

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 1

Spatial Network k-Nearest Neighbor: A Survey and

Future Directives

B. Borhanuddin1 and B. Solemon2
1College of Graduate Studies,

2College of Computer Science and Information Technology, Universiti Tenaga Nasional,

43000, Kajang, Selangor, Malaysia.

octavia.sativa@gmail.com

Abstract—Nearest neighbor algorithms play many roles in

our daily lives. From facial recognition to networking

applications, many of these are constantly improved for faster

processing time and reliable memory management. There are

many types of nearest neighbor algorithms. One of them is called

k-nearest neighbor (k-NN), a technique that helps to find

number of k closest objects from a user location within a

specified range of area. k-NN road network algorithm studies

have been through various query performance discussions. Each

algorithm is usually judged based on query time over few

selected parameters which are; number of k, network density

and network size. Many studies have claimed different opinions

over their techniques and with many results to prove better

query performance than others. However, among these

techniques, which k-NN road network algorithm has the highest

rate of query performance based on the selected parameters? In

this paper, reviews on several k nearest neighbor algorithms

were made through series of journal extractions and

experimentation in order to identify the algorithm that achieves

highest query performance. It was found that with the

experimentation method, we can identify not only the

algorithm’s performance, but also its design flaws and possible

future improvement. All methods were tested with some

parameters such as varying number of k, road network density

and network size. With the results collected, Incremental

Expansion Restriction – Pruned Highway Labeling method

(IER-PHL) proves to have the best query performance than

other methods for most cases.

Index Terms—k-Nearest Neighbor Search; Query

Performance; Road Network; Spatial Network Database.

I. INTRODUCTION

Nowadays, there are various map navigation applications that

search the best path from one location to another for users.

Best path does not necessarily has the least total travel length,

but also with least cost, time and avoid inaccessible paths

(e.g. traffic jams, road with tolls, road blockages, dead ends,

private area, old roads, and so on). The most prominent

examples would be Google Maps and Waze applications. The

similarity between these applications is that the use of

geographic information system (GIS) to manipulate, store,

analyze and present geographic data. There are many

different technologies involve in the operations of GIS. One

of them is the spatial network database (SNDB) for most GIS

data such as cities, states, and region divisions of a country.

Main features of SNDB are the geometry objects such as

edges (lines), polygons and points, and the measurements

related with these objects. All these can be manipulated

through the spatial network queries facility which involves

complex and multidimensional data structure, for example;

indexing and join methods. A complex spatial queries in

SNDB may use one or more of the basic spatial queries such

as Length(x), Area (x), Distance (x, y), and others. One of

these advanced spatial queries would be the nearest neighbor

(NN) query. NN query returns any closest objects to a query

object or point q. The most famous scenario to demonstrate

the concept of NN algorithm is the travelling salesperson

problem. In this situation, the salesperson needs to travel each

node of the city while considering the shortest total distance

travelling between them. This problem may be extended to k-

nearest neighbor (k-NN) query that finds a set of k closest

objects (also known as points of interest (POIs) objects that

people normally discovered such as buildings, landmarks,

and so on) from q specified. Several studies had been made

for k-NN algorithms in SNDB that usually propose the faster

(or even the fastest) performance based on query time

compared to other methods. Unfortunately, there is no unified

‘platform’ (e.g. source-code and other related design

implementations) for researchers (or even volunteers) to

study, modify or share their views on the algorithms.

In this paper, the best k-NN algorithm is demonstrated

through both theory and implementation. It is impossible to

confirm any best method(s) without experimental

replications. Therefore, the main priority is to find shared

repository (online) that has SNDB k-NN code examples and

compile them into single project. With this project, it gives

clue for design flaws and possible improvement. It also

confirms which k-NN method(s) has the best query

performance aside from sound theoretical it claims.

The rest of this paper is organized as follows: Section II

discusses the background and related concepts of NN and k-

NN in road network, Section III discusses mainly on the

evolution of k-NN theories and methods from 2003 until

present, and both Sections IV and V discuss on how the

operation of finding the best k-NN algorithms was done and

its results respectively.

II. NEAREST NEIGHBOR QUERIES

A. Nearest Neighbor Variant: k-Nearest Neighbor

One of the NN variants and mostly used in SNDB is the k-

NN algorithm. The NN query is not necessarily only a single

object, but can also be a set of k-NN objects. The variable k

is specified as natural numbers which is usually more than

zero. For example; if the NN query include k as 5, then the

query will return 5 closest objects to q. The closest objects are

the POIs objects that people normally encountered such as

buildings, landmarks, facilities and so on. There are different

definitions of distance as set by users, and therefore the k-NN

Journal of Telecommunication, Electronic and Computer Engineering

2 e-ISSN: 2289-8131 Vol. 9 No. 3-3

results would be different. For example, as shown in Figure

1, if user defines a minimum distance between two points, the

NN result for x would be y. Otherwise, the NN of x is z if

maximum distance is defined instead. There are few types of

matrix used to find the distance in spatial network. In this

example, the Euclidean distances (straight line distances) are

used to calculate the length between both points.

Figure 1: Different Distance Definitions on Nearest Neighbors

B. K-Nearest Neighbor Spatial Queries

k-NN searching methods in SNDB consisted of various

sub-algorithms which require the use of Euclidean space

distances and specified spatial index. The sub-algorithms

used depend on the purpose of the k-NN algorithm itself. One

famous example is the Dijkstra’s shortest-path algorithm [1].

Some of the most common spatial indices used in SNDB are

grid, quadtree, R-tree [2] and etcetera. In this study, both

Dijkstra and R-tree methods are frequently discussed in

following sections. There are various types of k-NN

searching algorithms in road network, and each one has its

different purpose when gathering k objects whether while

traversing the road network or just by scanning parts of

regions with Euclidean distances. The k-NN searching

methods in this research focused mainly on static objects

(query and data points) on spatial network k-NN. The road

networks in these situations are usually pre-indexed before

query settings can start. The pre-computation or the offline

approach involves searching-up data from the pre-indexed

data structure. The pre-indexed data are updated only when

requested or whenever the datasets are changed.

The R-tree is widely used in k-NN queries, with the branch-

and-bound algorithm as the basic way to maintain a list of k

nearest neighbor candidates in priority queue. The method is

based on both B-trees and quadtree, where it is balanced (B-

trees) and adjusted groupings of dead-space and dense areas

(quadtree) [3]. ‘R’ is short for Rectangle and some objects

reside in these bounding rectangles, or also known as the

minimum bounding rectangles (MBRs) because of the

minimum distance between q and nodes in the tree. There are

two types of R-tree branch-and-bound search method; depth-

first and best-first. The depth-first search (DFS) visits nodes

that are nearer to q in every expansion and focuses until leaf

node of its predecessor nodes if they are listed as NN

candidates. Unlike DFS, the best-first search (BFS) has a

priority queue that supports sorted entries based on each

minimum distance from q. If the node is a leaf, then it will be

inserted into NN candidate set and stop if the next popped

entry’s minimum distance of the priority queue is greater than

the last NN candidate’s.

As mentioned, shortest-path Dijkstra method is common in

k-NN road network algorithms. It consists mainly of two

types of set; the shortest-path tree and the unexplored or

rejected set [1]. The shortest-path tree keeps track of the

visited nodes that are chosen for minimum distance from

source node. The last added nodes are compared with the

adjacent nodes in subsequent cycles for the sum of distance

values from the source. If the total distance is smaller than the

other adjacent ones, add that node to the shortest-path tree and

update the sum distance. This process will be repeated until

all vertices are checked. Dijkstra concept is often used in most

k-NN road network traversing process but usually with

modified or additional conditions.

III. RELATED WORKS

A. Variants of Road Network k-NN Algorithm

There are several types of k-NN methods for road network

applications other than the static k-NN which is discussed in

next section. One of them is called Continuous k-NN where

query objects are mobile while data points may or may not be

[4]. The idea here is to let query objects constantly detect any

nearest objects on nodes for every expansion. There is also a

method that continuously returns a number of nearest objects

over a period of time [5]. However, using R-tree in this

situation may not be efficient, and therefore a grid-based

index is used instead since it is simple and locations of data

points can be easily updated. Another type of spatial k-NN

algorithm is the Time Dependent k Nearest Neighbor (TD-k-

NN) search where the mobile query objects are on time-

dependent road network [6]. Since to pre-compute all paths

with its departure-times requires unreasonable space

requirement, the author proposed two types of index: Tight

Network Index (TNI) to avoid shortest-path computation and

Loose Network Index (LNI) to help identify nearest objects

that were undetected by TNI. The Approximate k-NN method

is another way to deal with some errors when both data and

query points are massive (both static and continuous) to be

retained on disk or main memory [7]. Another way for the

storage issues would be the Distributed k-NN Processing

technique [8] on server-client communication where each

moving object is given a ‘safe region’ (circular or rectangle).

If the object leaves the region, it will notify the server its new

location to make a new NN query.

B. Spatial Network k-NN Algorithms: The Network

Expansion Techniques (2003-2004)

One of the earliest k-NN in road network application

defines framework for data models and abstract functionality

definitions [9], including other possible algorithms. The

detailed data model store road networks and objects’

locations while the abstract representation enables for NN

querying. The Nearest Neighbor Candidate (NNC) search

enables an up-to-date result since the active-query is

happened on client to re-compute distances between data

points and q, while the NNC set is done on server. The

Incremental Expansion Restriction (IER) from [10] uses

Euclidean distances to find NN objects for every network

expansion and adds them into k-NN candidates queue. The

last element of this queue is known as lower bound which

stores network distance from q (dNmax). The expansion stops

when the Euclidean distance of next NN object is greater than

the dNmax. The same author [10] also proposed another method

called Incremental Network Expansion that solves the ‘false

hits’ Dijkstra shortest-path algorithm in IER by adding the

Spatial Network k-Nearest Neighbor: A Survey and Future Directives

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 3

visited nodes into a sorted expansion queue based on each

element’s network distance from q. For every expansion, any

POI found along the segments will be added into k-NN list

and stopped if the total network distance from q is greater

than dNmax of the last element in k-NN list. The Voronoi

Network Diagram method in [11] separates sets of road

network into polygons (also known as Voronoi Network

Polygons). Each polygon is generated by the data point that

covers certain nodes and edges. By pre-calculating distances

between boundary points of adjacent polygons from the query

point, the total travel distance can then be estimated from

these boundary points to internal points of the selected POI’s

polygon.

C. Spatial Network k-NN Algorithms: Manipulation of

Dijkstra’s Shortest-Path Technique (2005-2008)

Even though the Unique Continuous Search (UNICONS)

method [12] concerns more on moving objects, it is also

applicable to static query objects. The NNs are pre-computed

at selected nodes (also known as condensing points) that store

k-NN query result so that the search only happens at these

points. Therefore, the collection of POIs along the query path

that satisfy query predicate at nodes of this path will be

qualified as k-NN result. The next method [13] uses the

similar concept of Euclidean distance as in IER. It acts as

‘boundary’ for each data point or object that covers some

vertices or nodes with limited range known as the Island. For

each expansion, the algorithm detects any Island that covers

the current visited node from q. The expansion is repeated

until the sum of both network distance from q to current

visited node and minimum radius of all the Islands is greater

than network distance from q to the last data point in the

priority queue. To reduce priority queue insertions, an index

called Spatially Induced Linkage Cognizance (SILC) [14] is

used in Distance Browsing (DisBrw) [15] so that nodes that

closed to each other can be indexed with region quadtree.

Each of the node vi contains ratio (minimum and maximum)

of both Euclidean and network distances between q and vi.

Unnecessary NN objects are pruned by the Euclidean

distance interval that contains lower (minimum ratio multiply

dEuc(q,vi)) and upper (maximum ratio multiply dEuc(q,vi))

bounds on network distance from q to vi. Shortest-path is

determined by these intervals and the steps (getting qualified

node) are repeated at each quadtree until it reaches object

node t. Finally, the total interval distance will become the

network distance itself between q and t.

D. Spatial Network K-NN Algorithms: Combination of

Different Components (2009 – Present)

There is one method which the author in [16] proposed a

combination of INE method with mobile agents so that each

can execute k-NN query at its node independently. A Central

Control System (CCC) is the heart of the system model that

controls and dispatches the agents to local area and routing

the results to answer queries. The local area agent performs

INE search method on specific region with sub-agents on

each node to execute k-NN query. If a data point dp is one of

q k-NN candidates and the shortest-path from dp to q passes

through node v, then dp is considered one of v k-NN objects.

Another way to improve INE method known as Route

Overlay and Association Directory (ROAD) is by skipping

nodes without objects by grouping them into regions called

Rnets [17]. The Route Overlay Index stores for each node the

Rnets it belongs with Association Directory to check whether

any given Rnet has any object or not. In each Rnet, every pair

of border nodes is defined as shortcut pair. With these

shortcut pairs, shortest-path between q and vi may enter any

Rnet through one of the border node and exit through the

other. The G-tree [18] associates each node with a sub-graph.

The partitioned sub-graphs form a tree hierarchy and each

non-leaf node stores a set of border nodes and a distance

matrix. The distance matrix stores network distances from

each child node to other child border nodes. All children

nodes that contain objects (POIs) are stored in an occurrence

list to prune any empty nodes before traversing. The tree is

traversed from q (source leaf) and with distance matrices to

group shortest-path distances while traversing the hierarchy.

If the visited node is an object, then it will be returned as k-

NN object. Finally, one author proposed another method to

improve IER, which has always been considered the worst k-

NN performance, with a shortest-path algorithm called

Pruned Highway Labeling (PHL) [19]. The combination

(IER-PHL) [20] is similar to IER’s k-NN search technique

except for the Dijkstra shortest-path. In this case, for every

expansion to get network distance between q and next NN

object, PHL will be used instead. The same author also

proposed IER-Gt (combination of IER and G-tree) to take

advantages of G-tree’s “materialization” property that reduce

number of repeated network distance calculation from q.

IV. BEST QUERY PERFORMANCE K-NN STUDIES

The methodology to find spatial network k-NN algorithms

was designed to avoid unnecessary complexity and repetitive

searching. Therefore, only several papers that possess high

citation numbers were mostly referred. With these papers,

relationships between them and other minor references were

made. Theoretical references may not be enough in this case

to make conclusion for best technique(s). To find more

evidences, paper(s) related to spatial k-NN algorithms that

offer any shared online repository were searched and

replicated for results.

A. Finding the Performance Evidence

The first step is to identify important spatial network k-NN

studies which include static query points as part of the

experimental evaluations. One objective in mind was to

search related papers that contribute to the evolution of

SNDB k-NN algorithms in order to understand the underlying

problems and reasons for improvement made. By using

database search with appropriate filters, it was not difficult to

obtain such papers. Few papers were considered as key

research [10, 11, 13] since the discussions are related with

static objects, indexing and query performance. The

challenge was to connect, to find pattern and create

relationship between one technique with another since not all

papers found have similar perspectives regarding static k-NN

query objects. It was found that as more advanced

technologies involve in SNDB, the studies on static queries

are very limited. One patented paper [21] discusses on

relationship between old methods (e.g. IER and INE) and

newer ones such as time-based shortest-path algorithms.

From this research, although it is not related to static query

study, the candidates for comparative purposes have also

been identified [10, 15, 17, 18, 20]. It was also found that

there were lacked of papers that discussed related

experiments according to query performance through

sharable platform(s) except [20]. This recent research has

Journal of Telecommunication, Electronic and Computer Engineering

4 e-ISSN: 2289-8131 Vol. 9 No. 3-3

made significant contributions of code-sharing repository

through GitHub and also discussions on various examples of

spatial k-NN results. With the final paper [20], the candidates

for best method were confirmed based on its k-NN result and

discussion.

B. Reproducing and Testing the Result

With findings based on [20], the second step was to

replicate the author’s results and study the definitions of best

spatial network k-NN query performance. The source code

was downloaded from the author’s GitHub repository [22],

generated and compiled into executable files on local

machine. All related datasets were downloaded only for travel

distance purposes. Each of the dataset has two types of files;

road network edge-weight graph and coordinate files. These

datasets were created for the 9th DIMACS (Center for

Discrete Mathematics and Theoretical Computer Science)

challenge [23] which had been released by US Census Bureau

for the point-to-point road graph algorithms. Table 1 shows

each dataset information sorted by number of nodes.

Table 1

Road Network Datasets

Code Description Node Edges

DE Delaware 49,109 60,512

VT Vermont 97,975 107,558
ME Maine 194,505 214,921

COL Colorado 435,666 1,057,066

NW Northwest USA 1,207,945 2,840,208
CAL California and Nevada 1,890,815 4,657,742

E Eastern USA 3,598,623 8,778,114

Some real-world objects’ coordinates were obtained from

Open Street Map (OSM) as POIs (e.g. fast-food outlets,

courthouses, etc.). Because the OSM object sets may not be

as precise as in real world, synthetic POIs have been included

for more observations. Some random vertices which may

simulate real POIs were also selected uniformly for both

cities and rural areas. These depend on the object sets’ density

represented as d (a ratio of number of objects |O| to the

number of vertices |V|, |O|/|V|) ranging from 0.0001 to 1.

Lower density indicates lesser occurrences objects and vice

versa. Value k is varied from 1 to 50 (default value of 10),

while d varied from 0.0001 to 1 with default value of 0.001

because the author considered it to match real world object

sets density. After all query and random objects were

generated, travel distance experiments (varying k, road

network density, and road network size) were then run on

several k-NN algorithms such as IER, INE, G-tree, IER-PHL,

IER-Gt and ROAD. It was found that the results were not

much different from [20] even though the local machine has

lesser RAM capacity. However, the performance was

approximately 5-10% faster due to more advanced processor

compared to author’s (3.2 GHz Intel i5-4570).

V. EXPERIMENTAL EVALUATION

For the system and hardware settings, the experiment was

done in Windows 8.1 operating system (64 bit) on Intel Core

i7-4790 at 3.60 GHz. Due to system limitation, it is only

allowed up to 16 GB of RAM. It is noted that the author

suggests 32GB RAM for large datasets, but it is still possible

to perform the experiment by limiting and omitting some

datasets to prevent indexes loss. All implementation was done

in C++ language with Cygwin command-line interface to

create a Unix-like environment and for GNU compilation.

As shown in previous Table 1, Eastern US (E) has the

biggest number of nodes and segments. It was found that in

current local machine, the PHL road network indexing cannot

be constructed for any datasets bigger than E since the main

memory is only 16 GB in size. Compared to [20], the author

was not able to use PHL with a complete United States road

network dataset (23,947,347 vertices, 57,708,624 segments)

with 32 GB of main memory. Therefore, the experiment

cannot be done further than the E dataset. However, the

differences in results can still be seen as network size

increases on these four datasets; DE, ME, NW and E.

A. Varying Number of k

For varying k, IER-PHL in Figure 2 proves that it

significantly performs five times faster than other techniques

on NW dataset. This is also confirmed in [20] because IER-

PHL manages to collect NN objects as soon as the search

expansion starts. Because there are more NN candidates need

to be compared when k increases, the query time quickly

increases between 1 and 10 k and slowly increases afterwards

when the number of k is more than 25. INE is the slowest

among all methods because it traverses many vertices and has

no materialization facility that can help to avoid false hits

during each search cycle. Other method such as IER-Gt,

which is the improvement of G-tree, performs better than its

former technique in most cases except when the k increases

and reaches around 20. This is because it needs to visit sub-

graphs of next Euclidean NN for each expansion and

estimates the distances between q and all objects within those

sub-graphs. Compared to G-tree, as density increases, it has

the advantages of visiting any objects that are within closest

sub-graphs (nearer to its border nodes of current tree

hierarchy) and therefore has the higher chance to find k faster

than IER-Gt.

Figure 2: IER-PHL and Other k-NN Methods in Varying k (NW,
density=0.001)

B. Varying Road Network Density

In Figure 3, k is set to 10 and with NW dataset following

the default settings for varying density. As density increases,

IER-PHL query performance gradually increases, and

becomes consistent and stable as it reaches density of 0.1.

This pattern is different from other four methods since IER-

PHL does not rely on the size of search space in each

expansion cycle. It relies on the number of Euclidean NNs

found and therefore, as density increases, the chances to false

hit unnecessary NNs which are not real k-NN will also

increase. However, even if IER-PHL performs slower than

Spatial Network k-Nearest Neighbor: A Survey and Future Directives

 e-ISSN: 2289-8131 Vol. 9 No. 3-3 5

INE, ROAD and G-tree as density increases, it is considered

the overall best k-NN method in varying density situations.

This is because the degree of query time changes is not

extremely affected by increasing road network density values

even in bigger road network size. For INE technique, since

objects are nearer to each other in higher density, INE is able

to visit all nodes nearer to q and get to NNs with less visited

edges compared to objects that are far from q.

Figure 3: IER-PHL and Other k-NN Methods in Varying density (NW,

k=10)

However, as network size increases, it performs slower

than G-tree and IER-Gt and becomes constant (Figure 4).

Both INE and ROAD must track again all vertices which have

been de-queued from its expansion (priority) queue. As for

G-tree, when density increases, it performs better than IER-

PHL and IER-Gt since there is higher chance to obtain more

k-NNs towards the end of the tree (source tree node).

Although IER-Gt performs slightly better than G-tree in

lower density, it becomes slower as density increases since it

has to visit multiple sub-graphs with the next Euclidean NN

that may lead to false k-NN candidates.

Figure 4: IER-PHL and Other k-NN Methods in Varying density (E, k=10)

C. Varying Total Nodes with Default Parameter

The varying number of nodes or vertices reflects the size of

the road network. For example, the higher the number of

vertices, the bigger the road network dataset would be. There

are seven plots for each k-NN method in Figure 5. Each plot

corresponds to every dataset shown in Table 1. INE has the

slowest performance but remains stable for different number

of vertices |V|. ROAD has similar pattern to INE except when

number of vertices increases in certain stages (when reaching

the size of COL and E datasets). ROAD network expansion

helps to skip the areas without objects (Rnets) and therefore

less expansion cycles.

Figure 5: Varying Number of Vertices (density=0.001, k=10)

G-tree performs slower as the road network size increases

and it seems to have similar pattern to ROAD performance.

As number of vertices increases, the nodes at the same depth

have more border vertices and the paths to calculate network

distance becomes higher in number. For IER-PHL, due to

local machine system limitation, PHL in this case can only

support up to E road network size. It performs the best among

other k-NN methods but suffers the increasing trend of query

time as vertices increase just like G-tree and IER-Gt. IER-

PHL manages to have gradual and stable increase of query

time as road network size increases compared to others

(ROAD, G-tree and IER-Gt). As number of vertices

increases, so do the NN candidates. Therefore, the longer it

takes to find true lower bounds.

VI. CONCLUSION

The replicated results in this research shows that IER-PHL

has the best query performance compared to G-tree, INE,

ROAD, and IER-Gt. IER-PHL is a combination of two

different methods; IER as the one of the oldest k-NN

technique, and PHL one of the latest shortest-path algorithm.

It performs the best among other recent k-NN techniques in

most cases although previously IER was regarded as the

worst performing method to find shortest-path by many

researchers. k-NN algorithms of SNDB system have been

studied by many researchers and each proposed method

claimed to have better performance than its predecessor.

Unfortunately, there was no shared repository for other

researchers to test and compare the actual results unless the

author permits to share the work. Having a unified

information sharing platform from various k-NN road

network algorithms is very important for researchers (or even

volunteers) to benchmark their techniques against the best

claimed algorithm(s). It is also advantageous for researchers

to be aware of new technologies behind SNDB and GIS

system and applications for various purposes (e.g.

autonomous transportation, logistics, etc.). This research

shows that with a shared k-NN project repository, one can

study and review various k-NN algorithms’ performances.

Also, a new feature or k-NN technique can be ‘safely’

proposed and proved to have better or worse query

performance than others.

Journal of Telecommunication, Electronic and Computer Engineering

6 e-ISSN: 2289-8131 Vol. 9 No. 3-3

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connection with graphs,”

Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[2] A. Guttman, “R-Trees: a dynamic index structure for spatial
searching,” in Proc. of the 1984 ACM SIGMOD Int. Conf. on

Management of Data, New York, 1984, pp. 47-57.

[3] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor
queries,” in Proc. of the 1995 ACM SIGMOD Int. Conf. on

Management of Data, New York, 1995, pp. 71–79.

[4] G. S. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest neighbor
queries for continuously moving points with updates,” in Proc. Of the

29th Int. Conf. on Very Large Data Bases, Berlin, 2003, pp. 512–523.

[5] D. V Kalashnikov, S. Prabhakar, and S. E. Hambrusch, “Main Memory
Evaluation of Monitoring Queries Over Moving Objects,” Distributed

Parallel Databases, vol. 15, no. 2, pp. 117–135, Mar. 2004.

[6] U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “Towards k-
nearest neighbor search in time-dependent spatial network databases,”

in Databases in Networked Information Systems: 6th International

Workshop, DNIS 2010, Aizu-Wakamatsu, Japan, March 29-31, 2010.
Proceedings, S. Kikuchi, S. Sachdeva, and S. Bhalla, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 296–310.

[7] M. Bern, “Approximate closest-point queries in high dimensions,”
Information Processing Letters, vol. 45, no. 2, pp. 95–99, Feb. 1993.

[8] Y. Cai, K. A. Hua, and G. Cao, “Processing range-monitoring queries
on heterogeneous mobile objects,” in IEEE Int. Conf. Mobile Data

Management. Proceedings. 2004, pp. 27-38.

[9] C. S. Jensen, J. Kolarvr, T. B. Pedersen, and I. Timko, “Nearest
neighbor queries in road networks,” in Proc. of the 11th ACM Int. Sym.

on Advances in Geographic Information Systems, New Orleans, 2003,

pp. 1–8.
[10] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing in

spatial network databases,” in Proc. Of the 29th Int. Conf. on Very Large

Data Bases, Berlin, 2003, pp. 802-813.
[11] M. Kolahdouzan ,and C. Shahabi, “Voronoi-based k- nearest neighbor

search for spatial network databases,” in Proc. of the Thirtieth Int. Conf.

on Very Large Data Bases, Toronto, 2004, pp. 840–851.
[12] H.-J. Cho and C.-W. Chung, “An efficient and scalable approach to

CNN queries in a road network.,” in Proc. of the 31st Int. Conf. on Very

Large Data Bases, Trondheim, 2005, pp. 865–876.
[13] X. Huang, C. S. Jensen, and S. Šaltenis, “The islands approach to

nearest neighbor querying in spatial networks,” in Advances in Spatial

and Temporal Databases: 9th International Symposium, SSTD 2005,

Angra dos Reis, Brazil, August 22-24, 2005. Proceedings, C. Bauzer
Medeiros, M. J. Egenhofer, and E. Bertino, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 73–90.

[14] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Efficient query
processing on spatial networks,” in Proc. of 13th Annual ACM Int.

Workshop on Geographic Information Systems, Bremen, 2005, pp.

200–209.
[15] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network

distance browsing in spatial databases,” in Proc. of the 2008 ACM

SIGMOD Int. Conf. on Management of Data, New York, 2008, pp. 43–
54.

[16] X. Du, and J. Ji, “Research of K-NN query processing in road

networks,” in 2nd Int. Conf. on Power Electronics and Intelligent
Transportation System (PEITS), 2009, pp. 72-76.

[17] K. C. K. Lee, W.-C. Lee, and B. Zheng, “Fast object search on road

networks,” in Proc. of the 12th Int. Conf. on Extending Database
Technology: Advances in Database Technology, New York, 2009, pp.

1018-1029.

[18] R. Zhong, G. Li, K.-L. Tan, and L. Zhou, “G-Tree: an efficient index
for K-NN search on road networks,” in Proc. of the 22nd ACM Int. Conf.

on Information & Knowledge Management, New York, 2013, pp. 39-

48.
[19] T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata, “Fast shortest-

path distance queries on road networks by pruned highway labeling,”

in Proc. of the Meeting on Algorithm Engineering and Experiments,
Oregon, 2014, pp. 147-154.

[20] T. Abeywickrama, M. A. Cheema, and D. Taniar, “K-nearest neighbors
on road networks : a journey in experimentation and in-memory

implementation,” in Proc. of the VLDB Endowment, 2016, pp. 492–

503.
[21] U. Demiryurek, F. Banaei-Kashani, and C. Shahabi, “Efficient k-

nearest neighbor search in time-dependent spatial networks,” in

Database and Expert Systems Applications: 21st International
Conference, DEXA 2010, Bilbao, Spain, August 30 - September 3,

2010, Proceedings, Part I, P. G. Bringas, A. Hameurlain, and G.

Quirchmayr, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 432–449.

[22] T. Abeywickrama, “Road Network k-NN Experimental Evaluation,”

2016. [Online]. Available: https://github.com/tenindra/RN-k-NN-Exp.
[Accessed: 20-Jun-2006].

[23] “9th DIMACS Implementation Challenge: Shortest Paths.,” 2006.

[Online]. Available: http://www.dis.uniroma1.it/challenge9/
competition. shtml. [Accessed: 20-Jun-2006].

