

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 139

A Discrete Event Simulation of Fair Bandwidth

Share Mechanism CHOKe-FS

Gamil Gardan1, Rohaya Latip1,2
1Faculty of Computer Science and Information Technology Universiti Putra Malaysia, Serdang, Malaysia.

2Institute for Mathematical Research, Universiti Putra Malaysia.

j.jar49n@gmail.com

Abstract—CHOKe-FS is a partial state Active Queue

Management (AQM) of fair bandwidth share mechanism

among different flows in the same link. There is no public

general programming language (GPL) available for this

mechanism. This paper focused on the development of a Discrete

Event Simulation (DES) for the proposed partial state Active

Queue Management (CHOKe-FS) to simulate this mechanism

with different simulation environment. CHOKe-FS uses RED

algorithm probability to match the incoming packet with the

selecting packets from the queue to decide either to drop packet

or allow it to enter the queue. CHOKe-FS uses same CHOKe

technique with three main differences. In this research, we

focused on the development of discrete event simulator to

implement one of active queue management mechanisms which

is called CHOKe-FS and compare it with other three active

queue management mechanisms which are called RED,

CHOKe, CHOKeD. The results gained from this research

showed that the developed simulators have produced almost the

same results as previous simulators. CHOKe-FS, CHOKeD and

CHOKe maintain fairness in the share link, identify and

penalize non-responsive flows while RED fails.

Index Terms—AQM; CHOKe-FS; CHOKe; Congestion

Control; Discrete Event Simulation.

I. INTRODUCTION

CHOKe-FS is a partial state Active Queue Management

(AQM) technique and it is a packet-dropping mechanism for

classifying and restricting unresponsive or misbehaving

flows during congestion. The number of active flows directly

calculated in the queue buffer to offer the fair-share. CHOKe-

FS depends on two mechanisms on [1], it uses RED technique

to manage the buffer and CHOKe to match the packet from

unresponsive flow to be dropped.

In this paper, we will simulate the original work of

CHOKe-FS: CHOKe with Fair Bandwidth Share by Raza et

al [12]. We use Discrete Event Simulation (DES) to

demonstrate movement of packets from multiple sources to a

single destination (sink) through a single queue. The traffic

in the queue may be exhausted by only one type off low which

is unresponsive or misbehaving flows. This Discrete Event

Simulation (DES) will simulate how to address the problem

of fair-bandwidth allocation among those flows. The

proposed work is inherited from CHOKe and RED but it

differs from CHOKe in three points 1) Queue region is

divided into four regions. 2) The drawing factor is adjusted

automatically by using the average queue occupancy, and

choosing multiple packets from the buffer. 3) Offering fair

share by estimating the number of active flow and drop the

same type of incoming packets. Network overall performance

will be measured in terms of Goodput.

II. RELATED WORK

In IP-Network with best effort, Active Queue Management

enables the router to: 1) detect early congestion, 2) give an

early alert by dropping or reducing the sending rate of the

packets before the overflow happens in the queue.

Nevertheless, some sources might ignore an early warning

signals because it wants to receive higher bandwidth or

because of their unresponsive nature. This leads congestion

and bottleneck at the router causes unfairness on the flow.

The responsive flows will suffer and the drooping rate will be

increase, if the AQM scheme does not provide an efficient

treatment to unresponsive and responsive flows.

Many researches have been conducted to solve the

congestion in router based scheme. [1] proposed RED

(Random Early Detection) algorithm to solve the problem.

The algorithm proposed two threshold values: Min and Max.

Every time the new packet arrives, a new average for the

queue length will be calculated. If the average queue length

lesser than Min, the packet placed in the buffer. Otherwise, if

the average of the queue length is greater than Max, the

packets will be dropped.

CHOKe mechanism uses RED concept in [2], where they

used the Min and Max threshold, the research work also

added the probability mechanism where if the average queue

length larger than the Min threshold, one packet will be

chosen randomly the victim (CHOKe victim), this packet will

be compared with the new arrived packet, if both comes from

same stream both packet will be dropped (CHOKe hit),

otherwise the new arrived packet will be replaced in the queue

with P probability. Further studies have been conducted to

demonstrate CHOKe properties [3].

An enhanced CHOKe was proposed by [4] named

xCHOKe used a table and named it as Lookup table, this

Lookup table store the CHOKe hit to check with the new

arrival packet, if arrived packet have same stream id then the

packet will be dropped and xCHOKe will scan the table again

and increase the hit counter every time makes the drop. If the

packet is not in the table, then the algorithm will create a new

row with counter =1, where every time the new packet

coming with same stream id the hit counter will increase to

count the dropped packets.

[5] add a new parameter maxcomp, this parameter will have

value 2 or more. This parameter determines the max number

of successful comparison, if the number of successful

comparison equal to maxcomp then the packets will be

dropped. The authors made a comparison between RED,

CHOKe and gCHOKe. It shows from the results that

gCHOKe has a better result in term of queuing latency.

CHOKeW algorithm, which used CHOKe technique in

Journal of Telecommunication, Electronic and Computer Engineering

140 e-ISSN: 2289-8131 Vol. 9 No. 2-10

dropping the packet to achieve bandwidth allocation, the

main difference that the CHOKeW excludes RED technique

(Min and Max threshold) where it will depend on the priority

of arrived packets and the congestion status to determine

maximum number of packets stored in the buffer of router.

CHOKeW adjusted the number of packets comparison for

drop purpose depending on congestion level. CHOKeW

simulation shows its capability to have higher bandwidth

share with the larger priority with good fairness and

protecting TCP against high speed unresponsive flows.

However, there is a few glitches that cannot solve by

CHOKeW: 1) the bandwidth differentiation with various

priorities becomes smaller when the flow number increases.

2) CHOKeW has a poor performance with a bursty traffic. 3)

with increasing in network congestion, CHOKeW cannot

cope with the bandwidth allocation with nonresponsive

flows. CHOKeW proposed by [6] concerned with bandwidth

differentiation and TCP protection in order to improve the

quality of service(QOS)for TCP/IP networks authors claim

that no previous research conducted combining both tasks.

[7], [8] algorithms are an extension of CHOKeW and used

the matching technique of CHOKe with multistep increasing

and single step decreasing. The authors conducted the

extension to solve CHOKeW limitation. [9] proposed

CHOKe with recent drop history CHOKe-RH with same

CHOKe principle but with different matching comparison

technique, which consist of two parts: first, the basic CHOKe

comparison and secondly penalty for unresponsive flow,

where the number of comparison edited dynamically

depending on the average buffer size. CHOKe-RH keeps the

recent dropped packet history to store it as flow ID to use the

history for punishing the unresponsive flow. The method

simulated with NS-2 and showed better flow fairness

comparing with RED, CHOKe and CHOKeR.

High bandwidth likely to have more unresponsive flow

with more packets in the queue. In order to solve this problem

CHOKeD proposed by [10] where their algorithm have same

CHOKe concept but, it increases the number of dropped

packet in matching comparison, as the queue occupancy

increases, the CHOKeD increases the dropping process.

Another researches have been conduct to improve the

protection from router congestion, the Queue rate

management (QRM) proposed by [11] protecting the router

from overflow by checking with the allowing rate. And

consequentially checking whether drop or keep the incoming

packets. Mathematical model and NS-3 simulation shows that

there is no way to exceed the allowing rate. The proposed

algorithm provides sits efficiency comparing with CoDel,

RED and GREEN, in term of throughput, quality of service

and performance.

III. ALGORITHMS

There are four algorithms implemented in this paper. The

performance of those four algorithms will be compared in

terms of Goodput or overall arriving data.

A. RED algorithm

Random early detection (RED), also known as random

early discard or random early drop is a queuing discipline for

a network scheduler suited for congestion avoidance. If

buffers are constantly full, the network is congested. Tail drop

distributes buffer space unfairly among traffic flows. It

maintains an exponentially moving average queue size that

indicates the level of congestion in the router and drops

incoming packets with a certain probability dependent on the

queue size.

Figure 1: RED Flowchart

RED algorithm process is presented in Figure 1. The

flowchart of how RED calculates packet dropping probability

is illustrated in Figure 1. The probability of dropping packet

is likely to be high if the average queue length is near to max

queue length threshold. Incoming packet will be dropped if

that probability is high otherwise it will be entered to the

queue.

B. CHOKe algorithm

CHOKe (CHOose and Keep for responsive flows, CHOose

and Kill for unresponsive flows) [2] is a queue management

algorithm that used to prevent non-responsive flows using the

flow information of queue buffer occupancy of each flow.

CHOKe calculates the average occupancy of the FIFO buffer

using an exponential moving average, just as RED does. It

marks and used two thresholds called minimum threshold and

maximum threshold. If the average queues size is less than

min-th. The arriving packets queued in FIFO buffer. If the

total arrival rate of UDP is smaller than the output capacity of

link, the average queue the packets are not always dropped

directly and queue size should not build up to min-th.

Every arriving packets dropped when the average queue

size is greater than max-th. This makes the occupancy of

queue back to below max-th. If the average queue size is

bigger than min-th randomly selected packets from FIFO

buffer compared with arriving packets from. These packets

called drop candidate packets. If they have the same flow ID

(IP address of source and destination, source and destination

port address, etc.) they are both dropped. Otherwise, if both

packets do not have the same flowID, the candidate packet

stay at the buffer and the arriving packets dropped that

depends on the average queue size. The drop probability is

computed exactly as in RED. In particular, this means that

packets are dropped with probability 1 if they arrive when the

A Discrete Event Simulation of Fair Bandwidth Share Mechanism CHOKe-FS

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 141

average queue size exceeds max-th.

Figure 2: CHOKe Algorithm Flowchart

Figure 2 clarifies the CHOKe algorithm steps. The

flowchart on Figure 2 describes CHOKe algorithm behavior

which is differing from RED in the middle region where the

average queue size is between min-th and max-th threshold.

CHOKe in this region choose a random packet to compare it

with the incoming packet and drop both of them if they are

from the same flow.

C. CHOKeD algorithm

CHOKeD is a stateless Active Queue Management (AQM)

scheme, proposed by [10] to protect responsive flows from

unresponsive flows and provide fairness between these flows

in the Internet. In CHOKeD, match-drop comparisons have

been used to keep the responsive flows safe. The number of

packets which has been selected as a drop candidate packet

is increased depend on the ratio of queue occupancy by using

match-drop comparisons. When the packet arrives to the

queue CHOKeD examines the queue which has been divided

into two regions the front and rare regions and choose a

drawing factor and draws number of drop candidate packets

dynamically from the rear queue region based on the queue

region in contrast with CHOKe which is based on the average

queue size.

CHOKeD is differ from CHOKe and CHOKe-FS on the

middle region of the queue as show in Figure 3. It divides this

region into two equal regions (front and rear) and CHOKe

deal with it as one region while CHOKe-FS divides it to four

regions. The problem with CHOKeD its complexity which is

considered high in compare with other mechanisms and that

is because it calculated number of drop candidate packets

from the rare region at the end matchs them with incoming

packet if any one of them is matching with that incoming

packet it will drop all candidate packets and incoming packet.

At the second step if there are no packets matches, it will

calculate another number of drop candidate packets from the

front region.

Figure 3: CHOKeD Algorithm Flowchart

It is clear in Figure 3 that CHOKeD divides the queue into

four regions. CHOKeD behaves with the first region and last

region similarly to RED and CHOKe. It admits all incoming

packets while the average queue size less than min threshold

and drops all incoming packets while the average queue size

greater than max threshold.

D. CHOKe-FS algorithm

The main target of CHOKe-FS is to avoid the shortcomings

of CHOKe by using flow state information to enhance the

fairness at router. CHOKe does not consider the level of

congestion at the router, it divides queuing region into only

three regions and it works at the middle region which lies

above the lower threshold min-th and less than the higher

threshold max-th and whatever the current queue size has

reach in this region it will deal with it by same mechanism.

CHOKe- FS overcome this problem by dividing this region

into four regions to classify the level of congestion and

change the way of matching process to avoid the congestion.

In CHOKe it is assumed that unresponsive flows will send

more packets than responsive flows which make

unresponsive flows overflow the queue which leads to unfair

sharing for the queue. However, CHOKe-FS provides a

mechanism to calculate the fair share and gives every flow

Journal of Telecommunication, Electronic and Computer Engineering

142 e-ISSN: 2289-8131 Vol. 9 No. 2-10

its’ fair chance to send its packets.

Figure 4: CHOKe-FS Algorithm Flowchart

The flowchart in Figure 4 describes CHOKe-FS. It divides

the queue into three regions and it divides the middle region

to four regions. The behavior of CHOKe-FS with the first and

last region similar to the previous three AQMs. For the first

middle region where the average queue size less than R1 as

shown in Figure 5 it acts like CHOKe by drawing only one

packet to compare it with the incoming packet. CHOKe-FS

behaves like RED in all other three middle regions when the

drawing packets are not from the same flows of incoming

packet flow as shown in Figure 4.

IV. SIMULATION MODEL

In this paper, the basic model of packet simulation will

be used, which is made up of multiple transmitting nodes

(sources), single queue, and single destination (sink). The

model diagram is as shown in Figure 5.

Figure 5: System Model for CHOKe-FS

In our simulations, we use 1 UDP flow and 31 TCP flows

and the link between two getaways (R1 and R2) is used as the

bottleneck link in this scenario as it shown in Figure 5. Packets

size for all flows is 1000 bytes and the buffer size in the

simulation is 500 packets. The values of min threshold and

max threshold are 20% and 80% of the queue buffer size

respectively.

A. Simulation Environment

A general purpose programming language, C++ has been

used to implement RED, CHOKe, CHOKe-D and CHOKe-

FS and Poisson distribution is used for packet generation

purpose. The parameters’ values in Table 1 are used to

validate the results of proposed simulation with [12].

Statistical composition of the system is a Packet.

Table 1

Simulation Parameter

 Parameter Value

Simulation Duration 100s

 Replication 500

Topology Queue Type
RED, CHOKe,
CHOKeFS, FIFO

 Buffer Size 500 pakets

 RRT 1ms
 Bottleneck-Link Capacity 2500 packets

 Max Number of sources 32 sources

 Bottleneck link connectivity R1 to R2
Trafific Packet size 1000 B

 UDP load 2500

 TCP Characteristic N=31
 UDP Characteristic 1

B. Performance Metrics

To evaluate the performance any active queue management

schemes different performance metrics have to be used and

for this purpose we will use two performance metrics which

are Fairness and Goodput. The bottleneck link in the network

is represented by the link between Router 1 and Router2. The

simulation simulates the network with 1Mbps link capacity

shared by1 UDP flow and 31 TCP flows.

a. Fairness

Fairness is considered as a main aim of any active queue

management scheme. In network it used to define whether

applications or protocols are using shared network resources

in a fair manner. Jain's Fairness Index is used to measure the

fairness of CHOKe-FS in the network. The following

equation is used to determine Jain’s Fairness Index.

J(𝑥1, 𝑥2, … . . , 𝑥𝑛) =
(∑ 𝑥𝑖

𝑛
𝑖=1)2

𝑛 . ∑ 𝑥𝑖
2𝑛

𝑖=1

 (1)

b. Goodput
Goodput is the measurement of the overall performance of

the network. It is defined as the total bandwidth received by

user after excluding the duplicate packets. If the queue length

in the routers is not stable, i.e., it fluctuates a lot, then the

duration of delay between the packets will not be uniform,

which will result in a high jitter.

V. SIMULATION RESULT

In this section the simulator has been evaluated and

validated by using the parameters listed in Table 1 and it is

based on the previous work [12], [10] which aimed to avoid

congestion. The main target of this evaluation is to prove the

ability of developed GPL simulator of AQM mechanisms to

avoid congestion and improve the overall performance. The

performance of four stated AQMs schemes are evaluated by

using GPL and network topology shown in Figure 5.

A Discrete Event Simulation of Fair Bandwidth Share Mechanism CHOKe-FS

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 143

A. Fairness
Figure 6 shows the result comparison of Jain’s Fairness

Index for the stated AQM mechanisms, it proves that GPL

proposed simulation is successfully implemented. The

differences amongst four algorithms are clear as can be seen

from the Table 2.

Table 2
Fairness Results

AQM JFI GPL Value

RED 0.028152
CHOKe 0.850430

CHOKeD 0.854013

CHOKe-FS 0.936365

Figure 6: Fairness Results

Table 2 and Figure 6 show the simulation result of four

active queue management schemes. These results are

conducted by DES of stated AQMs mechanisms. As it’s

shown in the result, RED is completely fails to offer the

fairness for different flows in the shared link while CHOKe

and CHOKeD are providing a very good fairness and

CHOKe-FS is the best technique to be used for this purpose.

B. Goodput

Figure 7 shows the result comparison of overall packet

arrival for the stated AQM mechanisms, it proves that GPL

proposed simulation is successfully implemented.

Table 3

Goodput Results

AQM JFI GPL Value

RED 0.216

CHOKe 0.564

CHOKeD 0.583
CHOKe-FS 0.723

Goodput of RED, CHOKe, CHOKe-D and CHOKe-FS is

calculated and presented in Table 3. The results gained from

DES simulations for those four AQMs schemes proof that

CHOKe-FS can provide a very high amount of Goodput with

very high level of fairness. In addition, CHOKe and

CHOKeD also proved a very close result with CHOKe-FS.

At the low level of RED comes as with very low amount of

Goodput and very low level of fairness because an

unresponsive flow starved the bottleneck of the link and its

high level of droping packets.

Figure 7: Goodput Results

VI. CONCLUSION

This study has significantly developed a Discrete Event

Simulation (DES) using General Purpose Programming

Language (GPL) for CHOKe-FS active queue management

for different flows in the same link to share bandwidth in a

fair manner. The proposed simulator has an easy and stand

alone simulation configuration for stated AQMs. To verify

and validate the developed simulator, an extensive number of

experiments have been done. Our GPL simulator has control

the congestion by distributing the queue capacity between

flows in a fair way and has control the behavior of

unresponsive flow by minimizing its flow on the link.

CHOKe, CHOKeD and CHOKe-FS identify and penalize

non-responsive flows and maintain fairness in the shared link

among different traffic flows, while RED does not maintain

fairness nor penalize non-responsive. CHOKe-FS, CHOKeD

and CHOKe are providing high amount of Goodput with a

high level of fairness for different flows on the same link.

They can protect responsive flows from unresponsive flows.

RED uses early detect to drop or mark the packet which leads

to fail to protect responsive flows or provide a good amount

of Goodput.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to UPM for the

steady support on my work, for endurance, motivation, and

enormous expertise, and to my lecturer Prof. Dr. Shamala A/p

K Subramaniam for her motivation and enormous advices.

REFERENCES

[1] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on Networking
(ToN), vol. 1, no. 4, pp. 397–413, 1993.

[2] R. Pan, B. Prabhakar, and K. Psounis, “Choke-a stateless active queue

management scheme for approximating fair bandwidth allocation,” in
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, vol. 2.
IEEE, 2000, pp. 942–951.

[3] S. E. Dominic and G. R. Krishna, “Choke: A stateless queue for

securing flows,” (IJCSIT) International Journal of Computer Science
and Information Technologies, vol. 6, no. 2, pp. 1457–1459, 2015.

[4] P. Chhabra, S. Chuig, A. Goel, A. John, A. Kumar, H. Saran,

and R. Shorey, “Xchoke: Malicious source control for congestion
avoidance at internet gateways,” in Network Protocols, 2002.

Proceedings. 10th IEEE International Conference on. IEEE, 2002, pp.

186–187.

[5] A. Eshete and Y. Jiang, “Protection from unresponsive flows with

geometric choke,” in Computers and Communications (ISCC), 2012

IEEE Symposium on. IEEE, 2012, pp. 000 339–000 344.

Journal of Telecommunication, Electronic and Computer Engineering

144 e-ISSN: 2289-8131 Vol. 9 No. 2-10

[6] S. Wen, Y. Fang, and H. Sun, “Chokew: bandwidth differentiation

and tcp protection in core networks,” in Military Communications
Conference, 2005. MILCOM 2005. IEEE. IEEE, 2005, pp.1456–

1462.

[7] L. Lu, H. Du, and R. P. Liu, “Choker: A novel aqm algorithm with pro-
portional bandwidth allocation and tcp protection,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 1, pp. 637–644, 2014.

[8] H. Du, Y. Xiao, and K. Kim, “Mchokem algorithm with assured band-
width allocation in diffserv networks,” Journal of Systems Engineering

and Electronics, vol. 21, no. 4, pp. 531–536, 2010.

[9] Z. Hussain, G. Abbas, and U. Raza, “Choke with recent drop history,”
in Frontiers of Information Technology (FIT), 2015 13th International

Conference on. IEEE, 2015, pp. 160–165.

[10] S. Manzoor, G. Abbas, and M. Hussain, “Choked: Fair ac-

tive queue management,” in Computer and Information Technol-
ogy; Ubiquitous Computing and Communications; Dependable, Auto-

nomic and Secure Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.
IEEE, 2015, pp.512–516.

[11] M. Casoni, C. A. Grazia, M. Klapez, and N. Patriciello, “Qrm: A queue

rate management for fairness and tcp flooding protection in mission-
critical networks,” Computer Networks, vol. 93, pp. 54–65, 2015.

[12] U. Raza, G. Abbas, and Z. Hussain, “Choke-fs: Choke with fair band-

width share,” in Information and Communication Technologies
(ICICT), 2015 International Conference on. IEEE, 2015, pp. 1–5.

