

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 7

Comparative Evaluation of String Metrics for

Context Ontology Database

Farhanah Atiqah Norki, Radziah Mohamad and Noraini Ibrahim
Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.

farhanahatiqah@ymail.com

Abstract—Static Context Code Coverage Program (SCCCP)

is a program developed to calculate the coverage of context code

in a Java file of an Android application. The database built for

SCCCP includes records on location and speech context,

exclusive to Android. There is a huge need for string matching

algorithm since strings from the source codes and database have

to be checked for any similarity first before moving on to the

calculation of context coverage. Therefore, three different string

metrics were analyzed prior to choosing the most suitable one

for SCCCP. In this paper, the results obtained from using Jaro-

Winkler, Levenshtein, and Strike a Match string distance

metrics are analyzed based on the task of matching the source

codes with database records and other pair of strings. Some

issues related during our experiment on source code matching

are discussed in this paper. The findings conclude that Strike a

Match algorithm is the best option since it gives the highest

accuracy among others.

Index Terms—Comparative Evaluation; Context Ontology;

String Matching; String Similarity.

I. INTRODUCTION

Context aware mobile application is highly capable in

adapting itself according to its surrounding such as change in

location, tracking user’s movement, geofencing, adapting to

situation with voice over command, sudden change in battery

or power level, and adapting or interacting with other

accessible devices. Since mobile application is a growing

technology, some consideration should be taken during

development and testing so that all aspects related to context-

awareness can be developed and tested efficiently. Therefore,

a context code coverage focusing on location and speech to

help novice developer understand and easily identify the

location and speech-based codes in the applications, as well

as guiding them in writing better codes that could optimize

context-awareness in mobile apps, is proposed. To achieve

this goal, a similarity algorithm is needed to scan for

necessary context codes inside a Java file. Then, the similarity

between the codes and the records from database is

calculated. When the similarity reaches a certain point, the

codes are concluded to be context codes. Next, the context

coverage present in mobile apps will be calculated. Three

string metrics are compared in terms of precision, recall, and

accuracy before the best is chosen to be implemented in

SCCCP. Levenstein and Jaro Winkler are based on edit

distances while Strike a Match is based on dice’s coefficient.

These string metrics are chosen because they measure the

operation on string sequences and character composition.

Figure 1 shows the design of the SCCCP.

Figure 1: Static Context Code Coverage Program design

Similarity measurement between texts is highly important

in research related to text and other similar works such as

retrieving information, classification of text, document

gathering, topic tracking and detection, machine translation,

text summarization and others [1]. Two words are considered

similar if they share the same pattern of alphabet in words,

whether opposite of each other, or an inversion of each other.

Experts from different fields like Mathematics and Computer

Science propose different string metrics to calculate

similarity between different strings such as approximate

string matching, Bitap algorithm, Damerau–Levenshtein

distance, edit distance, hamming distance, Jaro–Winkler

distance, Lee distance, and Levenshtein distance. This paper

nevertheless, will focus on Levenshtein, Jaro-Winkler, and

Strike a Match.

The concept behind edit distance is to calculate the

minimum number of operations taken to convert one string

into another. It heavily concentrates on frequent typing errors,

character insertion, omissions (deletion), substitutions, and

reversals.

Levenshtein distance is used to measure the difference

between two strings. The Levenshtein distance between two

strings is the minimum number of change in single-character

such as insertion, deletion, and substitutions [2, 3]. It works

by changing one character into the other.

Jaro-Winkler, a variant of Jaro distance, focuses on

duplication detection in two different strings [4]. The prefix

scale used by Jaro-Winkler allows more appropriate

assessment to strings that match from the start for a set of

prefix length [4].

Simon White proposes a new algorithm based on lexical

similarity, alteration in word’s order, and language

independence [5]. Lexical similarity is the degree of

similarity measurement of sets of two given languages based

on words.

Journal of Telecommunication, Electronic and Computer Engineering

8 e-ISSN: 2289-8131 Vol. 9 No. 3-3

The rest of the paper is organized as follows. Section II, III,

and IV discuss the formula of the string metrics in details.

Section V presents the evaluation results of the mentioned

string metrics. Section VI discusses the experimentation

results, and finally Section VII concludes the overall findings

of this study.

II. LEVENSHTEIN

Levenstein distance counts the number of operations

needed to match two strings [2]. The operations involved

during transformation are insertion, deletion, or substitution.

Figure 2 depicts the Levenshtein algorithm.

Set n as length of a.

Set m as length of b.

If n = 0, return m and exit.
If m = 0, return n and exit.

Construct a matrix; [0..m] as the row and [0..n] as the column.

Set the first row to 0..n.
Set the first column to 0..m.

Check one by one character in a (i from 1 to n).
Check one by one character in b (j from 1 to m).

If a[i] equals to b[j], the cost is 0.

If a[i] does not equal to b[j], the cost is 1.
Matrix d[i,j] is equal to the minimum of:

a) Deletion: d[i-1,j] + 1.

b) Insertion: d[i,j-1] + 1.
c) Substitution: d[i-1,j-1] + cost.

Return d[n,m]

Figure 2: Levenshtein algorithm

From Figure 2, the difference in length between two strings

is used to calculate the number of operation that take place to

transform String 1 into String 2. If the length of String 1 is

smaller than String 2, insertion and substitution will be

performed. If the length of String 1 is bigger than String 2,

deletion and substitution will be performed.

For characters’ substitution, the number is calculated

according to the following formula:

𝑀𝑖𝑛 (𝑆𝑡𝑟𝑖𝑛𝑔 1, 𝑆𝑡𝑟𝑖𝑛𝑔 2) − ∑ {
∃𝑥, ∃𝑦, 𝑡 𝑖𝑓 𝑥 = 𝑦 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 1

 (1)

Levenshtein distance can be computed through dynamic

programming using Wagner-Fischer algorithm for

editdistance by initializing (n+1) x (m+1) matrix in a (m, n)

cell where m and n are the lengths of both string. The matrix

needs to be filled from upper left to the lower right corner.

Transition from one cell to another is parallel to insertion,

deletion, or substitution. For each insertion, deletion, or

substitution that occur, the cost is set to 1. If each character

from two strings matches each other in respective sequence,

it will return 0. Table 1 shows an example of comparison of

two strings; ‘abcdef’ on X axis and ‘agced’ on Y axis, using

dynamic programming.

Table 1
Two Pairs of Strings Used

 a b c d e f

 0 1 2 3 4 5 6

a 1 0 1 2 3 4 5

g 2 1 1 2 3 4 5

c 3 2 2 1 2 3 4

e 4 3 3 2 2 2 3

d 5 4 4 3 2 3 3

The Levenshtein distance for turning ‘agced’ to ‘abcdef’ is

3. Replace g with b at position 2, insert d at position 3, and

replace d with f at position 5.

1. agced abced (g is replaced with b)

2. abced abcded (insert d)

3. abcded abcdef (replace d with f)

Besides dynamic programming, Levenhstein distance can

also be calculated using similarity measurement. The formula

for similarity measurement in Levenshtein is presented

below.

simld(String 1, String 2) = 1.0 −
distld(String 1, String2)

max(|String 1|, |String 2|)
 (2)

By implementing the formula, the similarity measurement

of string ‘agced’ and ‘abcdef’ is calculated to be 0.50. In

second example, as shown in Figure 3, the similarity from one

line of Android source codes with the records from database

is calculated. String 1 is a line from Android source code and

string 2 is a record from the context ontology database.

Figure 3: Example of String 1 and String 2

Both strings have “requestLocationUpdates” as a part of

them but because Levenshtein’s operation only includes

insertion, deletion, and substitution, these two are deemed to

be only 0.19 similar. 81 operations are needed to transform

String 1 into String 2.

Being an edit distance, Levenshtein is much more practical

in detecting plagiarism in texts. Su et al. combine Levenshtein

distance and Smith-Waterman algorithm for plagiarism

detection [6]. They explore the use of diagonal line from

Levenshtein distance and a simplified version of Smith-

Waterman algorithm to identify and quantify local

similarities in biological sequences [6]. Mihov et al. solve the

problem of computing a suitable set of correction candidates

in text correction by using Levenshtein automata, dynamic

web dictionaries, and optimized correction models [7]. Hall

et al. make an extension of Levenshtein that allows the

calculation of different edit costs that is based on characters

[8].

III. JARO-WINKLER

Jaro–Winkler, an extension of Jaro distance, utilizes the

beginning of a scale, which allows better ratings to strings

that match from the beginning [4]. It counts the usual

character between two strings even though both of them are

misplaced by a small distance.

A high Jaro score constitutes a substantial similarity

between the strings. The formula for calculating Jaro score is

depicted below.

𝑑𝑗= {

 0 𝑖𝑓 𝑚 = 0
1

3
 (

𝑚

|𝑠1|
+

𝑚

|𝑠2|
+

𝑚 − 𝑡

𝑚
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where: s1 = String 1

 s2 = String 2

 m = no. of matching character

 t = half the no. of transposition

Comparative Evaluation of String Metrics for Context Ontology Database

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 9

String ‘agced’ and ‘abcdef’ are used as example.

String 1= agced

String 2= abcdef

Jaro score:
1

3
 (

4

5
+

4

6
+

4 − 1

4
) = 0.738

By applying the Jaro score into Jaro-Winkler formula as

shown below,

𝑑𝑤 = {
𝑑𝑗 𝑖𝑓 𝑑𝑗 < 𝑏𝑡

𝑑𝑗+ (𝑙𝑝(1 − 𝑑𝑗)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

where: 𝑑𝑗 = jaro distance of string s1 and s2

 𝑙 = length of prefix at the start of the string up to

maximum of 4 characters

 𝑝 = is a continuous scaling factor for how much the

score is adjusted upwards for having usual

prefixes

0.738 + (1×0.1 (1 − 0.738)) = 0.765

The similarity between s1 and s2 is calculated to be 0.765.

This number is higher than Levenshtein calculation by 0.265

because Jaro-Winkler has consideration toward transposition

of character. Figure 4 shows the algorithm for calculating

Jaro-Winkler distance.

Set a as the length of s1

Set b as the length of s2

Set m as the number of matching characters

Set t as number of transposition divided by half

Construct a matrix; [0..a] as the row and [0..b] as the column

Set the first row to 0..a

Set the second column to 0..b

Check one by one character in s1 (i from 1 to a).

Check one by one character in s2 (j from 1 to b).

If a[i] equals to b[j], m is 1.

If a[i] does not equal to b[j], m is 0.

Find the number of transposition and divide it by half

Calculate the jaro score according to the given formula

Calculate the jaro distance according to the formula

Figure 4: Jaro-Winkler algorithm

Similar strings as in Figure 3 are calculated using Jaro-

Winkler formula. The similarity is computed to be 0.449. At

the same time, if both S1 and S2 are modified by moving

requestLocationUpdates at the front, the similarity in

calculation produced a slightly higher number which is 0.542,

showing that Jaro-Winkler supports the suggestion that the

similarity at the beginning of the string is more important than

near the end of the string [9].

IV. STRIKE A MATCH

Strike a Match splits string into two character pairs. For

example, string ‘agced’ is split into 4 parts; ag, gc, ce, ed

whereas string ‘abcdef’ is split into 5 parts; ab, bc, cd, de, and

ef.

Then, it will search for the same pair in the string. Below is

the Strike a Match formula to calculate similarity. The

formula focuses on lexical similarity, in other words, the

overlapped between vocabularies.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) =
2 𝑥 |𝑝𝑎𝑖𝑟𝑠(𝑠1) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑠2)|

|𝑝𝑎𝑖𝑟𝑠(𝑠1)| + |𝑝𝑎𝑖𝑟𝑠(𝑠2)|
 (5)

String 1= agced

String 2= abcdef

{ag, gc, ce, ed}

{ab, bc, cd, de, ef}

Number of overlapping string = 0

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑠1, 𝑠2) =
2 𝑥 |0|

|4| + |5|
= 0

The formula concludes that String ‘agced’ and ‘abcdef’

have zero similarity since no similar pair that overlaps each

other is found, producing 0 lexical similarity.

In Strike a Match, if one of the strings is a random

arrangement of the other string (anagram), it is usually

considered as dissimilar. Besides lexical similarity, Strike a

Match also gives fair similarity value for a string of different

languages. For example, Republic of Ingushetia and

Respublika Ingushetiya, both refer to the same republic but in

different language. Republic of Ingushetia is in English

whereas Respublika Ingushetiya is a direct translation from

Russian Cyrillic. Computation of these two strings in Strike a

Match concludes that these strings have 0.722 similarities.

 It should be noted that Jaro-Winkler also computes a high

similarity for ‘Republic of Ingushetia’ and ‘Respublika

Ingushetiya’. It is not uncommon since they refer to the same

republic. However, ‘Republic of Ingushetiya’ and ‘Republic

of France’ are two different nations yet the percentage of

similarities calculated by Jaro-Winkler is 0.907 indicating

that they are very similar, unlike Strike a Match which

computes that both string is only 0.533 similar, hence give a

better precision in accordance to words meaningfulness.

V. RESULT

In this section, Levenshtein, Jaro-Winkler and Strike a

Match are evaluated in order to check their degree of

suitability to be adapted in SCCCP. The pair of strings

included are; (1) strings with similarity at the beginning, (2)

strings with similarity at the end, (3) strings that contain the

same character but have different arrangement, (4) random

strings that have little to no similarity, and (5) sample strings

from Android source codes and context ontology database. In

string matching, one needs to be represented with

approximate agreement’s value. The maximum value for the

approximate agreement is 1, indicating full agreement (fully

similar), whereas the value between 0 and 1 indicates partial

agreement (less similar). The precision, recall, and accuracy

(F-measure) of five pairs are calculated and presented in

Table 12.

The experiment was conducted on Eclipse since the

program is written in Java language. Protégé is used to create

the context ontology file. Then, by using XAMPP, the context

ontology is imported into phpMyAdmin database, producing

a large amount of entry records. Through programming, each

line of codes in the Android java file and database’s records

are calculated one by one.

Table 2 shows pair of strings with similarity at the

beginning. Five (5) pairs of strings is chosen. P1 and P2 have

the same length. P3, P4, and P5 are strings with different

length. The results of similarity calculation are presented in

Table 3.

Journal of Telecommunication, Electronic and Computer Engineering

10 e-ISSN: 2289-8131 Vol. 9 No. 3-3

Table 2
String with Similarity at the Beginning

No. String 1 String 2

P1 Sons Sold
P2 Book Boss

P3 Roast Road

P4 The Fox Jumps The Cow Lazes
P5 William Wilhelmina

Table 3
Similarity Result (Min=0, Max=1) of String with Similarity at the

Beginning

No. Jaro-Winkler Levenshtein Strike a Match

P1 0.667 0.500 0.333

P2 0.667 0.500 0.333

P3 0.848 0.600 0.571
P4 0.692 0.538 0.250

P5 0.897 0.500 0.266

Table 4 shows the pair of strings with similarity at the end.

The similar five (5) pairs of strings are also chosen for the

experiment and the results of similarity calculation are

presented in Table 5. Table 5 shows that Jaro-Winkler

algorithm gives a lower similarity result than in Table 3 due

to the facts that strings in Table 5 is dissimilar at the

beginning.

Table 4

String with Similarity at the End

No. String 1 String 2

P6 Bass Toss

P7 External Internal

P8 Mary Sew A Dress Lisa Cut A Dress

P9 Augustus Drautus

P10 Daughter Grandmother

Table 5

Similarity Result (Min=0, Max=1) of String with Similarity at the End

No. Jaro-Winkler Levenshtein Strike a Match

P6 0.667 0.500 0.333

P7 0.833 0.750 0.714
P8 0.650 0.563 0.444

P9 0.607 0.500 0.461

P10 0.645 0.364 0.125

Table 6, on the other hand, shows three (3) pairs of strings

which contain the same character with different arrangement,

while Table 7 presents the similarity calculation for these

strings.

Table 8 shows three (3) pairs of random strings that have

little to no similarity at all. P14 contains incomprehensible

strings with no meaning. The similarity calculations for these

strings are presented in Table 9.

Table 10 shows 10 pairs of sample strings from Android

java file and context ontology database. String 1 is from

source code whereas String 2 is from the database. Table 11,

in contrast, depicts the similarity results from Jaro-Winkler,

Levenshtein, and Strike a Match.

Table 6
Strings that Contains Same Character but Have Different Arrangement

No. String 1 String 2

P11 The Brown Fox Jumped
Over The Red Cow

The Red Cow Jumped Over The
Brown Fox

P12 The Brown Fox Jumped

Over The Red Cow

The Red Fox Jumped Over The

Brown Cow
P13 Marry Had A Little Lamb Little Marry Had A Lamb

Table 7
Similarity Result (Min=0, Max=1) of String that Contains Same Character

but Have Different Arrangement

No. Jaro-Winkler Levenshtein Strike a Match

P11 0.760 0.676 1.000

P12 0.800 0.784 1.000

P13 0.708 0.391 1.000

Table 8

Random String with Little to No Similarity

No. String 1 String 2

P14 httpsabcdebdhdhlkkbbjj klbdhjdhbnbbnbnbddhhhq

P15 keyboard keyboard mouse mouse
P16 to be or not to be that is the problem

Table 9

Similarity Result (Min=0, Max=1) of Random String with Little to No

Similarity

No. Jaro-Winkler Levenshtein Strike a Match

P14 0.470 0.045 0.190
P15 0.450 0.176 0.000

P16 0.640 0.263 0.000

Table 10

Sample String from Android Source Codes and Ontology Database

No. String 1 String 2

P17

locationManager.requestLo

cationUpdates(provider,MI

N_TIME_FOR_UPDATE,
MIN_DISTANCE_FOR_U

PDATE, this);

Uv:http://www.semanticweb.org
/dell/ontologies/2016/4/untitled-

ontology-

24#requestLocationUpdates

P18

Intent i = new

Intent(RecognizerIntent.AC

TION_RECOGNIZE_SPE

ECH);

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-

ontology-

24#Speech_recognition

P19

locationManager.requestLo

cationUpdates(provider,MI

N_TIME_FOR_UPDATE,
MIN_DISTANCE_FOR_U

PDATE, this);

Uv:http://www.semanticweb.org
/dell/ontologies/2016/4/untitled-

ontology-

24#Speech_recognition

P20

List<Address> addressList
=

geocoder.getFromLocation(

latitude, longitude, 1);

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-
ontology-24#getFromLocation

P21

List<Address> addressList

=

geocoder.getFromLocation(
latitude, longitude, 1);

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-

ontology-
24#requestLocationUpdates

P22

location =

locationManager.getLastKn

ownLocation(LocationMan

ager.GPS_PROVIDER);

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-

ontology-

24#getLastKnownLocation

P23

List<Address> addressList

=

geocoder.getFromLocation(
latitude, longitude, 1);

Uv::

http://www.semanticweb.org/del

l/ontologies/2016/4/untitled-
ontology-24#getLongitude

P24

public void

onProviderEnabled(String
provider) {

Uv::http://www.semanticweb.or

g/dell/ontologies/2016/4/untitled
-ontology-24#getBestProvider

P25

isNetworkEnabled =

locationManager.isProvider
Enabled(LocationManager.

NETWORK_PROVIDER);

Uv:http://www.semanticweb.org

/dell/ontologies/2016/4/untitled-
ontology-

24#setAltitudeRequired

P26
for (int i = 0; i <
address.getMaxAddressLin

eIndex(); i++) {

Uv:http://www.semanticweb.org
/dell/ontologies/2016/4/untitled-

ontology-24#setAddressLine

Comparative Evaluation of String Metrics for Context Ontology Database

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 11

Table 11
Similarity Results (Min=0, Max=1) of Sample String from Android Source

Codes and Context Ontology Database

No. Jaro-Winkler Levenshtein Strike a Match

P17 0.444 0.160 0.304

P18 0.421 0.226 0.272

P19 0.462 0.120 0.160
P20 0.567 0.132 0.272

P21 0.557 0.155 0.222

P22 0.556 0.167 0.337
P23 0.562 0.170 0.225

P24 0.456 0.222 0.203

P25 0.530 0.147 0.195
P26 0.464 0.111 0.250

VI. DISCUSSION

Results from P01 to P10, and from P17 to P26, shows that

Jaro-Winkler is found to be a better option at detecting

similarity between strings compared to Levenshtein and

Strike a Match. Whenwords in a string swap places as in

Table 6, Levenshtein, that relies on the number of edits

necessary to transform one string to another is too

pessimistic. At the same time, since Jaro-Winkler considers

transposition between letters, it is not precise enough in

calculating similarity of two long strings. For example, in

P15, both strings do not have any matching keywords but

Jaro-Winkler calculates word’s order in both strings even if

they are arranged differently, concluding that both strings are

almost half similar.

By using 10 samples from Android codes and content from

database, the precision, recall and F-measure (accuracy) of

the edit distances are calculated as shown in Table 12.

Precision is the number of context correctly found whereas

recall is the number of context and non-context correctly

determined by the string metrics. The threshold value is set to

0.25, which means a pair of string with the value of 0.25 and

above is regarded as a context string. Since some of the lines

in the source codes contain longer string, a similarity of 0.25

or above is deemed as feasible. In all 10 strings, only P17,

P20, P22, and P26 carry context information. The other pair

of strings carries no context information. Interestingly, Jaro-

Winkler deems all pair of strings as context, totally opposite

to Levenshtein which deems all pair of strings as non-context.

Strike a Match on the other hand, get all the context right

except one in which it deems a non-context string as context.

The result from P14 totally supports the conclusion that Jaro-

Winkler, albeit being able to calculate even the slightest

similarity, is not precise.

Table 12
Precision, recall, and F-value of Jaro-Winkler, Levenshtein, and Strike a

Match based on Table 10

T
h

re
sh

o
ld

v
al

u
e

Jaro-Winkler Levenshtein Strike a Match

P R F P R F P R F

0.25 1 0.40 0.57 0 0.60 0 1 0.90 0.95

VII. CONCLUSION

Overall, it is found that Strike a Match holds the highest

recall value since it can correctly identify between context

and non-context string. Along with Jaro-Winkler, it has

perfect precision in concluding whether the identified string

is a context or non-context. However, Jaro-Winkler has the

lowest recall percentage. At 0.25 threshold value, it identifies

all pair of string as context. This could be contributed to the

fact that Jaro-Winkler favours transposition between different

characters in string, making a totally different string with

almost similar characters (even though they are arranged

differently), strikes a high percentage of similarity. String

P14, P15, and P16 support this point. Jaro-Winkler also does

not fare when it comes to accurately finding similar strings

with meaningful information, unlike Strike a Match. With the

highest streak of accuracy, Strike a Match is the best option

for SCCCP.

Threat to validity is considered as limitation to this

experiment. If another type of string criteria is added, it will

not disrupt the current knowledge and results of the string

metrics since the result obtained from the strings comparison

is unique to their grouped criteria. In fact, adding another

criteria may be a help itself since it could improve the

knowledge on the string metric itself.

Further work will focus on exploring other string metrics

such as Damerau-Levenshtein, in order to improve the

performance of SCCCP.

ACKNOWLEDGMENT

We would like to thank Ministry of Higher Education

Malaysia (MOE) for sponsoring the research through the

FGRS grant with vote number 4F857 and Universiti

Teknologi Malaysia for providing the facilities and support

for the research.

REFERENCES

[1] W. H. Gomaa, and A. A. Fahmy, “A survey of text similarity

Approaches,” International Journal of Computer Applications, vol. 68,
no. 13, pp. 13-18, Apr. 2013.

[2] V. I. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Soviet Physics Doklady, vol.10, no. 8, pp.
707-710, Feb. 1966.

[3] J. L. Peterson, “Computer programs for detecting and correcting

spelling errors,” Communications of the ACM, vol. 23, no. 12, pp.676-
687, Dec. 1980.

[4] W. E. Winkler, “String comparator metrics and enhanced decision rules

in the fellegi-sunter model of record linkage, ” in Proc. of the Section
on Survey Research Methods, American Statistical Association, 1990,

pp. 354-359.
[5] S. White, “How to strike a match,” 2014, Retrieved October 11, 2016,

from http://www.catalysoft.com/articles/StrikeAMatch.html.

[6] Z. Su, B. R. Ahn, K. Y. Eom, M. K. Kang, J. P. Kim, and M.K. Kim,

“Plagiarism detection using the levenshtein distance and smith-
waterman algorithm”, in 3rd Int. Conf. on Innovative Computing

Information and Control, 2008, pp.569-569.

[7] S. Mihov, S. Koeva, C. Ringlstetter, K. U. Schulz and C. Strohmaier,
“Precise and efficient text correction using levenshtein automata,

dynamic web dictionaries and optimized correction models,” in Proc.

of Workshop on International Proofing Tools and Language
Technologies, Patras, 2004, pp. 1-10 .

[8] P. A. V. Hall, and G. R. Dowling, “Approximate string matching,”

ACM Computing Surveys, vol. 12, no. 4, pp.381-402, Dec. 1980.
[9] J. J. Pollock, and A. Zamora, “Automatic spelling correction in

scientific and scholarly text,” Communications of the ACM, vol. 27, no.

4, pp.358-368, Apr. 1984.

