in texts. Su et al. combine Levenshtein 

distance and Smith-Waterman algorithm for plagiarism 

detection [6]. They explore the use of diagonal line from 

Levenshtein distance and a simplified version of Smith-

Waterman algorithm to identify and quantify local 

similarities in biological sequences [6]. Mihov et al. solve the 

problem of computing a suitable set of correction candidates 

in text correction by using Levenshtein automata, dynamic 

web dictionaries, and optimized correction models [7]. Hall 

et al. make an extension of Levenshtein that allows the 

calculation of different edit costs that is based on characters 

[8]. 

 

III. JARO-WINKLER 

 

Jaro–Winkler, an extension of Jaro distance, utilizes the 

beginning of a scale, which allows better ratings to strings 

that match from the beginning [4]. It counts the usual 

character between two strings even though both of them are 

misplaced by a small distance. 

A high Jaro score constitutes a substantial similarity 

between the strings. The formula for calculating Jaro score is 

depicted below.  

 

𝑑𝑗= {

 0                                                  𝑖𝑓 𝑚 = 0
1

3
 (

𝑚

|𝑠1|
+ 

𝑚

|𝑠2|
+ 

𝑚 − 𝑡

𝑚
)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 

where:  s1  =  String 1 

 s2  =  String 2 

 m  =  no. of matching character 

 t  =  half the no. of transposition 
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String ‘agced’ and ‘abcdef’ are used as example.  

 

String 1= agced 

String 2= abcdef  

 

Jaro score: 
1

3
 (

4

5
+ 

4

6
+ 

4 − 1

4
) = 0.738 

 

By applying the Jaro score into Jaro-Winkler formula as 

shown below, 

 

𝑑𝑤 =  {
𝑑𝑗                                𝑖𝑓 𝑑𝑗 <  𝑏𝑡

𝑑𝑗+ (𝑙𝑝(1 − 𝑑𝑗))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

 

where: 𝑑𝑗  =  jaro distance of string s1 and s2 

 𝑙  =  length of prefix at the start of the string up to 

maximum of 4 characters  

 𝑝  =  is a continuous scaling factor for how much the 

score is adjusted upwards for having usual 

prefixes  

 

0.738 + (1×0.1 (1 − 0.738)) = 0.765 

 

The similarity between s1 and s2 is calculated to be 0.765. 

This number is higher than Levenshtein calculation by 0.265 

because Jaro-Winkler has consideration toward transposition 

of character. Figure 4 shows the algorithm for calculating 

Jaro-Winkler distance. 

 
Set a as the length of s1 

Set b as the length of s2 

Set m as the number of matching characters 

Set t as number of transposition divided by half 

Construct a matrix; [0..a] as the row and [0..b] as the column 

Set the first row to 0..a 

Set the second column to 0..b 

Check one by one character in s1 (i from 1 to a). 

Check one by one character in s2 (j from 1 to b). 

If a[i] equals to b[j], m is 1. 

If a[i] does not equal to b[j], m is 0. 

Find the number of transposition and divide it by half 

Calculate the jaro score according to the given formula 

Calculate the jaro distance according to the formula 
 

Figure 4: Jaro-Winkler algorithm 

 

Similar strings as in Figure 3 are calculated using Jaro-

Winkler formula. The similarity is computed to be 0.449. At 

the same time, if both S1 and S2 are modified by moving 

requestLocationUpdates at the front, the similarity in 

calculation produced a slightly higher number which is 0.542, 

showing that Jaro-Winkler supports the suggestion that the 

similarity at the beginning of the string is more important than 

near the end of the string [9]. 

 

IV. STRIKE A MATCH 

 

Strike a Match splits string into two character pairs. For 

example, string ‘agced’ is split into 4 parts; ag, gc, ce, ed 

whereas string ‘abcdef’ is split into 5 parts; ab, bc, cd, de, and 

ef.  

Then, it will search for the same pair in the string. Below is 

the Strike a Match formula to calculate similarity. The 

formula focuses on lexical similarity, in other words, the 

overlapped between vocabularies. 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) =  
2 𝑥 |𝑝𝑎𝑖𝑟𝑠(𝑠1) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑠2)|

|𝑝𝑎𝑖𝑟𝑠(𝑠1)| + |𝑝𝑎𝑖𝑟𝑠(𝑠2)|
 (5) 

String 1= agced 

String 2= abcdef  

 

{ag, gc, ce, ed} 

{ab, bc, cd, de, ef} 

 

Number of overlapping string = 0 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) =
2 𝑥 |0|

|4| + |5|
= 0 

 

The formula concludes that String ‘agced’ and ‘abcdef’ 

have zero similarity since no similar pair that overlaps each 

other is found, producing 0 lexical similarity. 

In Strike a Match, if one of the strings is a random 

arrangement of the other string (anagram), it is usually 

considered as dissimilar. Besides lexical similarity, Strike a 

Match also gives fair similarity value for a string of different 

languages. For example, Republic of Ingushetia and 

Respublika Ingushetiya, both refer to the same republic but in 

different language. Republic of Ingushetia is in English 

whereas Respublika Ingushetiya is a direct translation from 

Russian Cyrillic. Computation of these two strings in Strike a 

Match concludes that these strings have 0.722 similarities. 

 It should be noted that Jaro-Winkler also computes a high 

similarity for ‘Republic of Ingushetia’ and ‘Respublika 

Ingushetiya’. It is not uncommon since they refer to the same 

republic. However, ‘Republic of Ingushetiya’ and ‘Republic 

of France’ are two different nations yet the percentage of 

similarities calculated by Jaro-Winkler is 0.907 indicating 

that they are very similar, unlike Strike a Match which 

computes that both string is only 0.533 similar, hence give a 

better precision in accordance to words meaningfulness.  

 

V. RESULT 

 

In this section, Levenshtein, Jaro-Winkler and Strike a 

Match are evaluated in order to check their degree of 

suitability to be adapted in SCCCP. The pair of strings 

included are; (1) strings with similarity at the beginning, (2) 

strings with similarity at the end, (3) strings that contain the 

same character but have different arrangement, (4) random 

strings that have little to no similarity, and (5) sample strings 

from Android source codes and context ontology database. In 

string matching, one needs to be represented with 

approximate agreement’s value. The maximum value for the 

approximate agreement is 1, indicating full agreement (fully 

similar), whereas the value between 0 and 1 indicates partial 

agreement (less similar). The precision, recall, and accuracy 

(F-measure) of five pairs are calculated and presented in 

Table 12.  

The experiment was conducted on Eclipse since the 

program is written in Java language. Protégé is used to create 

the context ontology file. Then, by using XAMPP, the context 

ontology is imported into phpMyAdmin database, producing 

a large amount of entry records. Through programming, each 

line of codes in the Android java file and database’s records 

are calculated one by one.  

Table 2 shows pair of strings with similarity at the 

beginning. Five (5) pairs of strings is chosen. P1 and P2 have 

the same length. P3, P4, and P5 are strings with different 

length. The results of similarity calculation are presented in 

Table 3. 
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Table 2  
String with Similarity at the Beginning 

 

No. String 1 String 2 

P1 Sons Sold 
P2 Book Boss 

P3 Roast Road 

P4 The Fox Jumps The Cow Lazes 
P5 William Wilhelmina 

 

Table 3  
Similarity Result (Min=0, Max=1) of String with Similarity at the 

Beginning 

 

No. Jaro-Winkler Levenshtein Strike a Match 

P1 0.667 0.500 0.333 

P2 0.667 0.500 0.333 

P3 0.848 0.600 0.571 
P4 0.692 0.538 0.250 

P5 0.897 0.500 0.266 

 

Table 4 shows the pair of strings with similarity at the end. 

The similar five (5) pairs of strings are also chosen for the 

experiment and the results of similarity calculation are 

presented in Table 5. Table 5 shows that Jaro-Winkler 

algorithm gives a lower similarity result than in Table 3 due 

to the facts that strings in Table 5 is dissimilar at the 

beginning.  
 

Table 4  

String with Similarity at the End 
 

No. String 1 String 2 

P6 Bass Toss 

P7 External Internal 

P8 Mary Sew A Dress Lisa Cut A Dress 

P9 Augustus Drautus 

P10 Daughter Grandmother 

 

Table 5  

Similarity Result (Min=0, Max=1) of String with Similarity at the End 
 

No. Jaro-Winkler Levenshtein Strike a Match 

P6 0.667 0.500 0.333 

P7 0.833 0.750 0.714 
P8 0.650 0.563 0.444 

P9 0.607 0.500 0.461 

P10 0.645 0.364 0.125 

 

Table 6, on the other hand, shows three (3) pairs of strings 

which contain the same character with different arrangement, 

while Table 7 presents the similarity calculation for these 

strings.  

Table 8 shows three (3) pairs of random strings that have 

little to no similarity at all. P14 contains incomprehensible 

strings with no meaning. The similarity calculations for these 

strings are presented in Table 9. 

Table 10 shows 10 pairs of sample strings from Android 

java file and context ontology database. String 1 is from 

source code whereas String 2 is from the database. Table 11, 

in contrast, depicts the similarity results from Jaro-Winkler, 

Levenshtein, and Strike a Match. 
 

Table 6  
Strings that Contains Same Character but Have Different Arrangement 

 

No. String 1 String 2 

P11 The Brown Fox Jumped 
Over The Red Cow 

The Red Cow Jumped Over The 
Brown Fox 

P12 The Brown Fox Jumped 

Over The Red Cow 

The Red Fox Jumped Over The 

Brown Cow 
P13 Marry Had A Little Lamb Little Marry Had A Lamb  

 

 

Table 7  
Similarity Result (Min=0, Max=1) of String that Contains Same Character 

but Have Different Arrangement 

 

No. Jaro-Winkler Levenshtein Strike a Match 

P11 0.760 0.676 1.000 

P12 0.800 0.784 1.000 

P13 0.708 0.391 1.000 

 

Table 8  

Random String with Little to No Similarity 
 

No. String 1 String 2 

P14 httpsabcdebdhdhlkkbbjj klbdhjdhbnbbnbnbddhhhq 

P15 keyboard keyboard mouse mouse 
P16 to be or not to be that is the problem 

 

Table 9  

Similarity Result (Min=0, Max=1) of Random String with Little to No 

Similarity 

 

No. Jaro-Winkler Levenshtein Strike a Match 

P14 0.470 0.045 0.190 
P15 0.450 0.176 0.000 

P16 0.640 0.263 0.000 

 
Table 10  

Sample String from Android Source Codes and Ontology Database 

 

No. String 1 String 2 

P17 

locationManager.requestLo

cationUpdates(provider,MI

N_TIME_FOR_UPDATE, 
MIN_DISTANCE_FOR_U

PDATE, this); 

Uv:http://www.semanticweb.org
/dell/ontologies/2016/4/untitled-

ontology-

24#requestLocationUpdates 

P18 

Intent i = new 

Intent(RecognizerIntent.AC

TION_RECOGNIZE_SPE

ECH); 

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-

ontology-

24#Speech_recognition 

P19 

locationManager.requestLo

cationUpdates(provider,MI

N_TIME_FOR_UPDATE, 
MIN_DISTANCE_FOR_U

PDATE, this); 

Uv:http://www.semanticweb.org
/dell/ontologies/2016/4/untitled-

ontology-

24#Speech_recognition 

P20 

List<Address> addressList 
= 

geocoder.getFromLocation(

latitude, longitude, 1); 

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-
ontology-24#getFromLocation 

P21 

List<Address> addressList 

= 

geocoder.getFromLocation(
latitude, longitude, 1); 

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-

ontology-
24#requestLocationUpdates 

P22 

location = 

locationManager.getLastKn

ownLocation(LocationMan

ager.GPS_PROVIDER); 

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-

ontology-

24#getLastKnownLocation 

P23 

List<Address> addressList 

= 

geocoder.getFromLocation(
latitude, longitude, 1); 

Uv:: 

http://www.semanticweb.org/del

l/ontologies/2016/4/untitled-
ontology-24#getLongitude 

P24 

public void 

onProviderEnabled(String 
provider) { 

Uv::http://www.semanticweb.or

g/dell/ontologies/2016/4/untitled
-ontology-24#getBestProvider 

P25 

isNetworkEnabled = 

locationManager.isProvider
Enabled(LocationManager.

NETWORK_PROVIDER); 

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-
ontology-

24#setAltitudeRequired 

P26 
for (int i = 0; i < 
address.getMaxAddressLin

eIndex(); i++) { 

Uv:http://www.semanticweb.org
/dell/ontologies/2016/4/untitled-

ontology-24#setAddressLine 
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Table 11  
Similarity Results (Min=0, Max=1) of Sample String from Android Source 

Codes and Context Ontology Database 

 

No. Jaro-Winkler Levenshtein Strike a Match 

P17 0.444 0.160 0.304 

P18 0.421 0.226 0.272 

P19 0.462 0.120 0.160 
P20 0.567 0.132 0.272 

P21 0.557 0.155 0.222 

P22 0.556 0.167 0.337 
P23 0.562 0.170 0.225 

P24 0.456 0.222 0.203 

P25 0.530 0.147 0.195 
P26 0.464 0.111 0.250 

 

VI. DISCUSSION 

 

Results from P01 to P10, and from P17 to P26, shows that 

Jaro-Winkler is found to be a better option at detecting 

similarity between strings compared to Levenshtein and 

Strike a Match. Whenwords in a string swap places as in 

Table 6, Levenshtein, that relies on the number of edits 

necessary to transform one string to another is too 

pessimistic. At the same time, since Jaro-Winkler considers 

transposition between letters, it is not precise enough in 

calculating similarity of two long strings. For example, in 

P15, both strings do not have any matching keywords but 

Jaro-Winkler calculates word’s order in both strings even if 

they are arranged differently, concluding that both strings are 

almost half similar.  

By using 10 samples from Android codes and content from 

database, the precision, recall and F-measure (accuracy) of 

the edit distances are calculated as shown in Table 12. 

Precision is the number of context correctly found whereas 

recall is the number of context and non-context correctly 

determined by the string metrics. The threshold value is set to 

0.25, which means a pair of string with the value of 0.25 and 

above is regarded as a context string. Since some of the lines 

in the source codes contain longer string, a similarity of 0.25 

or above is deemed as feasible. In all 10 strings, only P17, 

P20, P22, and P26 carry context information. The other pair 

of strings carries no context information. Interestingly, Jaro-

Winkler deems all pair of strings as context, totally opposite 

to Levenshtein which deems all pair of strings as non-context. 

Strike a Match on the other hand, get all the context right 

except one in which it deems a non-context string as context. 

The result from P14 totally supports the conclusion that Jaro-

Winkler, albeit being able to calculate even the slightest 

similarity, is not precise. 
 

Table 12  
Precision, recall, and F-value of Jaro-Winkler, Levenshtein, and Strike a 

Match based on Table 10 

 

T
h

re
sh

o
ld

 

v
al

u
e 

Jaro-Winkler Levenshtein Strike a Match 

P R F P R F P R F 

0.25 1 0.40 0.57 0 0.60 0 1 0.90 0.95 

 

 

 

 

 

VII. CONCLUSION 

 

Overall, it is found that Strike a Match holds the highest 

recall value since it can correctly identify between context 

and non-context string. Along with Jaro-Winkler, it has 

perfect precision in concluding whether the identified string 

is a context or non-context. However, Jaro-Winkler has the 

lowest recall percentage. At 0.25 threshold value, it identifies 

all pair of string as context. This could be contributed to the 

fact that Jaro-Winkler favours transposition between different 

characters in string, making a totally different string with 

almost similar characters (even though they are arranged 

differently), strikes a high percentage of similarity. String 

P14, P15, and P16 support this point. Jaro-Winkler also does 

not fare when it comes to accurately finding similar strings 

with meaningful information, unlike Strike a Match. With the 

highest streak of accuracy, Strike a Match is the best option 

for SCCCP.  

Threat to validity is considered as limitation to this 

experiment. If another type of string criteria is added, it will 

not disrupt the current knowledge and results of the string 

metrics since the result obtained from the strings comparison 

is unique to their grouped criteria. In fact, adding another 

criteria may be a help itself since it could improve the 

knowledge on the string metric itself. 

Further work will focus on exploring other string metrics 

such as Damerau-Levenshtein, in order to improve the 

performance of SCCCP. 
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