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Abstract—Nearest neighbor algorithms play many roles in 

our daily lives. From facial recognition to networking 

applications, many of these are constantly improved for faster 

processing time and reliable memory management. There are 

many types of nearest neighbor algorithms. One of them is called 

k-nearest neighbor (k-NN), a technique that helps to find 

number of k closest objects from a user location within a 

specified range of area. k-NN road network algorithm studies 

have been through various query performance discussions. Each 

algorithm is usually judged based on query time over few 

selected parameters which are; number of k, network density 

and network size. Many studies have claimed different opinions 

over their techniques and with many results to prove better 

query performance than others. However, among these 

techniques, which k-NN road network algorithm has the highest 

rate of query performance based on the selected parameters? In 

this paper, reviews on several k nearest neighbor algorithms 

were made through series of journal extractions and 

experimentation in order to identify the algorithm that achieves 

highest query performance. It was found that with the 

experimentation method, we can identify not only the 

algorithm’s performance, but also its design flaws and possible 

future improvement. All methods were tested with some 

parameters such as varying number of k, road network density 

and network size. With the results collected, Incremental 

Expansion Restriction – Pruned Highway Labeling method 

(IER-PHL) proves to have the best query performance than 

other methods for most cases. 

 

Index Terms—k-Nearest Neighbor Search; Query 

Performance; Road Network; Spatial Network Database. 

 

I. INTRODUCTION 

 

Nowadays, there are various map navigation applications that 

search the best path from one location to another for users. 

Best path does not necessarily has the least total travel length, 

but also with least cost, time and avoid inaccessible paths 

(e.g. traffic jams, road with tolls, road blockages, dead ends, 

private area, old roads, and so on). The most prominent 

examples would be Google Maps and Waze applications. The 

similarity between these applications is that the use of 

geographic information system (GIS) to manipulate, store, 

analyze and present geographic data. There are many 

different technologies involve in the operations of GIS. One 

of them is the spatial network database (SNDB) for most GIS 

data such as cities, states, and region divisions of a country. 

Main features of SNDB are the geometry objects such as 

edges (lines), polygons and points, and the measurements 

related with these objects. All these can be manipulated 

through the spatial network queries facility which involves 

complex and multidimensional data structure, for example; 

indexing and join methods. A complex spatial queries in 

SNDB may use one or more of the basic spatial queries such 

as Length(x), Area (x), Distance (x, y), and others. One of 

these advanced spatial queries would be the nearest neighbor 

(NN) query. NN query returns any closest objects to a query 

object or point q. The most famous scenario to demonstrate 

the concept of NN algorithm is the travelling salesperson 

problem. In this situation, the salesperson needs to travel each 

node of the city while considering the shortest total distance 

travelling between them. This problem may be extended to k- 

nearest neighbor (k-NN) query that finds a set of k closest 

objects (also known as points of interest (POIs) objects that 

people normally discovered such as buildings, landmarks, 

and so on) from q specified. Several studies had been made 

for k-NN algorithms in SNDB that usually propose the faster 

(or even the fastest) performance based on query time 

compared to other methods. Unfortunately, there is no unified 

‘platform’ (e.g. source-code and other related design 

implementations) for researchers (or even volunteers) to 

study, modify or share their views on the algorithms.  

In this paper, the best k-NN algorithm is demonstrated 

through both theory and implementation. It is impossible to 

confirm any best method(s) without experimental 

replications. Therefore, the main priority is to find shared 

repository (online) that has SNDB k-NN code examples and 

compile them into single project. With this project, it gives 

clue for design flaws and possible improvement. It also 

confirms which k-NN method(s) has the best query 

performance aside from sound theoretical it claims. 

The rest of this paper is organized as follows: Section II 

discusses the background and related concepts of NN and k-

NN in road network, Section III discusses mainly on the 

evolution of k-NN theories and methods from 2003 until 

present, and both Sections IV and V discuss on how the 

operation of finding the best k-NN algorithms was done and 

its results respectively. 

 

II. NEAREST NEIGHBOR QUERIES 

 

A. Nearest Neighbor Variant: k-Nearest Neighbor 

One of the NN variants and mostly used in SNDB is the k-

NN algorithm. The NN query is not necessarily only a single 

object, but can also be a set of k-NN objects. The variable k 

is specified as natural numbers which is usually more than 

zero. For example; if the NN query include k as 5, then the 

query will return 5 closest objects to q. The closest objects are 

the POIs objects that people normally encountered such as 

buildings, landmarks, facilities and so on. There are different 

definitions of distance as set by users, and therefore the k-NN 
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results would be different. For example, as shown in Figure 

1, if user defines a minimum distance between two points, the 

NN result for x would be y. Otherwise, the NN of x is z if 

maximum distance is defined instead. There are few types of 

matrix used to find the distance in spatial network. In this 

example, the Euclidean distances (straight line distances) are 

used to calculate the length between both points. 

 

Figure 1: Different Distance Definitions on Nearest Neighbors 

 

B. K-Nearest Neighbor Spatial Queries 

k-NN searching methods in SNDB consisted of various 

sub-algorithms which require the use of Euclidean space 

distances and specified spatial index. The sub-algorithms 

used depend on the purpose of the k-NN algorithm itself. One 

famous example is the Dijkstra’s shortest-path algorithm [1]. 

Some of the most common spatial indices used in SNDB are 

grid, quadtree, R-tree [2] and etcetera. In this study, both 

Dijkstra and R-tree methods are frequently discussed in 

following sections. There are various types of k-NN 

searching algorithms in road network, and each one has its 

different purpose when gathering k objects whether while 

traversing the road network or just by scanning parts of 

regions with Euclidean distances. The k-NN searching 

methods in this research focused mainly on static objects 

(query and data points) on spatial network k-NN. The road 

networks in these situations are usually pre-indexed before 

query settings can start. The pre-computation or the offline 

approach involves searching-up data from the pre-indexed 

data structure. The pre-indexed data are updated only when 

requested or whenever the datasets are changed.  

The R-tree is widely used in k-NN queries, with the branch-

and-bound algorithm as the basic way to maintain a list of k 

nearest neighbor candidates in priority queue. The method is 

based on both B-trees and quadtree, where it is balanced (B-

trees) and adjusted groupings of dead-space and dense areas 

(quadtree) [3]. ‘R’ is short for Rectangle and some objects 

reside in these bounding rectangles, or also known as the 

minimum bounding rectangles (MBRs) because of the 

minimum distance between q and nodes in the tree. There are 

two types of R-tree branch-and-bound search method; depth-

first and best-first. The depth-first search (DFS) visits nodes 

that are nearer to q in every expansion and focuses until leaf 

node of its predecessor nodes if they are listed as NN 

candidates. Unlike DFS, the best-first search (BFS) has a 

priority queue that supports sorted entries based on each 

minimum distance from q. If the node is a leaf, then it will be 

inserted into NN candidate set and stop if the next popped 

entry’s minimum distance of the priority queue is greater than 

the last NN candidate’s.  

As mentioned, shortest-path Dijkstra method is common in 

k-NN road network algorithms. It consists mainly of two 

types of set; the shortest-path tree and the unexplored or 

rejected set [1]. The shortest-path tree keeps track of the 

visited nodes that are chosen for minimum distance from 

source node. The last added nodes are compared with the 

adjacent nodes in subsequent cycles for the sum of distance 

values from the source. If the total distance is smaller than the 

other adjacent ones, add that node to the shortest-path tree and 

update the sum distance. This process will be repeated until 

all vertices are checked. Dijkstra concept is often used in most 

k-NN road network traversing process but usually with 

modified or additional conditions. 

 

III. RELATED WORKS 

 

A. Variants of Road Network k-NN Algorithm 

There are several types of k-NN methods for road network 

applications other than the static k-NN which is discussed in 

next section. One of them is called Continuous k-NN where 

query objects are mobile while data points may or may not be 

[4]. The idea here is to let query objects constantly detect any 

nearest objects on nodes for every expansion. There is also a 

method that continuously returns a number of nearest objects 

over a period of time [5]. However, using R-tree in this 

situation may not be efficient, and therefore a grid-based 

index is used instead since it is simple and locations of data 

points can be easily updated. Another type of spatial k-NN 

algorithm is the Time Dependent k Nearest Neighbor (TD-k-

NN) search where the mobile query objects are on time-

dependent road network [6]. Since to pre-compute all paths 

with its departure-times requires unreasonable space 

requirement, the author proposed two types of index: Tight 

Network Index (TNI) to avoid shortest-path computation and 

Loose Network Index (LNI) to help identify nearest objects 

that were undetected by TNI. The Approximate k-NN method 

is another way to deal with some errors when both data and 

query points are massive (both static and continuous) to be 

retained on disk or main memory [7]. Another way for the 

storage issues would be the Distributed k-NN Processing 

technique [8] on server-client communication where each 

moving object is given a ‘safe region’ (circular or rectangle). 

If the object leaves the region, it will notify the server its new 

location to make a new NN query. 

 

B. Spatial Network k-NN Algorithms: The Network 

Expansion Techniques (2003-2004) 

One of the earliest k-NN in road network application 

defines framework for data models and abstract functionality 

definitions [9], including other possible algorithms. The 

detailed data model store road networks and objects’ 

locations while the abstract representation enables for NN 

querying. The Nearest Neighbor Candidate (NNC) search 

enables an up-to-date result since the active-query is 

happened on client to re-compute distances between data 

points and q, while the NNC set is done on server. The 

Incremental Expansion Restriction (IER) from [10] uses 

Euclidean distances to find NN objects for every network 

expansion and adds them into k-NN candidates queue. The 

last element of this queue is known as lower bound which 

stores network distance from q (dNmax). The expansion stops 

when the Euclidean distance of next NN object is greater than 

the dNmax. The same author [10] also proposed another method 

called Incremental Network Expansion that solves the ‘false 

hits’ Dijkstra shortest-path algorithm in IER by adding the 
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visited nodes into a sorted expansion queue based on each 

element’s network distance from q. For every expansion, any 

POI found along the segments will be added into k-NN list 

and stopped if the total network distance from q is greater 

than dNmax of the last element in k-NN list. The Voronoi 

Network Diagram method in [11] separates sets of road 

network into polygons (also known as Voronoi Network 

Polygons). Each polygon is generated by the data point that 

covers certain nodes and edges. By pre-calculating distances 

between boundary points of adjacent polygons from the query 

point, the total travel distance can then be estimated from 

these boundary points to internal points of the selected POI’s 

polygon. 

 

C. Spatial Network k-NN Algorithms: Manipulation of 

Dijkstra’s Shortest-Path Technique (2005-2008) 

Even though the Unique Continuous Search (UNICONS) 

method [12] concerns more on moving objects, it is also 

applicable to static query objects. The NNs are pre-computed 

at selected nodes (also known as condensing points) that store 

k-NN query result so that the search only happens at these 

points. Therefore, the collection of POIs along the query path 

that satisfy query predicate at nodes of this path will be 

qualified as k-NN result. The next method [13] uses the 

similar concept of Euclidean distance as in IER. It acts as 

‘boundary’ for each data point or object that covers some 

vertices or nodes with limited range known as the Island. For 

each expansion, the algorithm detects any Island that covers 

the current visited node from q. The expansion is repeated 

until the sum of both network distance from q to current 

visited node and minimum radius of all the Islands is greater 

than network distance from q to the last data point in the 

priority queue. To reduce priority queue insertions, an index 

called Spatially Induced Linkage Cognizance (SILC) [14] is 

used in Distance Browsing (DisBrw) [15] so that nodes that 

closed to each other can be indexed with region quadtree. 

Each of the node vi contains ratio (minimum and maximum) 

of both Euclidean and network distances between q and vi. 

Unnecessary NN objects are pruned by the Euclidean 

distance interval that contains lower (minimum ratio multiply 

dEuc(q,vi)) and upper (maximum ratio multiply dEuc(q,vi)) 

bounds on network distance from q to vi. Shortest-path is 

determined by these intervals and the steps (getting qualified 

node) are repeated at each quadtree until it reaches object 

node t. Finally, the total interval distance will become the 

network distance itself between q and t. 

 

D. Spatial Network K-NN Algorithms: Combination of 

Different Components (2009 – Present) 

There is one method which the author in [16] proposed a 

combination of INE method with mobile agents so that each 

can execute k-NN query at its node independently. A Central 

Control System (CCC) is the heart of the system model that 

controls and dispatches the agents to local area and routing 

the results to answer queries. The local area agent performs 

INE search method on specific region with sub-agents on 

each node to execute k-NN query. If a data point dp is one of 

q k-NN candidates and the shortest-path from dp to q passes 

through node v, then dp is considered one of v k-NN objects. 

Another way to improve INE method known as Route 

Overlay and Association Directory (ROAD) is by skipping 

nodes without objects by grouping them into regions called 

Rnets [17]. The Route Overlay Index stores for each node the 

Rnets it belongs with Association Directory to check whether 

any given Rnet has any object or not. In each Rnet, every pair 

of border nodes is defined as shortcut pair. With these 

shortcut pairs, shortest-path between q and vi may enter any 

Rnet through one of the border node and exit through the 

other. The G-tree [18] associates each node with a sub-graph. 

The partitioned sub-graphs form a tree hierarchy and each 

non-leaf node stores a set of border nodes and a distance 

matrix. The distance matrix stores network distances from 

each child node to other child border nodes. All children 

nodes that contain objects (POIs) are stored in an occurrence 

list to prune any empty nodes before traversing. The tree is 

traversed from q (source leaf) and with distance matrices to 

group shortest-path distances while traversing the hierarchy. 

If the visited node is an object, then it will be returned as k-

NN object. Finally, one author proposed another method to 

improve IER, which has always been considered the worst k-

NN performance, with a shortest-path algorithm called 

Pruned Highway Labeling (PHL) [19]. The combination 

(IER-PHL) [20] is similar to IER’s k-NN search technique 

except for the Dijkstra shortest-path. In this case, for every 

expansion to get network distance between q and next NN 

object, PHL will be used instead. The same author also 

proposed IER-Gt (combination of IER and G-tree) to take 

advantages of G-tree’s “materialization” property that reduce 

number of repeated network distance calculation from q. 

 

IV. BEST QUERY PERFORMANCE K-NN STUDIES 

 

The methodology to find spatial network k-NN algorithms 

was designed to avoid unnecessary complexity and repetitive 

searching. Therefore, only several papers that possess high 

citation numbers were mostly referred. With these papers, 

relationships between them and other minor references were 

made. Theoretical references may not be enough in this case 

to make conclusion for best technique(s). To find more 

evidences, paper(s) related to spatial k-NN algorithms that 

offer any shared online repository were searched and 

replicated for results. 

 

A. Finding the Performance Evidence 

The first step is to identify important spatial network k-NN 

studies which include static query points as part of the 

experimental evaluations. One objective in mind was to 

search related papers that contribute to the evolution of 

SNDB k-NN algorithms in order to understand the underlying 

problems and reasons for improvement made. By using 

database search with appropriate filters, it was not difficult to 

obtain such papers. Few papers were considered as key 

research [10, 11, 13] since the discussions are related with 

static objects, indexing and query performance. The 

challenge was to connect, to find pattern and create 

relationship between one technique with another since not all 

papers found have similar perspectives regarding static k-NN 

query objects. It was found that as more advanced 

technologies involve in SNDB, the studies on static queries 

are very limited. One patented paper [21] discusses on 

relationship between old methods (e.g. IER and INE) and 

newer ones such as time-based shortest-path algorithms. 

From this research, although it is not related to static query 

study, the candidates for comparative purposes have also 

been identified [10, 15, 17, 18, 20]. It was also found that 

there were lacked of papers that discussed related 

experiments according to query performance through 

sharable platform(s) except [20]. This recent research has 
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made significant contributions of code-sharing repository 

through GitHub and also discussions on various examples of 

spatial k-NN results. With the final paper [20], the candidates 

for best method were confirmed based on its k-NN result and 

discussion. 

 

B. Reproducing and Testing the Result 

With findings based on [20], the second step was to 

replicate the author’s results and study the definitions of best 

spatial network k-NN query performance. The source code 

was downloaded from the author’s GitHub repository [22], 

generated and compiled into executable files on local 

machine. All related datasets were downloaded only for travel 

distance purposes. Each of the dataset has two types of files; 

road network edge-weight graph and coordinate files. These 

datasets were created for the 9th DIMACS (Center for 

Discrete Mathematics and Theoretical Computer Science) 

challenge [23] which had been released by US Census Bureau 

for the point-to-point road graph algorithms. Table 1 shows 

each dataset information sorted by number of nodes. 

 
Table 1 

Road Network Datasets 
 

Code Description Node Edges 

DE Delaware 49,109 60,512 

VT Vermont 97,975 107,558 
ME Maine 194,505 214,921 

COL Colorado 435,666 1,057,066 

NW Northwest USA 1,207,945 2,840,208 
CAL California and Nevada 1,890,815 4,657,742 

E Eastern USA 3,598,623 8,778,114 

 

Some real-world objects’ coordinates were obtained from 

Open Street Map (OSM) as POIs (e.g. fast-food outlets, 

courthouses, etc.). Because the OSM object sets may not be 

as precise as in real world, synthetic POIs have been included 

for more observations. Some random vertices which may 

simulate real POIs were also selected uniformly for both 

cities and rural areas. These depend on the object sets’ density 

represented as d (a ratio of number of objects |O| to the 

number of vertices |V|, |O|/|V|) ranging from 0.0001 to 1. 

Lower density indicates lesser occurrences objects and vice 

versa. Value k is varied from 1 to 50 (default value of 10), 

while d varied from 0.0001 to 1 with default value of 0.001 

because the author considered it to match real world object 

sets density. After all query and random objects were 

generated, travel distance experiments (varying k, road 

network density, and road network size) were then run on 

several k-NN algorithms such as IER, INE, G-tree, IER-PHL, 

IER-Gt and ROAD. It was found that the results were not 

much different from [20] even though the local machine has 

lesser RAM capacity. However, the performance was 

approximately 5-10% faster due to more advanced processor 

compared to author’s (3.2 GHz Intel i5-4570). 

 

V. EXPERIMENTAL EVALUATION 

 

For the system and hardware settings, the experiment was 

done in Windows 8.1 operating system (64 bit) on Intel Core 

i7-4790 at 3.60 GHz. Due to system limitation, it is only 

allowed up to 16 GB of RAM. It is noted that the author 

suggests 32GB RAM for large datasets, but it is still possible 

to perform the experiment by limiting and omitting some 

datasets to prevent indexes loss. All implementation was done 

in C++ language with Cygwin command-line interface to 

create a Unix-like environment and for GNU compilation. 

As shown in previous Table 1, Eastern US (E) has the 

biggest number of nodes and segments. It was found that in 

current local machine, the PHL road network indexing cannot 

be constructed for any datasets bigger than E since the main 

memory is only 16 GB in size. Compared to [20], the author 

was not able to use PHL with a complete United States road 

network dataset (23,947,347 vertices, 57,708,624 segments) 

with 32 GB of main memory. Therefore, the experiment 

cannot be done further than the E dataset. However, the 

differences in results can still be seen as network size 

increases on these four datasets; DE, ME, NW and E.  

 

A. Varying Number of k 

For varying k, IER-PHL in Figure 2 proves that it 

significantly performs five times faster than other techniques 

on NW dataset. This is also confirmed in [20] because IER-

PHL manages to collect NN objects as soon as the search 

expansion starts. Because there are more NN candidates need 

to be compared when k increases, the query time quickly 

increases between 1 and 10 k and slowly increases afterwards 

when the number of k is more than 25. INE is the slowest 

among all methods because it traverses many vertices and has 

no materialization facility that can help to avoid false hits 

during each search cycle. Other method such as IER-Gt, 

which is the improvement of G-tree, performs better than its 

former technique in most cases except when the k increases 

and reaches around 20. This is because it needs to visit sub-

graphs of next Euclidean NN for each expansion and 

estimates the distances between q and all objects within those 

sub-graphs. Compared to G-tree, as density increases, it has 

the advantages of visiting any objects that are within closest 

sub-graphs (nearer to its border nodes of current tree 

hierarchy) and therefore has the higher chance to find k faster 

than IER-Gt. 
 

 

Figure 2: IER-PHL and Other k-NN Methods in Varying k (NW, 
density=0.001) 

 

B. Varying Road Network Density 

In Figure 3, k is set to 10 and with NW dataset following 

the default settings for varying density. As density increases, 

IER-PHL query performance gradually increases, and 

becomes consistent and stable as it reaches density of 0.1. 

This pattern is different from other four methods since IER-

PHL does not rely on the size of search space in each 

expansion cycle. It relies on the number of Euclidean NNs 

found and therefore, as density increases, the chances to false 

hit unnecessary NNs which are not real k-NN will also 

increase. However, even if IER-PHL performs slower than 
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INE, ROAD and G-tree as density increases, it is considered 

the overall best k-NN method in varying density situations. 

This is because the degree of query time changes is not 

extremely affected by increasing road network density values 

even in bigger road network size. For INE technique, since 

objects are nearer to each other in higher density, INE is able 

to visit all nodes nearer to q and get to NNs with less visited 

edges compared to objects that are far from q.  

 

 

Figure 3: IER-PHL and Other k-NN Methods in Varying density (NW, 

k=10) 

 

However, as network size increases, it performs slower 

than G-tree and IER-Gt and becomes constant (Figure 4). 

Both INE and ROAD must track again all vertices which have 

been de-queued from its expansion (priority) queue. As for 

G-tree, when density increases, it performs better than IER-

PHL and IER-Gt since there is higher chance to obtain more 

k-NNs towards the end of the tree (source tree node). 

Although IER-Gt performs slightly better than G-tree in 

lower density, it becomes slower as density increases since it 

has to visit multiple sub-graphs with the next Euclidean NN 

that may lead to false k-NN candidates. 
 

 
Figure 4: IER-PHL and Other k-NN Methods in Varying density (E, k=10) 

 

C. Varying Total Nodes with Default Parameter 

The varying number of nodes or vertices reflects the size of 

the road network. For example, the higher the number of 

vertices, the bigger the road network dataset would be. There 

are seven plots for each k-NN method in Figure 5. Each plot 

corresponds to every dataset shown in Table 1. INE has the 

slowest performance but remains stable for different number 

of vertices |V|. ROAD has similar pattern to INE except when 

number of vertices increases in certain stages (when reaching 

the size of COL and E datasets). ROAD network expansion 

helps to skip the areas without objects (Rnets) and therefore 

less expansion cycles. 

 

 

Figure 5: Varying Number of Vertices (density=0.001, k=10) 

 

G-tree performs slower as the road network size increases 

and it seems to have similar pattern to ROAD performance. 

As number of vertices increases, the nodes at the same depth 

have more border vertices and the paths to calculate network 

distance becomes higher in number. For IER-PHL, due to 

local machine system limitation, PHL in this case can only 

support up to E road network size. It performs the best among 

other k-NN methods but suffers the increasing trend of query 

time as vertices increase just like G-tree and IER-Gt. IER-

PHL manages to have gradual and stable increase of query 

time as road network size increases compared to others 

(ROAD, G-tree and IER-Gt). As number of vertices 

increases, so do the NN candidates. Therefore, the longer it 

takes to find true lower bounds. 

 

VI. CONCLUSION 

 

The replicated results in this research shows that IER-PHL 

has the best query performance compared to G-tree, INE, 

ROAD, and IER-Gt. IER-PHL is a combination of two 

different methods; IER as the one of the oldest k-NN 

technique, and PHL one of the latest shortest-path algorithm. 

It performs the best among other recent k-NN techniques in 

most cases although previously IER was regarded as the 

worst performing method to find shortest-path by many 

researchers. k-NN algorithms of SNDB system have been 

studied by many researchers and each proposed method 

claimed to have better performance than its predecessor. 

Unfortunately, there was no shared repository for other 

researchers to test and compare the actual results unless the 

author permits to share the work. Having a unified 

information sharing platform from various k-NN road 

network algorithms is very important for researchers (or even 

volunteers) to benchmark their techniques against the best 

claimed algorithm(s). It is also advantageous for researchers 

to be aware of new technologies behind SNDB and GIS 

system and applications for various purposes (e.g. 

autonomous transportation, logistics, etc.). This research 

shows that with a shared k-NN project repository, one can 

study and review various k-NN algorithms’ performances. 

Also, a new feature or k-NN technique can be ‘safely’ 

proposed and proved to have better or worse query 

performance than others. 
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