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Abstract—The advancement of sensor technology has 

provided valuable information for evaluating functional abilities 

in various application domains. Human activity recognition 

(HAR) has gained high demand from the researchers to undergo 

their exploration in activity recognition system by utilizing 

Micro-machine Electromechanical (MEMs) sensor technology. 

Tri-axial accelerometer sensor is utilized to record various kinds 

of activities signal placed at selected areas of the human bodies. 

The presence of high inter-class similarities between two or 

more different activities is considered as a recent challenge in 

HAR. The nt of incorrectly classified instances involving various 

types of walking activities could degrade the average accuracy 

performance. Hence, pairwise classification learning methods 

are proposed to tackle the problem of differentiating between 

very similar activities. Several machine learning classifier 

models are applied using hold out validation approach to 

evaluate the proposed method. 

      

Index Terms—HAR; Accelerometer; Inter-Class Similarities; 

Pairwise Classification; Random Forest. 

 

I. INTRODUCTION 

 

The advancement of pervasive computing has drastically 

garnered demand for various kinds of applications such as in 

face recognition [1], iris recognition [2], medical imaging [3]  

and ambient assisted living [4]. The progression of the smart 

environment has become an emerging field in the Human 

Activity Recognition (HAR) research area among the 

researchers to provide better lifestyle environment to the user. 

Recognition of the human activities [5] or determination of 

human gait [6] is useful in many ways by providing a better 

lifestyle to the human. It could also be beneficial nurses by 

helping them to identify the abnormalities of the Parkinson 

patients’ action during their rehabilitation treatment [7], [8]. 

In the area of HAR, there are three common sensing 

approaches that are broadly applied namely, vision-based 

sensor, environmental-based sensor and wearable-based 

sensor. A vision-based sensor is applied for monitoring the 

resident activity in certain areas or buildings. The 

abnormalities of the resident behaviour could be easily 

identified by monitoring the actions performed through the 

camera sensor. Clutter, variable lighting and the camera 

specification are the aspects that should be taken into account 

in order to provide a good end-user vision application. The 

environmental-based sensor is applied by involving various 

kinds of sensors such as camera, motion, temperature and 

humidity sensors. This internet-of-things application 

integrates those kinds of sensors for monitoring the regular 

activities performed by the residents at homes. Since the cost 

of the implementation is definitely high, this approach might 

be impractical to be implemented. Moreover, when the 

privacy of the residents becomes a major consideration, both 

of these approaches are unfeasible to be applied as the 

confidentiality of the residents’ personal information may be 

disclosed. In order to overcome this problem, the wearable-

based sensor might become a solution in this HAR. In this 

approach, several inertial sensors such as accelerometer and 

gyroscope are attached to several parts of the human bodies 

[9]. The sensor records the signal for each activity or action 

conducted and the recorded signal is later used for further 

analysis. 

Theoretically, an accelerometer sensor records the signal in 

three different dimensions and the signal is produced in 

different signal patterns depending on the type of the activity 

performed. Since the recorded signal pattern is diverse, it will 

help the classifier model to differentiate each of the activity 

conducted according to the recorded signal. However, when 

involving various types of stationary and locomotion 

activities, it might be possible for some of the activities to 

produce very similar signal patterns due to the effect of the 

gravitational forces. For instance, walking activity might be 

categorized into two different classes, 2D walking (walk 

forward, walk left, walk right) and 3D walking (walk upstairs, 

walk downstairs) [10]. Previous work on HAR stated that the 

most difficult activity to be classified is when it involved 

ascending walking and descending walking [11]–[14]. Both of 

these activities consist of very similar signal pattern and this 

issue, on the other hand, contributed to the presence of high 

inter-class similarities. The occurrence of high inter-class 

similarities tends to degrade the classification performance. 

This happens because the probability of the instances is 

incorrectly classified due to the high rate of confusion between 

each signal pattern. In this article, several contributions are 

brought up and explained. Firstly, the features from statistical 

descriptors and spectral frequency measurement analysis are 

extracted and combined in order to differentiate between 

stationary and locomotion activities. Secondly, pairwise 

classification learning is proposed to tackle the problem of 

high inter-class similarities activities especially the one 

involving various types of walking activities. Thirdly, the 

proposed method is evaluated using several widely known 

classification models such as random forest, K-Nearest 

Neighbor (KNN), decision tree (J48) and Support Vector 

Machine (SVM). We also noticed that the result of this 

research significantly outperformed the reported result of 

previous work.   



Journal of Telecommunication, Electronic and Computer Engineering 

56 e-ISSN: 2289-8131 Vol. 9 No. 2-11  

II. WEARABLE-BASED SENSOR APPLICATIONS 

 

Many of the previous work had utilized the wearable-based 

sensor approach and the pioneering work in HAR had been 

done by Bao and Intille [15]. They recorded the accelerometer 

signal by using the five bi-axial accelerometers which were 

placed at several parts of human bodies and evaluate their 

work using several classifier models; decision tree, decision 

table, naïve Bayes and nearest neighbour classier. Mannini et 

al. [16] utilized a single accelerometer sensor placed at human 

wrist and ankle to record the signal of twenty six activities in 

their work. Later, they proposed a method that allows 

automatic detection of sensor positions from the walking 

activity that had been performed based on five different sensor 

positions; ankle, thigh, hip, arm and wrist [17]. Fida et al. [18] 

studied the effect of window size in recognizing the short and 

long duration activities using single tri-axial accelerometer 

which was placed at the human waist. Kwapisz et al. [12] on 

the other hand recorded six daily physical activities using 

single tri-axial accelerometer which was placed at human 

thigh. Later, Catal et al. [11] continued Kwapisz work for 

recognizing the activity using voting ensemble classifier 

model. The result showed a significant increase in the 

performance of overall accuracy compared to the previous 

work by Kwapisz. Walse et al. had proposed several works on 

activity recognition using the same dataset. They evaluate 

their proposed method using random forest classifier and the 

result showed acceptable performance [19], [20]. However, 

even though plenty of works had been reported previously in 

HAR, the most difficult activity to be classified is the stairs 

activity [21]. Most of the work on HAR successfully 

recognized other activity but failed to differentiate between 

the 3D walking activities (ascending and descending 

activities) and 2D walking activities (right, left and forward 

walking) [11]–[14], [22]. Zheng [10] had claimed their work 

on HAR involving 2D and 3D walking activities from 

acceleration signal. Even though other stationary and 

locomotion activities achieved good performance but the 

accuracy for 2D and 3D walking activities are definitely lower 

than the other activities. 

  

III. PROPOSED METHODOLOGY 

 

A. Accelerometer Activity Dataset  

The researchers from the Department of Electrical 

Engineering, University of Southern California had collected 

human activity dataset (USC-HAD) from various types of 

subjects including male and female with different ages [23]. 

Motion Node is a device consists of calibrated inertial 

accelerometer sensor which is used to record the activity 

signal. The device is placed on the front hip of fourteen 

subjects during the data collection. The sampling rate used in 

this dataset is 100 Hz. In this dataset, each subject is asked to 

conduct twelve different physical activities involving 2D 

walking (walk forward, walk left, walk right), 3D walking 

(walk upstairs, walk downstairs), running, jumping, sitting, 

standing, sleeping, elevator up, and elevator down. We 

evaluated the proposed method based on two different 

experiments. Firstly, all twelve activities are employed in our 

model to evaluate the effectiveness of the proposed method. 

Secondly, in order to make a fair comparison with the author, 

two activities (elevator up and down) are eliminated from the 

list since the author [10] does not include both of these 

activities in their present work.   

B. Fast Fourier Transform (FFT) Analysis 

Accelerometer sensor records the signal for three different 

axes (x, y and z). Each dimension records the signal from 

different angle of movement. X-dimension records the right 

and left movements, y-dimension records the up and down 

movements, z-dimension records the forward and backward 

movements. In general, accelerometer sensor captures the 

acceleration signal in two different acceleration signals; 

gravitational acceleration (high-frequency component) and 

body acceleration (low-frequency component). Each 

acceleration signal captures the sum of gravitational and body 

acceleration [24]. Gravitational acceleration is presented in 

high-frequency component and this signal component is not 

useful for determining the activity classes. Only low-

frequency component is required for recognizing the types of 

the activity conducted. Hence, both of these signals need to be 

separated before any further calculation is performed. Fourier 

Transform is used to analyze the signal in the frequency 

domain by computing a Discrete Fourier Transform (DFT) of 

a sequence [25]. Hence, Butterworth low-pass filter is utilized 

in separating the acceleration signal between the high-

frequency components and the low-frequency component. 

Afterwards, only body acceleration signal will remain and use 

for further analysis.   

    

C. Statistical Descriptors and Spectral Analysis 

Features 

Sliding window segmentation is one of the commonly 

known segmentation methods used to segment the signal into 

a series of window segments. This process aims to divide the 

time series signal into several segments before any calculation 

is performed.  For this experiment, a window size of 6.4 

seconds with 50% overlapping between two consecutive 

window segments is used. Even though the selection of 

window sizes will affect the number of instances for 

classification [18] but the selection of window size in this 

work is considered as sufficient in separating the transition 

between two different activities. Later, several types of 

features are calculated and extracted from each window 

segment that had been generated. In this work, we have 

combined several features from two different groups; 

statistical descriptors and spectral frequency measurement 

analysis features. Easy and less computational complexity, 

statistical descriptors are useful for determining the postural 

or stationary activities [24]. In contrast with stationary 

activities, locomotion activities like running and jumping 

consist of correlation acceleration pattern relation from each 

dimension. Thus, several spectral frequency measurement 

analysis features are extracted. This feature is less susceptible 

to signal quality variations and correlate to the periodic nature 

of the specific activity. Table 1 and 2 present the list of the 

features from statistical descriptors and spectral frequency 

measurement analysis features used in this work. 

 

D. Random Forest Ensemble Classifier  

Ensemble classifier is introduced based on the combination 

of more than one classifier models to maximize the 

performance of classification accuracy [26]. Random forest 

ensemble classifier is introduced by Breiman [27] based on the 

collection of several randomized decision tree. Each of the 

decision trees in the forest is learned from a random subset of 

the training example and the features. The output predictor 

from each decision tree is averaged until each tree reaches to 

the leaf node in order to obtain the overall output in the test 
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samples. In order to obtain the final prediction, the class 

category which has recorded the highest probability is 

selected. There had been several works in the past involving 

HAR that utilized ensemble classifier as their class estimator. 

Tthe result of these works indicated good performance in 

determining the class of the activities [20], [28]–[30]. With the 

intention of maintaining the generalization of the proposed 

methods, several classifier models are utilized to compare the 

result obtained. KNN, J48 and SVM classifier model are 

utilized in these experiments. In order to validate our 

performance result, holdout validation strategy is utilized. In 

this experiment, the subset is divided into two different sizes 

of subsets. 30% subset that had been randomly selected is used 

for training and 70% subset is reserved for testing. This testing 

subset is useful for evaluating the generated training model in 

measuring how successful the model could recognize the 

unseen data. Average accuracy and precision are the two 

performance metrics used in measuring the performance of 

this work. 

 

E. Pairwise Classification Approaches   

In the past few years, most of the classification models are 

designed to handle the problem of binary class classification. 

In order to overcome the multi-class problems, the 

enhancement of the classifier model is modified to enable the 

classifier in handling the multi-class classification problems. 

Initially, SVM is proposed and this method has been shown to 

be effective in classifying binary class problems [31]. 

Afterward, the existing SVM has been improved by 

introducing the kernel that enable it to handle multi-class 

classification problem. On the other hand, binarization 

strategies are used for transforming the multi-class 

classification problems into a series of binary class 

classification problems. This method is known as binarization 

classification method [32]. The binarization classification is 

broadly classified into two different methods; one-versus-all 

(OVA) and one-versus-one (OVO) methods. OVA is created 

by categorizing each of the classes into two groups of classes 

(positive and negative class). The dominant instances belong 

to the positive class and the negative class instances belong to 

the union of the other classes. The number of classifier model 

obtained is equal to n-1 (where n is the number of classes). In 

contrast with OVA, OVO generates the classifier model by 

transforming the multi-class problem into a series of the 

binary class model and the number of classifier model created 

is equal to n(n-1)/2. This method is also called as the round 

robin classification. To obtain the final prediction, all the 

instances need to be trained through the entire model 

generated and the prediction result from each model is 

combined. The class which received majority voting is 

classified as the final prediction [33]. In this work, both of 

these methods are utilized to cater to the problem of high inter-

class similarities between classes as reported in section 1. 

   

IV. EXPERIMENTAL RESULT AND ANALYSIS 

 

The acceleration signal from each dimension is filtered 

using 5th order Butterworth low-pass filter in order to separate 

the entire acceleration signals between the body and 

gravitational acceleration. In this experiment, 0.3 Hz cutoff 

frequency is used to eliminate the unwanted information from 

the signal. The amount of the cutoff frequency chosen is 

considered sufficient to separate the high and the low-

frequency components. Thus, the frequency which is above 

this threshold will be eliminated from the signal for each 

dimension of the signal. Figure 1 and 2 present the signal 

example for very similar activities and the filtered signal using 

Butterworth low-pass filter respectively.  

 

 
  
Figure 1: Raw signal for walking down (left) and walking up (right) 

 

 
 

Figure 2: Filtered signal using a Butterworth low-pass filter. 

 

Referring to Figure 1, two activities (walking down and 

walking up) that contributed to high inter-class similarities are 

presented. It can be seen clearly that the record for the 

acceleration signal from each dimension is almost similar even 

though the activity conducted is different. Furthermore,  this 

will cause difficulty for any classifier model to differentiate 

between these two activities. The frequency signal presented 

in Figure 2 (top) clearly showed that the unfiltered signal 

consisting of noise from the signal is presented in the uneven 

sine waves. Hence, Figure 2 (bottom) showed the filtered 

Table 1 
List of Statistical Descriptors Features 

 

Features Descriptions 

Minimum and 
maximum 

Minimum and maximum values from each 
window segment for each dimension 

Variance 
Summation of value of each window segment 

divided by window size for each dimension 

Standard deviation 
The measurement of how spread out member are 

from each window segment for each dimension 

Skewness 

The measurement of asymmetry of the 
distributions of the data points of the acceleration 

data around mean from each window segment for 

each dimension 

Kurtosis 

The descriptors of the shape of the distribution of 

the data points of the acceleration data from each 

window segment for each dimension 

Correlation 

coefficient 

The measurement the correlation among the 

acceleration in x, y and z directions and among the 

acceleration sensors from each window segment 
for each dimension 

Harmonic mean 
Calculation of harmonic mean from each window 

segment for each dimension 

  

Table 2 

List of Spectral Analysis Features 
 

Features Descriptions 

Power bandwidth Calculate the power bandwidth of the signal in 

frequency response from each window segment 
for each dimension 

Band power Calculate the average power of the input signal in 

frequency response from each window segment 
for each dimension 

Occupied 

bandwidth 

Calculate the maximum 99% of power bandwidth 

occupied by the input signal in frequency response 
from each window segment for each dimension 
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signal which was obtained when the gravitational acceleration 

signal had been eliminated from the body acceleration signal. 

The signal from each of the dimensions has undergone the 

segmentation process before additional features are extracted. 

The extracted features which were presented as a feature 

vector afterwards is used for classification. As described in 

subsection C, the size of the sliding window is 6.40 seconds 

with 50% overlapping between the adjacent windows is 

applied for this experiment. Then, each generated window 

segment had to go through the feature extraction process in 

order to extract the features as explained in section C. Each 

dimension will produce a total number of 36 features (from 

statistical descriptors and spectral frequency measurement 

analysis features) with an addition of one label to represent the 

class categories. As mentioned previously in subsection A, 

two different experiments are conducted in our work. In the 

first experiment, we utilized all the twelve activities collected 

in the dataset. Table 3 and 4 present the classification result 

for two pairwise classification methods using OVA and OVO 

respectively.    
 

Table 3 
Classification Result Using OVA 

 

Activity 
Training  Testing  

Accuracy Precision Accuracy Precision 

jump 

liftdown 

liftup 
run 

sit 

sleep 
stand 

walkdown 

walkfor 

walkleft 

walkright 

walkup 
average  

0.944 

0.874 

0.897 
0.985 

0.991 

1.000 
0.986 

0.936 

0.965 

0.917 

0.912 

0.914 
0.947 

0.974 

0.901 

0.899 
0.965 

0.985 

1.000 
0.969 

0.932 

0.907 

0.953 

0.940 

0.948 
0.947 

1.000 

0.917 

0.875 
0.989 

0.991 

1.000 
0.988 

0.950 

0.967 

0.933 

0.931 

0.936 
0.958 

0.975 

0.892 

0.924 
0.989 

0.987 

1.000 
0.975 

0.961 

0.928 

0.958 

0.950 

0.952 
0.958 

 

Table 4 

Classification Result Using OVO 
 

Activity 
Training  Testing  

Accuracy Precision Accuracy Precision 

jump 
liftdown 

liftup 
run 

sit 

sleep 
stand 

walkdown 

walkfor 
walkleft 

walkright 

walkup 
average  

0.941 
0.868 

0.891 
0.980 

0.985 

1.000 
0.979 

0.919 

0.961 
0.895 

0.905 

0.914 
0.940 

0.960 
0.891 

0.885 
0.963 

0.986 

1.000 
0.965 

0.932 

0.898 
0.953 

0.929 

0.927 
0.941 

1.000 
0.902 

0.871 
0.981 

0.985 

0.999 
0.977 

0.929 

0.965 
0.911 

0.925 

0.928 
0.949 

0.959 
0.878 

0.905 
0.991 

0.989 

1.000 
0.969 

0.953 

0.915 
0.955 

0.939 

0.933 
0.949 

 

Referring to Table 3, the accuracy for testing subset 

achieved above 93% for almost all activities excluding the two 

elevator activities (lift up and lift down) using OVA. Sleeping 

recorded 100% in which the instances are correctly classified, 

followed by sitting (99.1%) and standing (98.8%). Jumping I 

achieved 100% of accuracy and other locomotion activities 

(running) recorded 98.9% of accuracy. For 2D walking 

activities (walk forward, walk left and walk right), the 

accuracy obtained were 96.7%, 93.3% and 93.1% 

respectively. In contrast with 2D activities, 3D activities such 

as walking down and walking up had recorded an acceptable 

performance, in which the accuracy obtained were 95% and 

93.6% respectively. The lowest accuracies obtained were from 

lift down and lift up activities.  In OVO, the overall accuracy 

obtained for training and testing subsets were 94% and 94.9% 

as presented in Table 4. In this method, all of the testing 

instances for jumping activities were correctly classified. 

Overall accuracy reported an acceptable performance in which 

the accuracy is above 90%, except for lift up which recorded 

87% of accuracy. The second highest accuracy is recorded 

from sleeping (99.9%) and followed by sitting and running. 

The accuracy result for both of these activities is above 98%. 

However, the accuracy rate for 2D activities had slightly 

dropped with 0.2% and 0.1% respectively when OVO is 

applied. Similarly, with 3D activities, the percentages of 

average accuracy for all three 3D walking activities decline 

with the use of OVA. Walk forward showed a decline from 

96.7% to 96.5%, followed by walk left which showed a 

decline from 93.3% to 91.1% and walk right experienced a 

decline from 93.1% to 92.5%. From this experiment, it can be 

concluded that the walking activity could be summarized as 

the most difficult activities to be classified. Elevator activity 

had also recorded the lowest accuracy among other activities 

since both of these activities involved very little movement. 

This also tends to increase the difficulties for the classifier 

model to differentiate between elevators up and elevators 

down. In order to validate our proposed method with 

benchmark study, we followed the experiment as 

implemented by the author [10]. In this following experiment, 

two elevator activities (lift up and lift down) were eliminated 

from our activity class. Only ten numbers of classes remained 

for the evaluation criteria. Table 5 and 6 present the 

classification result by using the OVA and OVO methods 

based on the ten activities respectively. 

   
Table 5 

Classification Result Using OVA 
 

Activity 
Training  Testing  

Accuracy Precision Accuracy Precision 

jump 
run 

sit 

sleep 
stand 

walkdown 
walkfor 

walkleft 

walkright 
walkup 

average  

0.939 
0.984 

0.986 

1.000 
0.992 

0.937 
0.967 

0.927 

0.921 
0.918 

0.957 

0.962 
0.964 

0.994 

1.000 
0.979 

0.943 
0.910 

0.962 

0.937 
0.956 

0.958 

1.000 
0.982 

0.986 

1.000 
0.991 

0.940 
0.970 

0.913 

0.943 
0.935 

0.964 

0.965 
0.980 

0.992 

0.999 
0.981 

0.956 
0.925 

0.971 

0.940 
0.956 

0.964 

 

Table 6 
Classification Result Using OVO 

 

Activity 
Training  Testing  

Accuracy Precision Accuracy Precision 

jump 

run 

sit 
sleep 

stand 

walkdown 
walkfor 

walkleft 

walkright 
walkup 

average  

0.939 

0.982 

0.982 
0.999 

0.990 

0.922 
0.961 

0.909 

0.915 
0.918 

0.952 

0.953 

0.965 

0.994 
1.000 

0.979 

0.932 
0.904 

0.960 

0.929 
0.939 

0.952 

1.000 

0.979 

0.978 
1.000 

0.989 

0.909 
0.962 

0.908 

0.936 
0.927 

0.956 

0.954 

0.981 

0.993 
1.000 

0.975 

0.950 
0.919 

0.959 

0.932 
0.926 

0.956 

 

Table 5 presents the classification result for ten activities 

using OVA method. As we can see, the overall accuracy 

obtained definitely increases when the two elevator activities 
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had been excluded from the activity list. The average accuracy 

achieved from the training and testing subset were 95.7% and 

96.4% respectively. Similar to the previous experiment, the 

accuracy for both jumping and sleeping is 100%, followed by 

standing at 99.1%. The accuracy for two 2D walking activities 

(walking forward and walking right) also showed an increase. 

However, other activities like running and sitting had recorded 

a slight drop. Table 6 presents the classification using OVO 

and the highest accuracy was obtained from jumping and 

sleeping. This result is similar to the result which involved the 

use of OVA. The overall accuracy is 95.6% which showed a 

decrease of 0.8% compares to the result obtained in OVA. The 

other activities (stationary and locomotion) showed a decline 

when OVO is applied. Walking down and walking left have 

also recorded the lowest accuracy compared to others in which 

the accuracy is not more than 91%.  Hence, we concluded that 

OVA produced significantly good accuracy performance to 

recognize various types of activities including 2D and 3D 

walking activities compared to OVO. Table 7 presents a 

confusion matrix for the testing subset using OVA. 

 
Table 7 

Confusion Matrix OVA Method 
 

AC A1        A2         A3        A4        A5        A6        A7        A8        A9        A10 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

A10 

628        0             0          0           0           0           0           0           0            0 

10        922           0          0           0           1           3           1           1            1 

0            0         1385        0          16          0           1           0           0            3 

0            0             0      1865         0           0           0           0           0            0 

0            0           10          1       1282         0           0           0           0            1 

2            1             1          0           1       1460        40          9          12          28 

2            7             0          0           4          12       2322       11         26           9 

4            4             0          0           1          14         54       1353       40          12 

0            3             0          0           2          14         37         14       1439        17 

5            4             0          0           1          26         53          6          13        1556 

 

According to Table 7, most of the instances of stationary 

and locomotion activities are almost correctly classified 

except for the walking activities. As we can see, both of the 

walking activity groups (2D and 3D walking) are confused 

with each other as these kinds of activities involved different 

signal pattern even though those activities are considered as 

walking. This problem has also been highlighted by the 

previous works as the most difficult activities to be classified 

and differentiated due to the fact that the signal recorded is 

very similar to each other. In order to validate our proposed 

method, several other classifier models are utilized in this 

work. J48, KNN and SVM are applied to compare the 

performance of our proposed method. Table 8 presents the 

classification result with several other machine learning 

algorithms. 

 
Table 8 

Comparison with Others Machine Learning Methods 
 

Activity RF - OVA J48 KNN SVM 

jump 

run 
sit 

sleep 

stand 
walkdown 

walkfor 

walkleft 
walkright 

walkup 

average 

1.000 

0.982 
0.986 

1.000 

0.991 
0.940 

0.970 

0.913 
0.943 

0.935 

0.964 

0.979 

0.929 
0.952 

0.988 

0.923 
0.834 

0.865 

0.830 
0.830 

0.840 

0.890 

1.000 

0.854 
0.859 

0.951 

0.787 
0.737 

0.815 

0.756 
0.779 

0.733 

0.817 

0.457 

0.542 
0.655 

0.914 

0.587 
0.414 

0.781 

0.197 
0.214 

0.401 

0.541 

 

Average accuracy that had been obtained from our work by 

using the RF-OVA obviously showed the highest accuracy 

compared to the other classification models. Decision tree 

model (J48) recorded the second highest accuracy followed by 

KNN models. However, SVM produced the worst accuracy 

result in recognizing the activities since the average accuracy 

obtained is below 55%. This clearly proven that our result 

promised good achievement in recognizing various types of 

activities.  To assess our results with previous work, a 

comparison with previously reported work had been carried 

out. Table 9 presents the comparison between our results with 

the result of the previous work by the author [10]. 

  
Table 9 

Comparison with the Previous Result 
 

Activity Zheng OVA OVO 

jump 

run 
sit 

sleep 

stand 

walkdown 

walkfor 

walkleft 
walkright 

walkup 
average 

0.971 

0.971 
0.971 

0.986 

0.986 

0.943 

0.957 

0.929 
0.914 

0.929 
0.956 

1.000 

0.982 
0.986 

1.000 

0.991 

0.940 

0.970 

0.913 
0.943 

0.935 
0.964 

1.000 

0.979 
0.978 

1.000 

0.989 

0.909 

0.962 

0.908 
0.936 

0.927 
0.956 

 

Average accuracy obtained from OVA is significantly 

higher compared to OVO and Zheng work. The accuracy 

performance which had been recorded by OVO is almost 

similar to our benchmark work. Almost all of the activities 

recorded by OVA has achieved good performance and 

outperformed the accuracy reported by the previous author. 

Two activities (jumping and sleeping) contributed drastically 

to the average accuracy since all the instances from both of 

these activities are correctly classified. Other locomotion 

activities like running have also shown an incline. Three 

walking activities (walking forward, walking right and 

walking up) showed an improvement of about 2%. Even 

though two of the walking activities (walking down and 

walking left) showed a slight decrease but this accuracy 

achieved acceptable performance in recognizing the 2D and 

3D walking activities especially those involving stationary 

activities. Hence, we could conclude that our proposed method 

showed promising results in improving the performance of the 

classification of the activity using single accelerometer sensor 

signal.   

 

V. CONCLUSION 

 

This article presents the work on activity recognition for 

various types of stationary and locomotion activities. In this 

work, the tri-axial accelerometer which was embedded in 

Motion Node sensing device had been attached to the front hip 

of fourteen subjects to record the signal of twelve different 

types of physical activities. Accelerometer signal is filtered by 

using Butterworth low-pass filter in order to separate the 

signal between body and gravitational acceleration. The body 

acceleration signal the go through the feature extraction 

process in order to extract several features that represent the 

characteristic of the class categories. Sliding window 

segmentation is applied to cut off the signal into series of 

windows segments.  Several features from statistical 

descriptors and spectral frequency measurement analysis are 

extracted in order to differentiate between locomotion and 

stationary activities. The appearance of high inter-class 

similarities between classes is one of the problems that had 

been reported as the biggest challenge in HAR. 2D and 3D 
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walking activities had been reported to be difficult to 

distinguish due to the signal obtained is very similar to each 

other and might be confusing. Hence, pairwise classification 

approaches are introduced to tackle the problem of high inter-

class similarities activities. Random forest ensemble classifier 

model shows a good performance in recognizing the activity, 

using the proposed method as compared to KNN, J48 and 

SVM classifier models. In comparison with benchmark work, 

our result shows a significant improvement in recognizing 

various types of activities. For our future projection, we plan 

to evaluate our proposed method by selecting the most 

relevance features from the feature selection model. Hybrid 

feature selection model needs to be introduced since the 

hybrid models have recently shown promising and good 

accuracy for various optimization problems [34].  
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