
 e-ISSN: 2289-8131 Vol. 9 No. 2-11 85

Coverage Criteria for UML State Chart Diagram in

Model-based Testing

Yasir Dawood Salman, Nor Laily Hashim, Mawarny Md Rejab, Rohaida Romli, Haslina Mohd
Human-Centered Computing Research Lab, Universiti Utara Malaysia, Kedah, Malaysia

yasir.dawod@gmail.com

Abstract—Software testing is a necessary and essential part of

the software quality process and plays a major role in detecting

errors in systems. To improve the effectiveness of test case

generation during software testing, and with the growing

adoption of UML by software developers and researchers, many

studies have focused on the automation of test case generation

from UML diagrams. One of these diagrams is the UML state

chart diagram. These test cases are generally generated to

achieve certain coverage criteria. However, combinations of

multiple criteria are required to achieve better coverage.

Different studies use various number and type of coverage

criteria in their methods and approaches. This paper reviews

previous studies to present the most practical coverage criteria

combinations for UML state chart diagram, including all-states,

all-transitions, all-transition-pairs and all-loop-free-paths

coverage. A special calculation is necessary to determine the

coverage percentage of the proposed coverage criteria. This

paper presents a calculation method to achieve this goal with an

example is applied to a UML state chart diagram. This finding

would be beneficial in the area of automatic test case generating

for model-based testing and especially in the UML state chart

diagram.

Index Terms—Coverage Criteria; Test Case Generation;

UML State Chart Diagram.

I. INTRODUCTION

Testing is an important stage of software development, and it

provides a method to establish confidence in software

reliability. Testing is a challenging task for the analysis of

unified modelling language (UML) models, given that

information regarding a system is distributed across several

model views [1].

UML diagrams aimed to assist in reducing the complexity

of a problem with the increase in product sizes and

complexities [2]. Still, UML diagrams are large and complex,

involving thousands of interactions across hundreds of

objects. Owing to the model’s complexity, generating test

models (e.g., control flow graph from source code) is

cumbersome. This situation is especially true in large

programs [1].

Model-based testing which uses UML design

specifications for testing overcomes the deficiencies that are

very difficult to identify in the system state information,

either from the code or from the requirement specifications,

therefore it has been developed as a promising testing method

[3].
The test cases could be generated from requirements

specification and design documents, where the UML state

chart diagram is one of the diagrams used in the system

design early life cycle. The using of UML state chart diagram

will generate test cases for the software development, what

will make the software testing much more efficient and

effective [4]. Enhancing the necessary tools and increasing

the automation of software testing would help to decrease the

expenses of software development and improve software

reliability [5], what would lower the negative economic issue

of defective software.

For the past decade, a great amount of research work has

been conducted over automatic test case generation from

UML state chart diagram [2, 6-11]. The purpose of generating

test case using UML state chart diagram is to verify the

relations between the behaviour, state transition, state, action,

and event. This technique is used to determine if one can fulfil

the system specifications through the state-based motion of

the system [12].

 Test data generation is one of the most time-consuming

tasks during software testing, especially for manual testing.

With the rapid development of software, many researchers

have worked on solving the problem of automatic test data

generation [13]. These test cases can be generated according

to structural coverage criteria [14]. Coverage criteria are

adequacy measures to qualify if a test objective is satisfied

when executing test cases on a system under test [15].

Coverage criteria are established to estimate the quality of test

cases, and criteria combinations are considered in software

testing [16].

Test coverage specifies the degree of the testing been

standard such as basis path testing or path testing is achieved.

The whole performance from the beginning to the end is

represented by a path. Path testing is a testing technique that

from the domain of all possible paths through the program

[17].

A series of statements, instructions, or high-level design is

called a path of software. This path begins with a decision,

junction, or entry and comes to end at the same or different

decision, exit, or junction. Moreover, the path may

experience many decisions, processes and junctions once,

twice, or more [18]. The way to divide the program input

domain into a path is by use of a suitable test coverage

criterion [17].

This paper focuses on determining the factual combination

of coverage criteria for test case generation from the UML

state chart diagram, given that this area has attracted several

researchers in the previous years. However, no practical

coverage criteria combinations are available to support this

testing, thus far. The objective of this paper is to review the

current test coverage criteria for UML state chart diagram and

proposed a suitable coverage criteria combination to achieve

the highest coverage, also a calculation method for this

coverage criteria.

The remainder of this of this paper is organized as follows:

the next section discusses coverage criteria testing using the

Journal of Telecommunication, Electronic and Computer Engineering

86 e-ISSN: 2289-8131 Vol. 9 No. 2-11

UML state chart diagram. Calculation of the coverage criteria

is discussed next. Finally, the conclusion of the study is

presented.

II. BACKGROUND

Coverage criteria on software systems can be defined as the

set of conditions and rules imposing a set of test requirements

on a software test [19]. A number of coverage criteria are

available for testing, and most of them are based on the

information of control and data flows [20]. Test coverage

criteria enhance the generation of comprehensive test cases

based on the number of elements to cover or visit within a

diagram.

A test coverage criterion is crucial in validating and

analysing the test adequacy of test cases [21]. They can also

be used to direct and stop the test case generation processes.

When applying model-based coverage criteria to some

model, it can be compared by subsuming them. This

subsuming coverage criterion will be considered stronger

than the individually subsumed coverage criterion. For

example, in satisfying the coverage, all transitions coverage

is considered as the minimum coverage criterion. Most of the

commercial test generators tools are only able to satisfy

slightly weak coverage criteria. For example, the

SmarTesting LTD tool is only able to cover all-Transitions

coverage criteria [22].

Each test generation method targets certain specific

features of the system to be tested. Using test coverage

analysis, the extent to which the targeted features are tested

can be determined using test coverage analysis. The

important coverage analysis based on a model can be the

following: all model parts coverage is achieved when at least

once the test reaches every part in the model [3].

This section introduces the eight most common transition-

based coverage criteria used in test case generation, namely,

all-states coverage, all-configurations coverage, all-

transitions coverage, all-transition-pairs coverage, all-loop-

free-paths coverage, all-one-loop-paths coverage, all-round-

trips coverage, and all-paths coverage [23]. Figure 1 shows

these criteria.

Notably, the all-loop-free-paths, all-one-loop-paths, and

all-round-trips coverage criteria can be relatively inadequate

by themselves because they do not guarantee that all states

(let alone all transactions) are covered [23].

Figure 1: Hierarchy of transition-based criteria [23]

Using an extreme example, a UML state chart diagram

primarily loops around a self-transition a few times until a

counter reaches a particular value, which then enables the

transition leading to the rest of the UML state chart. For this

example, the all-loop-free-paths criterion can be satisfied

with an empty test case; the all-round-trips criterion can be

satisfied with only a single test (one loop around the self-

transition); and Binder’s algorithm for generating an all-

round-trips test case generate tests containing unsatisfiable

guards, thereby disabling execution [23]. This finding shows

that these coverage criteria should be combined with other

criteria, such as all-states or all-transitions, to ensure that the

entire UML state chart is covered. Utting and Legeard [23]

recommend that all test cases generated from transition-based

models satisfy all-transitions coverage as a minimum

measure of quality. The following are the proposed coverage

criteria for the UML state chart diagram:

All-States Coverage is required to visit every model state

at least once by a test case within [23, 24]. This criterion

covers all states in every state chart diagram for basic test

generation. State coverage is a test adequacy criterion

requiring tests to check the output variables of a program. All

variables defined when executing a test scope (even those that

are invisible, such as private fields of objects) are considered

by state coverage [25].

However, the all-states coverage criterion is considered the

weakest structural coverage criterion [15]; still, few studies

adapted this coverage criterion [7, 10, 24-30].

All-Transitions Coverage specifies that each transition

must be fired at least once in some test cases [15, 23]. To test

a transition, the test case requires that the object under test be

in the accepting state of the transition. The technique does not

place any constraints on how to reach the accepting state [31].

This coverage criterion is proposed by several authors on

generating test cases from state chart diagrams [6-10, 25-28,

30, 32-36]. Therefore, this coverage criterion is one of the

most commonly used.

All-Transition-Pairs Coverage considers adjacent

transitions successively entering and leaving a given state.

This coverage specifies that for each state, each couple of

exiting transition has to be fired at least once [15]. Thus, the

transition-pair coverage subsumes the all-transitions

coverage. The transition-pair coverage criterion generates

more test cases than the transition coverage criterion [37].

Given that all-transition-pairs coverage is not widely used by

researchers; Santiago, et al. [9], Offutt, et al. [34], Briand, et

al. [38] used all-transition-pairs coverage in their studies. For

transition coverage, pairs that are executable by at least one

product are considered in the ratio that covers the parallel path

[15].

All-Configurations Coverage is required to visit every

configuration of the UML state chart diagram at least once.

This coverage criterion is the same as all-states coverage for

systems with no parallelism [23].

All-One-Loop-Paths Coverage returns all paths

containing one cycle at most; thus, each generated path

contains one and only one repeated state at most [39]. In other

words, this condition requires visiting all the loop-free paths

through the model, including all the paths that loop once [40].

Muniz, et al. [39] covered all-one-loop-paths for model-based

testing but not for UML state chart diagram in their work.

All-Loop-Free-Paths Coverage must traverse every loop

path at least once. A path that does not contain any type of

repeating is called loop-free [23]. Notably, this coverage does

not frequently cover all transitions. Similarly, this coverage

does not constantly cover all states. However, all-one-loop-

paths test cases include all paths of the all-loop-free-paths

coverage criterion. Therefore, using all-one-loop-paths is

sufficient.

All-Round-Trips Coverage is similar to the all-one-loop-

paths criterion because it requires a test for each loop in the

Coverage Criteria for UML State Chart Diagram in Model-based Testing

 e-ISSN: 2289-8131 Vol. 9 No. 2-11 87

model; furthermore, that test only has to perform one iteration

around the loop. Nevertheless, this coverage is weaker than

all-one-loop-paths because all the paths preceding or

following a loop does not require testing [23]. However,

Briand, et al. [38] used all-round-trips in their work.

All-Paths Coverage specifies that each executable path

should be followed at least once when executing the abstract

test case on it [15]. The all-paths criterion corresponds to the

exhaustive testing of the state chart diagram model [23]. Few

studies consider this coverage in their coverage criteria [27,

28, 35, 41] because it is generally impractical, given that such

models typically contain an infinite number of paths due to

loops [23].

From the above review, all-state coverage is the weakest

coverage, but it still awaits acknowledgement for its

importance and comprehensive use. All-transitions coverage

and all-transitions-pair coverage are impotent in parallel

paths; furthermore, they cover all decision and guard states.

These coverage criteria are used by most of the reviewed

papers. In all-loop-free-paths, all-one-loop-paths, and all-

round-trips coverage, the use of all-loop-free-paths is

efficient by itself, given that the test from it covers both all-

one-loop-paths and all-round-trips coverage. Conversely, all-

path coverage is impractical because in loop cases, this

coverage requires an infinite number of paths.

III. PROPOSED COVERAGE CRITERIA CALCULATION

In this section, an overview of the model to generate test

sequence from UML state chart diagram is discussed and

then, the selected test coverage will be calculated. However,

this paper focuses only on the suitable coverage criteria for

the UML state chart diagram. The schematic representation

of the model is shown in Figure 2. The proposed methodology

involves the following steps:

1. UML state chart diagram construction.

2. Convert the entered UML state chart diagram into a

table named here State Relationship Table (SRT).

3. Convert the SRT into an intermediate graph. This

intermediate graph named as State Relationship Graph

(SRG).

4. Generate all the possible paths using the Generating

test case paths algorithm from SRG.

5. Generate a set of test cases by using generating test

case paths as an input, which achieves the proposed

coverage criteria.

The ATM withdraws UML state chart diagram is selected

as a case study. The UML state chart diagram is taken from

[42] with some modifications as shown in Figure 3. This

example is used to illustrate the transection from the UML

state chart diagram to SRG as shown in Figure 4. Then

applied the SRG as an example to calculate the proposed

coverage criteria.

A coverage criterion can be a measured on any program

during software development, such as source code,

requirements, or design models. Coverage is usually counted

as the percentage of test requirement satisfaction. The

coverage attainments of the model assess the quality and

completeness of the test case. Coverage criteria are derived

from popular heuristics to measure the fault detection

capability of test cases [21].

Figure 2: Test case generation model.

 If a test case fulfils a set of test requirements in terms of

structural elements, then, a coverage criterion is satisfied.

Clearly specifying the coverage criteria is important because

they are frequently used to measure the effectiveness of test

case generation [43].

This section presents the methods of calculating the

proposed coverage criteria prestige. These methods use the

element coverage equation as the base. The percentage of

criteria coverage is used to evaluate the accuracy or quality

of test case generation approaches. The calculation formula

for the percentage of coverage criteria is depicted in Equation

1. The formula indicates the number of elements contained in

the UML diagram, which is exercised in the generated test

cases [44].

𝐸𝑐 = (
𝐸𝑡𝑐𝑠

𝐸𝑡𝑐𝑈𝑀𝐿

× 100) (1)

𝐸𝑐 : Elements coverage

𝐸𝑡𝑐𝑠 : Number of elements exercised in the test cases

𝐸𝑡𝑐𝑈𝑀𝐿 : Number of elements in the UML diagram

As seen in Figure 3, State 1 represents the ATM card

reading. If the card read guard condition is Yes, it will read

the PIN code. However, if the card read guard condition is

No, it will eject the card. A similar result is expected in

reading the PIN; if the PIN guard condition is Yes, it will be

processed to the selection of a transaction; the card will be

ejected if the PIN guard condition is No; however, the card

will be retained and aborted if an invalid PIN is entered. The

user can choose the transaction; then, the transaction will be

performed or cancelled; and finally, the card will be ejected.

In performing a transaction, the customer can choose between

conducting another transaction that results in a loop; then, the

customer finishes the transaction and ejects the card.

Generating Test Case

Paths

UML

state

chart

diagram

Generating Test

Cases

Test

Cases

State

Relationships

State

Relationships

Journal of Telecommunication, Electronic and Computer Engineering

88 e-ISSN: 2289-8131 Vol. 9 No. 2-11

Figure 3: UML State Chart Diagram of an ATM Machine

Each state in the UML state chart is considered as vertex V

in the state graph, and each transaction is presented as edge

E. The following subsections discuss the calculation of the

proposed coverage criteria.

Figure 4: State Relationship Graph for the ATM Machine

All-State Coverage: by applying all-state coverage to the

test model, full coverage can be achieved when every state of

the UML state chart diagram is visited at least once. Through

the sets 𝑉𝑖 = (𝑉1, 𝑉2, 𝑉3, …) and given that the total number

of vertex (𝑉𝑡) is equal to 5 without the “Start State” and “End

State” in the example in Figure 4, every 𝑉𝑖 should be covered

at least once to accomplish full coverage. The all-state

coverage percentage (𝐶𝐴𝑆) can be calculated by devising the

visited vertex 𝑉𝑣 on the total 𝑉𝑡 ; the total coverage is achieved

as follows:

𝐶𝐴𝑆 = (
𝑉𝑣

𝑉𝑡
× 100) (2)

All-transition coverage: by applying all-transitions

coverage to the test model, full coverage is achieved when the

test cases visit every transition of the UML state chart

diagram at least once. Each transition has a pre-vertex and a

post- vertex [45]. Assume all-transitions (AT) so that AT ∈ E,

and all-transitions coverage presents (𝐶𝐴𝑇). Given that E = 11

in the example, in Figure 4, the following E should be covered

at least once to accomplish full coverage:

𝐸1(𝑉0 → 𝑉1)

𝐸2(𝑉1 → 𝑉2)

𝐸3(𝑉1 → 𝑉5)

𝐸4(𝑉2 → 𝑉3)

𝐸5(𝑉2 → 𝑉5)

𝐸6(𝑉2 → 𝑉𝑑)

𝐸7(𝑉3 → 𝑉4)

𝐸8(𝑉3 → 𝑉5)

𝐸9(𝑉4 → 𝑉5)

𝐸10(𝑉4 → 𝑉3)

𝐸11(𝑉5 → 𝑉𝑑)

Each visited E has Boolean flag (0) and (1), and the total of

its covered edges is 𝐸𝑑; the total coverage is achieved as

follows:

𝐶𝐴𝑇 = (
𝐸𝑑

𝐴𝑇
× 100) (3)

All-transition-pair coverage: to obtain full all-transition-

pairs coverage for the test model, visiting each pair of exiting

transition of the UML state chart diagram at least once is

necessary for the test cases. Assume all-transition-pairs

coverage (𝐶AP) so that 𝐶AP ∈ 𝐸 and total decision

verities (𝑉𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛). Given that 𝑉𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 4 in the example,

in Figure 3 (b), the following 𝑉𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 should be covered at

least once:

𝑉d1[(𝑉1 → 𝑉2), (𝑉1 → 𝑉5)]
𝑉d2[(𝑉2 → 𝑉3), (𝑉2 → 𝑉5), (𝑉2 → 𝑉d)]
𝑉d3[(𝑉3 → 𝑉4), (𝑉3 → 𝑉5)]
𝑉d4[(𝑉4 → 𝑉3), (𝑉4 → 𝑉5)]

Each visited 𝑉𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 has Boolean flag (0) and (1) and its

total is 𝑉𝑑𝑡; the total coverage is as follows:

𝐶AP = (
 𝑉𝑑𝑡

𝑉𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
× 100) (4)

All-one-loop-path coverage: by applying all-one-loop-

paths coverage to the test model, full coverage can be

achieved when the generated test paths from the UML state

chart diagram are visited in every loop, including all the paths

that looped once.

𝐸𝐴𝑂𝐿𝑃 = (
𝐿𝑇

𝑇𝑃
× 100) (5)

where 𝐸𝐴𝑂𝐿𝑃 refers to all-one-loop-paths coverage, and 𝐿𝑇 to

the total number of generated loop test cases. Given that all

the paths preceding or following a loop require testing, 𝐿𝑇 =
𝑙𝑜𝑜𝑝 × (𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 1) = 1(1 + 1) = 2.

For the example in Figure 4, to accomplish all-one-loop-

paths full coverage, the two paths in the generated loop test

cases should be included in the final testing.

IV. CONCLUSION

This paper established the preliminary practical coverage

criteria combinations to support test case generation from the

UML state chart diagram. Coverage criteria are popular

heuristic means to measure the fault detection capability of

test cases. The selected coverage is constructed according to

their concept and the previous works, which are all-states

coverage, all-transitions coverage, all-transition-pairs

coverage, and all-loop-free-paths coverage. Furthermore, this

paper provides calculation methods for coverage criteria

percentage. For future work, coverage criteria for different

UML diagram can be defined and calculated, including the

combination of two or more diagrams.

Coverage Criteria for UML State Chart Diagram in Model-based Testing

 e-ISSN: 2289-8131 Vol. 9 No. 2-11 89

REFERENCES

[1] V. Panthi and D. P. Mohapatra, "Automatic test case generation using

sequence diagram," in Proceedings of International Conference on

Advances in Computing, 2012, pp. 277-284.
[2] Y. D. Salman and N. L. Hashim, "An Improved Method Of Obtaining

Basic Path Testing For Test Case Based On UML State Chart,"

Science International, vol. 26, 2014.
[3] N. Pahwa and K. Solanki, "UML based Test Case Generation

Methods: A Review," International Journal of Computer

Applications, vol. 95, pp. 1-6, 2014.
[4] U. S. Kumaran, S. A. Kumar, and K. V. Kumar, "An Approach to

Automatic Generation of Test Cases Based on Use Cases in the

Requirements Phase " International Journal on Computer Science and
Engineering, vol. 3, pp. 102-113, 2011.

[5] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, "Benefits

and limitations of automated software testing: Systematic literature
review and practitioner survey," in Proceedings of the 7th

International Workshop on Automation of Software Test, 2012, pp. 36-

42.
[6] V. Chimisliu and F. Wotawa, "Improving test case generation from

UML statecharts by using control, data and communication

dependencies," in Quality Software (QSIC), 2013 13th International
Conference on, 2013, pp. 125-134.

[7] L. Li, T. He, and J. Wu, "Automatic Test Generation from UML
Statechart Diagram Based on Euler circuit," International Journal of

Digital Content Technology & its Applications, vol. 6, 2012.

[8] V. Santiago, N. L. Vijaykumar, D. Guimarães, A. S. Amaral, and É.
Ferreira, "An environment for automated test case generation from

statechart-based and finite state machine-based behavioral models," in

Software Testing Verification and Validation Workshop, 2008.
ICSTW'08. IEEE International Conference on, 2008, pp. 63-72.

[9] V. Santiago, A. S. M. do Amaral, N. Vijaykumar, M. F. Mattiello-

Francisco, E. Martins, and O. C. Lopes, "A practical approach for
automated test case generation using statecharts," in Computer

Software and Applications Conference, 2006. COMPSAC'06. 30th

Annual International, 2006, pp. 183-188.
[10] R. K. Swain, P. K. Behera, and D. P. Mohapatra, "Minimal TestCase

Generation for Object-Oriented Software with State Charts," arXiv

preprint arXiv:1208.2265, 2012.
[11] D. Patnaik, A. A. Acharya, and D. P. Mohapatra, "Generating

testcases for concurrent systems using UML state chart diagram," in

Information Technology and Mobile Communication, ed: Springer,
2011, pp. 100-105.

[12] Y. D. Salman and N. L. Hashim, "Automatic Test Case Generation

from UML State Chart Diagram: A Survey," in Advanced Computer
and Communication Engineering Technology, ed: Springer, 2016, pp.

123-134.

[13] X. Fan, F. Yang, W. Zheng, and Q. Liang, "Test Data Generation with
A Hybrid Genetic Tabu Search Algorithm for Decision Coverage

Criteria," 2015.

[14] E. Jee, D. Shin, S. Cha, J. S. Lee, and D. H. Bae, "Automated test case
generation for FBD programs implementing reactor protection system

software," Software Testing, Verification and Reliability, vol. 24, pp.

608-628, 2014.
[15] X. Devroey, G. Perrouin, A. Legay, M. Cordy, P.-Y. Schobbens, and

P. Heymans, "Coverage criteria for behavioural testing of software

product lines," in International Symposium On Leveraging

Applications of Formal Methods, Verification and Validation, 2014,

pp. 336-350.

[16] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri,
"Combining multiple coverage criteria in search-based unit test

generation," in International Symposium on Search Based Software

Engineering, 2015, pp. 93-108.
[17] A. Goodubaigari, "A Software Test Data Generation Tool for Unit

Testing Of C++ Programs Using Control Flow Graph," IJECS, pp.

2388-2392, 2013.
[18] R. Mall, Fundamentals of software engineering. New delhi: PHI

Learning Pvt. Ltd, 2009.

[19] A. A. Saifan and W. B. Mustafa, "Using Formal Methods for Test
Case Generation According to Transition-Based Coverage Criteria,"

Jordanian Journal of Computers and Information Technology, vol. 1,

pp. 15-30, 2015.
[20] H. S. Hong and H. Ural, "Using model checking for reducing the cost

of test generation," in International Workshop on Formal Approaches

to Software Testing, 2004, pp. 110-124.

[21] M. Shirole and R. Kumar, "UML Behavioral Model Based Test Case

Generation: A Survey," ACM SIGSOFT Software Engineering Notes,
vol. 38, pp. 1-13, 2013.

[22] S. Weißleder and D. Sokenou, "ParTeG-A Model-Based Testing
Tool," Softwaretechnik-Trends, vol. 30, 2010.

[23] M. Utting and B. Legeard, Practical model-based testing: a tools

approach: Morgan Kaufmann, 2010.
[24] H. Li and C. P. Lam, "An ant colony optimization approach to test

sequence generation for state-based software testing," in Quality

Software, 2005.(QSIC 2005). Fifth International Conference 2005,
pp. 255-262.

[25] R. K. Swain, V. Panthi, P. Behera, and D. Mohapatra, "Automatic Test

case Generation From UML State Chart Diagram," International
Journal of Computer Applications, pp. 26-36, 2012.

[26] V. Chimisliu and F. Wotawa, "Model based test case generation for

distributed embedded systems," in Industrial Technology (ICIT), 2012
IEEE International Conference on, 2012, pp. 656-661.

[27] R. K. Swain, P. K. Behera, and D. P. Mohapatra, "Generation and

Optimization of Test cases for Object-Oriented Software Using State
Chart Diagram," arXiv preprint arXiv:1206.0373, 2012.

[28] M. Shirole, A. Suthar, and R. Kumar, "Generation of improved test

cases from UML state diagram using genetic algorithm," in
Proceedings of the 4th India Software Engineering Conference, 2011,

pp. 125-134.

[29] N. Kosindrdecha and J. Daengdej, "A test generation method based on

state diagram," JATIT, pp. 28-44, 2010.

[30] S. Kansomkeat and W. Rivepiboon, "Automated generating test case

using UML statechart diagrams," in Proceedings of the 2003 annual
research conference of the South African institute of computer

scientists and information technologists on Enablement through
technology, 2003, pp. 296-300.

[31] J. Al Dallal and P. Sorenson, "Generating class based test cases for

interface classes of object-oriented black box frameworks,"
Transactions on Engineering, Computing and Technology, vol. 16,

pp. 90-95, 2006.

[32] V. Chimisliu and F. Wotawa, "Using dependency relations to improve
test case generation from UML statecharts," in Computer Software

and Applications Conference Workshops (COMPSACW), 2013 IEEE

37th Annual, 2013, pp. 71-76.
[33] S. K. Swain, D. P. Mohapatra, and R. Mall, "Test Case Generation

Based on State and Activity Models," Journal of Object Technology,

vol. 9, pp. 1-27, 2010.
[34] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, "Generating test data

from state‐ based specifications," Software Testing, Verification and

Reliability, vol. 13, pp. 25-53, 2003.
[35] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Iqbal, and

A. Nadeem, "A state-based approach to integration testing based on

UML models," Information and Software Technology, vol. 49, pp.
1087–1106, 2007.

[36] J. Hartmann, C. Imoberdorf, and M. Meisinger, "UML-based

integration testing," in ACM SIGSOFT Software Engineering Notes,
2000, pp. 60-70.

[37] R. Blanco, J. Fanjul, and J. Tuya, "Test case generation for transition-

pair coverage using Scatter Search," International Journal of Software
Engineering and Its Applications, vol. 4, pp. 37-56, 2010.

[38] L. C. Briand, Y. Labiche, and J. Cui, "Automated support for deriving

test requirements from UML statecharts," Software & Systems
Modeling, vol. 4, pp. 399–423, 2005.

[39] L. L. Muniz, U. S. Netto, and P. H. M. Maia, "TCG-a model-based

testing tool for functional and statistical testing," in ICEIS (2), 2015,
pp. 404-411.

[40] M. Utting and B. Legeard, Practical model-based testing: a tools

approach. san francisco: Morgan Kaufmann, 2007.
[41] P. Murthy, P. Anitha, M. Mahesh, and R. Subramanyan, "Test ready

UML statechart models," in Proceedings of the 2006 international

workshop on Scenarios and state machines: models, algorithms, and
tools, 2006, pp. 75-81.

[42] M. A. Ali, K. Shaik, and S. Kumar, "Test case generation using UML

state diagram and OCL expression," International Journal of
Computer Applications, vol. 95, 2014.

[43] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A

systematic review of the application and empirical investigation of
search-based test case generation," IEEE Transactions on Software

Engineering, vol. 36, pp. 742-762, 2010.

[44] O. Oluwagbemi and H. Asmuni, "Automatic Generation of Test Cases
from Activity Diagrams for UML Based Testing (UBT)," Jurnal

Teknologi, vol. 77, 2015.

[45] A. Paul and O. Jeff, Introduction to Software Testing. New York, NY,
USA: Cambridge University Press, 2008.

