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Abstract—This paper deals with graph clustering algorithm 

which partitions a set of vertices in graphs into smaller sets 

(clusters). Such vertices of the same set are related to each other 

rather than to those in the other sets. This means that most 

graph clustering algorithms are based on the topological shape 

or feature similarity. Nevertheless, these algorithms suffered 

from scalability because of the height computation requirements 

for similarity estimation. This paper represents a stimulus for 

the current study to introduce an algorithm that automatically 

finds the number of clusters based on shared neighbours among 

vertices. The study is based on the hypothesis that the proposed 

algorithm is able to efficiently find the graph clustering 

partitions for the whole graphs. 

 

Index Terms—Automatic Clustering; Connectivity; Graph 

Clustering; Jaccard Similarity. 

 

I. INTRODUCTION 

 

Clustering refers to the division of data into various sets of 

mini-objects. In this regard, each set, known cluster, 

encompasses objects that are similar in comparison to each 

other but different those of other sets [1], [2]. 

Broadly, the issue in question has gotten critical 

consideration amid the most recent years in view of its 

significance in different fields of science, for example, the 

discovery of community in social networks, sensor networks, 

telecommunication and the Web. Its importance is reflected 

by its vital role in pattern recognition. Phrased differently, it 

allows distinguishing groups of profoundly related vertices in 

a graph, also called clusters [3]. 

As far as the nature of clustering algorithms is concerned, 

these algorithms represent a case of multiplicity. Indeed, this 

fact does not prevent a rarity of such algorithms can 

consequently find groups without the details of the sum of 

groups. For instance, automatic graph clustering algorithms, 

which are ready to characterize independently, in isolation, 

the totality of groups, are equipped efficiently to analyze data 

of the group. Regarding the analyzed data, these groups have 

the property of permitting a more productive use of clustering 

algorithms to be applied to a dataset regardless an earlier 

learning of the information adaptation. Accordingly, the 

examination of novel clustering algorithms enables to 

manage graph clustering issues and identify automatically the 

collection of groups as a critical research matter. 

In conventional clustering of sets of data, the way of 

distance measure can basically be based on the identification 

of attribute, e.g., Euclidian distance comparing the two 

attributes. As opposed to the current approach, graph 

clustering categorizes the vertex closeness depending upon 

connectivity, neighbourhood similarity, attribute or 

contextual similarity. Many current algorithms of graph 

clustering regard the topological construction of a graph to 

fulfil the durable interior construction. This approach 

incorporates clustering based upon max flow min-cut 

problem [4, 5], normalized cut [6], structural density and 

modularity [7, 8]. Such methods divide the classes of nodes 

into various groups as well as gauge the cost of edge cut, i.e. 

sum of edges relating vertices in various groups or edge cost 

relying on the connected weights. Such methodologies 

segment the order of vertices in different collections and 

gauge the cut cost edge, i.e. edges number interfacing vertices 

in various gatherings or edge cost in view of the related 

weights. 

About the approach developed to treat clustering of graph 

node [9], it introduces the measure of collaborative similarity 

(CSM) aiming at clustering of intra-graph. Instead of the 

different paths, CSM depends on the strategy of the shortest 

path to clarify the relevance of structure as well as semantics 

between vertices. Thus, the method surveyed in [10] suggests 

the name of congruent approximate graph clustering (CAC). 

It may keep on the notion of non-negativity severely and may 

arrive the orthogonality definitely through congruency 

approximation. On the other hand, the technique given by 

[11] concerns the arbitrary-pair attributes of vertices. 

Consequently, the values of the similar attribute are gathered 

under either specific partition or cluster. As such, it stands as 

a sufficient way of graph summarization depending upon 

OLAP processes. As for the first process, known as SNAP, it 

yields a summary graph via collecting nodes by means of the 

node attributes and connections of the user-selected node. 

Concerning the second process, in k-SNAP one, it further 

permits users to override summary resolution. In order to 

arrive better analogous of graph summarization to OLAP 

processes, vertices partition has taken place relying on their 

feature and then initiating summaries whereas ignoring the 

connectivity. 

  

II. EXPERIMENTAL 

 

A. Terminology and Definitions  

To simplify the discussion, it seems necessary to put forth 

this symbol: a weighted, an undirected, a graph G consists of 

an ordered pair G = (V, E), where V stands for a class of 

vertices and E represents a class of edges. In addition, the 

matrix of similarity (matrix of affinity) of G graph on n 

vertices can be expressed by W = (wij) i, j=1, …, n ∈ Rn×n. 

The positive entry wij in W refers to vertex i while vertex j 

seems related together a weighted edge. If wij = 0, it indicates 

the i as well as j vertices that cannot be related by the edge. 

Moreover, the Matrix of Similarity W stands for symmetric 

for undirected graphs. 
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑋. 𝑌) = |𝑋∩𝑌|

|𝑋∪𝑌|
                                 (1) 

Jaccard Similarity refers to coefficient measure [12], 

schematized in Equation 1. It is, generally speaking, 

numerously used and acceptable in the area of data mining 

[13]. Because of its simplicity, it is applied in several areas to 

detect the relevance between the objects. In this work, it will 

be used to redefine edge weights between vertices via 

similarity of Jaccard. 

 

 
(a) 

 

 
(b) 

 
 

Figure 1: Similarity among vertices. (a) Unweighted graph. (b) Construct 
weighted graph by Jaccard similarity 

 

The similarity between v1 and v1, by utilizing the 

neighbourhood of these two vertices. Worded differently, it 

stands for shared neighbours ratio in relation to all types of 

the neighbours of the two vertices. 

 

𝑆𝐼𝑀(𝑣1. 𝑣2) =
|𝑣1∩𝑣2|

|𝑣1∪𝑣2|
=

1

2
=0.5                         

 

B. Density 

Of vertex refers to a number of neighbourhoods of the 

vertex. Here, Density is a vector of the number of adaptive 

neighbours for each element while Density (a) is the number 

of the adaptive neighbours of the individual a. 

 

C. Methodology 

The suggested method can work on unweighted, undirected 

or weighted. Besides, there is no need for cluster numbers to 

be discovered. Algorithm 1 schematizes the outline of the 

suggested method. 

As far as the input of algorithm is concerned, it refers to the 

adjacency matrix of the undirected graph. Step 1 and 2 

determine the adaptive neighbours for each Node which, in 

turn, depend on the Jaccard similarity. It is this type of 

similarity that measures connectivity or the power of 

relationship among the pair of nodes. In Step 4 Compute the 

density of each Node as follows: 

Where Density is a vector (V) of the number of neighbors 

for each Node; Density(x) is the number of the neighbors of 

the individual x; Step 5 descends sorting the items of the 

Density (V) vector; and Steps 6 to 12: The first node in vector 

V must construct (create) the first cluster since it has the 

largest number of adaptive neighbors in Density.  

Algorithm 1 
Graph Clustering 

 

Input: Adjacency matrix 𝑊(𝑁 × 𝑁)  𝑓𝑜𝑟 𝐺𝑟𝑎𝑝ℎ 𝐺(𝑉. 𝐸). 

Output: Clustering C. 

Begin 

1: for each vertex pair 𝑣𝑖  . 𝑣𝑗  ∈  𝑉 ∶  𝑖. 𝑗 =  1  𝑡𝑜 𝑁 𝑎𝑛𝑑 𝑖 ≠  𝑗 do 

2:      𝑆[𝑖. 𝑗]  =  𝑆𝐼𝑀(𝑣𝑖 . 𝑣𝑗) Compute the similarity by Equation (1). 

3: for each vertex 𝑣𝑖   𝑖𝑛 𝑉 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1 𝑡𝑜 𝑁  do  

4:     𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) = 𝑡ℎ𝑒 𝑛𝑜 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of vertex 𝑣𝑖 

5: Sort the items of the vector Density (V) in descending order. 

6: 𝐶(𝑖) = 0 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1 . . . 𝑁 ∶ 𝑐 = 0 

7: for each vertex 𝑣𝑖   𝑖𝑛 Density (V)  𝑤ℎ𝑒𝑟𝑒 𝑖 =  1 . . . 𝑁  do  

8:     if 𝐶(𝑖) 𝑖𝑠 𝑧𝑒𝑟𝑜 𝒕𝒉𝒆𝒏 

9:             𝑐 = 𝑐 + 1 𝑎𝑛𝑑 𝐶(𝑖) = 𝑐  

10:    for each vertex 𝑣𝑗   𝑤ℎ𝑒𝑟𝑒  𝑣𝑗 ∈ ( 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of vertex 𝑣𝑖)  do 

11:            𝒊𝒇 𝑆[𝑖. 𝑗] = arg max(𝑆[𝑗. 𝑘]) 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ ( 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of 

vertex 𝑣𝑗) then 

12:                      𝐶(𝑗) = 𝐶(𝑖) 

13: Return C 

14: End 

 

All the adaptive neighbours of the first node in V must be 

located in this cluster with the condition that it has the highest 

similarity with the first node. Therefore, the second node in 

V whose position correspond the second element in Density 

must be taken as candidate node. If (this candidate has been 

assigned to any existed cluster), then, all its adaptive 

neighbours must be located in that cluster with the condition 

it has the highest similarity with candidate node else, this 

candidate will construct another new cluster. Besides, all its 

adaptive neighbours must be located in this new cluster. 

Moreover, it is conditioned by having the highest similarity 

with candidate node. As such, the process will continue until 

the last element in V has been clustered in its corresponding 

clusters. 

 

D. Metrics of Cluster Quality 

As far as cluster quantity is concerned, it is normally 

categorized as a class of heavily related vertex which appears 

in connection with various sets in a certain graph. As such, 

lack of general, as well as exact scientific cluster meaning, is 

handed in the process of writing [14]. On the other hand, 

assortments of different, measurements which attempt to test 

the clustering quality, take place via catching the density of 

intra-cluster as well as sparsity of inter-cluster. Regarding 

𝐺 =  (𝑉, 𝐸) is an undirected graph in association with an 

adjacency matrix, three standards of measuring cluster 

quality are adopted in the current paper: modularity, 

conductance and coverage. All of them are standardized in 

relation to the ultimate goal which scores range starting by 0 

up to 1 where 1 represents the score that can be described as 

the ideal. 

 

E. Modularity 

Concerning modularity, it compares the existence of every 

edge of intra-cluster of a certain graph with the edge 

probability that might be found in a haphazard graph [15, 16]. 

As a limit of resolution [17], its algorithms of popular 

clustering functions objectively [18, 19]. Modularity is 

presented by Equation (2). 

 

∑ (𝑒𝑘𝑘 − 𝑎𝑘
2)𝑘                         (2) 

 

where ekk, stands for the intra-cluster probability of edges 

through cluster Sk, whereas ak, refers to the probability of one 

of two edges: an intra-cluster within cluster Sk an inter-cluster 
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incident in cluster Sk, as in Equation (3). 

 

𝑒𝑘𝑘 =
|{(𝑖. 𝑗): 𝑖 ∈ 𝑠𝑘 , 𝑗 ∈ 𝑠𝑘 , (𝑖, 𝑗) ∈ 𝐸}|

|𝐸|
 

𝑎𝑘 = |{(𝑖, 𝑗): 𝑖 ∈ 𝑆𝑘 , (𝑖, 𝑗) ∈ 𝐸}|/|E| 

(3) 

 

where 𝑆𝑘  ∈  𝑉. 

 

F. Conductance 

It refers to the cluster conductance that can be identified 

via inter-cluster edges numbers. It, in turn, is divided by the 

number of edges and an end point within the cluster. 

Moreover, another way of division is by the edges number 

which has not an end point within the cluster that appears 

lesser. The conductance a cluster is introduced in the form 

Equation (4). 

 

∅(𝑆𝑘) =
∑ 𝐴𝑖,𝑗𝑖∈𝑠𝑘,𝑗∉𝑆𝑘

min {𝐴(𝑆𝑘),𝐴(𝑆𝑘̅̅̅̅ )}
                     (4) 

 

Where 𝑆𝑘 ∈ 𝑉 𝑎𝑛𝑑 𝐴(𝑆𝑘) = ∑ ∑ 𝐴𝑖𝑗 −𝑗∈𝑉𝑖∈𝑆𝑘

∑ ∑ 𝐴𝑖𝑗𝑗∈𝑆𝑘𝑖∈𝑆𝑘
 reflects edge numbers in the endpoint within 

Sk. The graph conductance G is defined as the conductance 

average for every cluster in relation to the graph, schematized 

from one. It involves the range extends from (0 to 1) whereas 

the subtract has one the best score. Therefore, the graph 

conductance is presented in Equation (5), 

 

∅(𝐺) = 1 −
1

𝑘
∑ ∅(𝑆𝑘)𝑘                  (5) 

 

G. Coverage 

It [20] refers to the comparison of the division of intra-

cluster edges of the graph to whole edges of the graph. It is 

introduced as Equation (6). 

 
∑ 𝐴𝑖𝑗𝛿(𝑆𝑖,𝑆𝑗)𝑖,𝑗

∑ 𝐴𝑖,𝑗𝑖,𝑗
                       (6) 

 

where Si refers to the cluster of the node i which is allocated 

whereas δ(a, b) represents 1 if a = b and 0 otherwise. It, 

coverage, consists of the range of 0 to 1, since 1 stands for 

that optimal score. On the other hand, it manages the concept 

of intra-cluster density as well as improves greatly the 

measure ends in a small clustering wherein all nodes are 

allotted to the identical cluster. 

 

III. RESULTS AND DISCUSSIONS 

 

The suggested node of the graph clustering of the algorithm 

has been examined in the data of real-world sets. Frankly, it 

enriches promising clustering outcomes. Throughout this 

work, three real-world graphs are used through analyzing a 

dataset ego-Facebook [21], Arxiv ASTRO-PH (Astro-

Physics) collaboration network [22] and Enron email network 

[23, 24]. The ego-Facebook network has 4,039 nodes whereas 

88,234 undirected edges. The ASTRO-PH network has 

18,772 nodes and 198,110 undirected edges. The email-

Enron network has 36,692 nodes and 18,3831 undirected 

edges. In this concern, the data sets under scrutiny can be 

easily obtained by the Stanford Network Analysis Project 

(snap.stanford.edu/data/) providing reproducibility of the 

tests. 

The clustering result is evaluated by Modularity, 

Conductance and  Coverage Quality Metrics. These results 

are best shown in Table 1 below. Our proposed method has 

Quality Metrics between 0.7 and 0.9 for all metrics which is 

acceptable for graphs clustering. 

 
Table 1 

 Clustering Quality 

 
Dataset Nodes Edges Modularity Conductance Coverage 

ego-

Facebook 

4,039 88,234 0.80328 0.78452 0.81283 

ASTRO-

PH 

18,772 198,110 0.86783 0.99215 0.78047 

email-
Enron 

36,692 18,3831 0.79871 0.98862 0.83918 

 

IV. CONCLUSION 

 

As far as this work is concerned, it surveys a sufficient 

strategy of graph clustering to partition the vertices 

depending upon connectivity among vertices. Nevertheless, 

the more frequent strategy of connectivity is adopted to 

evaluate the relevance among vertices. In this regard, every 

cluster quality is concurrently estimated by coverage quality 

measures, modularity and conductance. However, the 

experiments on datasets of the real graph show competitive 

findings in relation to the quality of the cluster. As such, the 

current notion appears suitable to the distributed graph 

processing in relation to the partition of the whole graph of K 

sub-graphs. Hence, the cluster numbers can be specified 

automatically. 
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