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Abstract—The numbers and diversity of malware variants 

grows exponentially over the years, and there is a need to 

improve the efficiency of analysing large number of malware 

samples efficiently. To address this problem, we propose a 

framework for the automatic analysis of a given malware’s 

dynamic properties using clustering technique. The framework 

also provides outlier discovery, abnormal behaviour analysis 

and discrimination of malware variants. We also created a 

module for normalisation of malware labelling based on the 

labels we get from VirusTotal, which provides consistency of 

malware labels for accurate analysis of malware family and 

types. An evaluation model for the proposed framework is also 

discussed. Ultimately, the proposed framework will ensure 

rapid analysis of malware samples and lead to better protection 

for various parties against malicious malware. 

 

Index Terms—Anomaly Detection; Automated Dynamic 

Malware Analysis; Clustering; Malware Behaviour. 

 

I. INTRODUCTION 

 

Malicious software, which is also popularly known as 

malware, is one of the major cybersecurity threats today. In 

fact, many cybersecurity incidents are usually caused by 

malware [1]. It comes in various forms, such as viruses, 

Trojans, worms, botnets, and rootkits, to name a few. Recent 

report from AV-Test reveals that it registers over 390,000 

samples daily [2]. Due to the exponentially growing numbers 

of malware over the years, a problem that is faced by analysts 

is large scale malware analysis. The high number of malware 

samples posed difficulty for analysis as analysts need to 

extract meaningful information from the samples. To add to 

this problem, the complexity of modern malware employing 

evasion techniques such as polymorphism, code obfuscation 

and metamorphism makes analysis harder. These techniques 

are effective against static analysis of malware binaries [3]. 

In contrast, dynamic analysis of malware binaries does not 

have this limitation for the most part, as these evasion 

techniques are hard to conceal during run-time. Due to this, 

there are many researches which focused on dynamic analysis 

[5-8]. 

While dynamic analysis is a good approach for analysing 

malware samples, it does not scale as it is a time-consuming 

process. It also does not alleviate the problem of exponential 

malware sample analysis. Therefore, the ability to efficiently 

and automatically analyse malware behaviour is needed. This 

is not a new concept as it has been studied and applied before, 

either by clustering or by classification, usually by applying 

different algorithms of clustering or classification, and by 

applying different behaviour representations. The goal of 

clustering is to discover patterns of similar behaviour and to 

discover novel malware classes and variants [9-11]. 

Meanwhile, the goal of classification enables unknown 

malware variants to be added to existing classes of behaviours 

[12, 13].   

In this paper, we proposed clustering of malware behaviour 

using hierarchical and density based algorithm (HDBSCAN) 

to cluster malware samples, and discover unknown variants 

of malware in an efficient manner. 

 

II. RELATED WORK 

 

Machine learning is employed to automate analysis as it 

can analyse large number of samples efficiently for the 

discovery of novel malware, reduce analysis efforts and 

provide insights into patterns and trends. There are basically 

two main approaches to machine learning for malware 

analysis, classification, and clustering. It can be done based 

on static analysis or dynamic analysis. Based on previous 

research [10], it has been shown that machine learning based 

on dynamic analysis gives better results than machine 

learning analysis based on static analysis, due to the 

limitations of static analysis.  

Since our work focuses on the clustering of malware 

behaviour for unknown malware, to aid the discovery of 

unique samples, reduce manual analysis time, and to discover 

patterns of malware behaviour, we focus on these line of 

research works. Various methods have been proposed for this 

purpose with varying level of success. In [10], the authors 

modelled malware behaviour as a non-transient state changes. 

Although their technique achieves good results by abstracting 

higher level calls, the system fails to recognize the 

relationship between state changes, and thus does not paint a 

complete picture of malware behaviour, as compared to fine-

grained analysis. In [28], the authors use dynamic analysis 

and machine learning to estimate malware functions, which 

is useful in identifying the characteristics and behaviour 

family of malware. The methods and results of this research 

looks promising. 

Bayer et al. [11] proposed a fine-grained malware 

behaviour analysis. Their framework utilised local sensitivity 

hashing (LSH) on features extracted, to reduce the number of 

comparisons during clustering. However, the variable length 

feature representation makes their approach less scalable. 

Rieck et al. [23] on the other hand, uses prototype-based 

clustering to approximate malware behaviour, which reduces 

the run-time complexity. However, the n-gram approach that 

the framework uses is susceptible to behaviour obfuscation. 

In [29], the authors used hybrid deep learning approach to 

model malware call sequences for classification by 

combining recurrent neural networks with convolutional 

neural networks. Using these techniques, the algorithm gets a 
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hierarchical feature extraction architecture that combines 

convolution of n-grams with full sequential modelling. The 

results are good but we argue that it is impractical to run due 

by many analysts due to the powerful hardware requirements 

needed. 

Labelling of malware samples and clustering of samples 

based on behaviour are explored in [9]. The authors argued 

that anti-malware labels by AV vendors are inconsistent, 

based on the discrepancy clustering results they achieved 

using self-organizing map (SOM), and the majority vote of 

labels from antimalware vendors. 
 

III. CHALLENGES IN ANALYSIS OF MALWARE BEHAVIOUR 

 

Dynamic malware analysis systems can be evaluated based 

on three main factors, which are efficiency, quality and 

stealthiness. Malware behaviour analysis is a type of dynamic 

analysis technique which overcomes the limitations of static 

analysis.  However, it does come with its own set of 

downsides and challenges. As a start, it is time consuming 

and resource intensive, thus the efficiency is low, when 

compared to static analysis methods. This is an unavoidable 

situation, but the advantages it brings outweigh the 

disadvantages, as it is able to disclose the natural behaviour 

of malware. In certain cases, malware samples might perform 

differently when the sample detects that it is being executed 

in a virtual environment, and may show artificial behaviour 

instead of its real behaviour [24].  

This is a problem of stealthiness which needs to be taken 

care of seriously. For any data analysis work, data is the most 

important resource, as the quality of the data determines the 

output of the data analysis. Fortunately, there are 

countermeasures which remedies this up to a certain extent, 

such as the techniques used in [8]. To ensure that the analysis 

environment is safe, we use pafish [25] to check and plug 

vulnerabilities that might interfere with the analysis from 

producing good results. With this, the analysis in the sandbox 

environment can be done by reducing, if not eliminating, the 

triggering the false or undesired behaviours of malware 

samples.  

There is also an issue of analysis quality, and whether the 

analysis is coarse-grained or fine-grained. Coarse-grained 

analysis is usually faster but it gives less valuable data and 

the opposite is true for fine-grained analysis. This is always a 

constant issue in malware analysis. Faster methods should be 

researched which can bring a balance between these two 

approaches. Besides that, the choice of dynamic analysis 

methods such as bare-metal based or virtual machine based 

also influences the quality and results. 

A malware sample may also contain more than one 

behaviour branch, but most dynamic analysis tools only 

observe a single execution path. This might lead to the 

analysis not showing the sample’s true behaviour, which may 

only be triggered under specific condition. There have been 

work done to mitigate this problem [5].  

 

IV. REQUIREMENTS FOR AN AUTOMATED ANALYSIS OF 

MALWARE BEHAVIOUR 

 

The main objective of this research is to design and develop 

a framework which is capable of automated and fast analysis 

of malware behaviour. The resulting framework should 

provide the following features to the end users: 

 

A. Fully automated 

Malware samples will be automatically analysed in a 

malware sandbox which is run in a distributed virtual 

machine environment. The resulting behaviour logs will be 

processed to be used for further analysis using machine 

learning algorithm. The results from the analysis will then be 

provided to the analysts, all without analysts doing the 

manual analysis on the large number of samples. 

 

B. Minimal false positive 

False positive is always an issue with malware detection 

due to the nature of malware. Some malware variants mimic 

benign software behaviour thus avoiding detection. By 

understanding and exploiting the behaviour of malware 

samples, this can be minimised. Using machine learning 

algorithms to perform clustering, analysing abnormal 

behaviours and anomalies, analysts can further inspect 

analysis data so that false positives can be reduced. 

 

C. Efficient, fast, and timely 

A malware analysis framework should not take a long time 

to perform analysis, because it can impede response time on 

addressing malware threats. Thus, efficient method must be 

explored and implemented for fast analysis time without 

sacrificing quality and accuracy of analysis.  

 

V. FRAMEWORK FOR AUTOMATIC ANALYSIS OF MALWARE 

BEHAVIOUR 

 

Behaviour of malware can vary from being simple, or it 

can be very complex by having diverse behaviour. However, 

more often than not, malware variants of the same family will 

share common behavioural patterns.  Based on this trait, it is 

possible to exploit this and perform automatic analysis to 

cluster malware of similar behaviour together. It is also 

possible to analyse samples and identify anomalies and 

abnormal behaviour which does not fit into any shared 

patterns learned.  

A diagram of the malware behaviour analysis framework is 

shown in Figure 1. The general steps are summarised as the 

following. 

1. The framework will execute and monitor malware 

binaries in a sandbox environment. Based on the 

behaviour in terms of actions and operations, a report 

is generated for each binary. 

2. Important information in the reports are then extracted, 

and features will be selected, in terms of spatial and 

temporal information of behaviours. Spatial 

information includes the operation and the arguments 

of API calls, dynamic imports, mutex, processes, 

filesystem operations, network operations and registry 

operations while temporal information is the sequence 

of the actions. The features are then embedded in a 

vector space. 

3. Clustering technique is then applied to the embedded 

reports which are in vector space, to cluster similar 

behaviours together, and identify novel malware 

samples. 

4. Report is then generated in file format and 

visualisation format to help in analysis. 

In the following sections, we discuss the individual steps 

and technical background in detail by explaining how we plan 

to develop and execute this framework. 
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A. Malware Behaviour Monitoring 

A framework for runtime behaviour-based analysis is 

required for efficient monitoring of malware behaviour. 

There exist many tools towards this end, which monitors 

malware behaviours by intercepting the system calls and 

logging the execution sequences into log files [6][7]. This 

contrasts with static based analysis, in which malware 

binaries are disassembled or debugged. For this research, we 

choose Cuckoo Sandbox [8]. It is an open source malware 

sandbox which is widely used and provides good controlled 

analysis environment for executing malware binaries. The 

environment is setup behind a firewall to control inbound and 

outbound traffic, and using VPN to mask the original IP 

address for security and privacy reasons.

 

 
 

Figure 1: Framework Overview 

 

B. Data set 

For testing this framework, we gather our malware samples 

from three sources: Virus Share [18], Das Malwerk [19], 

Contagio Dump [20] and Malheur data set [22]. Malheur data 

set will be used as reference data set. The other data set that 

are gathered will be used as application data set. These 

sources are selected for the application data set to provide 

diverse file types and malware types for our analysis, besides 

giving us the large number of volume of malware samples 

collected from various point in time. For the application data 

set, we have collection of 69,000 unidentified malware 

binaries. 

 

C. Labelling of malware 

Unsupervised learning usually works with unlabelled data. 

In the case of malware clustering, there is a need to label the 

data for us to identify malware correctly. However, labelling 

across Anti-malware systems is not consistent. Due to that, 

there have been several researches regarding this. [10, 14, 

16].  Inspired by these previous works, we have designed a 

labelling algorithm which reflects the malware more 

accurately by using CARO naming convention [15] as 

guideline. This algorithm normalises the prediction of 

malware labelling provided by VirusTotal [17] by using 

CARO malware naming scheme:  

 
“Family_Name.Group_Name.Major_Variant.Minor_

Variant[:Modifier]” 

 

D. Feature Selection from Behavioural Report 

Reports from Cuckoo Sandbox behaviour analysis contain 

crucial information for analysis. It gives high level 

information of malware behaviour usually in JSON 

representation. From our study, we have identified that File 

system, Windows registry, Process, and Network are critical 

OS resources, as it represents the chokepoint in a Windows 

OS. Regardless of whether it is a clean file or a malicious file, 

every program utilises these resources. We focus on these 

selected categories of information for this framework. 

To fully exploit the information in a behaviour reports  

based on the resources that we have selected, we look at both 

spatial and temporal aspect of information. For spatial 

information, the operation and the arguments of API calls, 

dynamic imports, mutex, processes, filesystem operations, 

network operations and registry operations will be extracted. 

For temporal information, sequence of the actions is also 

taken into account, as it will generally tell how samples 

behave. Feature selection is important because it will help 

keep the dimensionality lower by selecting only relevant 

information and helps improve clustering performance and 

results.  

Based on the features that were selected, format abstraction 

is applied. Each API call is map to the value of the call to 

show the relationship between the operations and its values. 

The sequence of the operations and its values will also be 

mapped. Information abstraction is needed as JSON format is 

not an appropriate format for machine learning, therefore 

requiring a more suitable representation. Moreover, the 

complexity of the extracted textual information from JSON 

reports is high and it will impact the run-time of the 

algorithm. 

 

E. Feature Embedding 

Once the features and its values are selected and abstracted 

from the reports, the conversion into suitable format for use 

in vector space model is done. Then, the sequence 

characterisation of the instructions is performed. It is done by 

considering the contiguous subsequence of fix-length tokens. 

The result of this is referred to as w-shingling, an overlapping 

word-based n-gram. The short behavioural sequence patterns 

is designed in such a way that it will implicitly capture the 

program semantic. 

The report can then be embedded into a vector space. After 

embedding the report into vector space, normalisation of the 
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vector space is performed to remove implicit bias using the 

technique presented in [4]. 

 

F. Comparing Embedded Malware Behaviour 

The goal of this framework is to cluster malware with 

similar behaviour together and give them meaningful label. 

There are several methods that can be used to group samples 

together. One way is to measure the similarities between 

reports, and apply the metric to clustering. The distance 

metric that is chosen to be used is the Jaccard distance, which 

is a simple yet powerful technique. The equation of Jaccard 

distance is; 

 

𝐽𝑑(𝐴, 𝐵) = 1 − 𝐽𝑠(𝐴, 𝐵) =  
|𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (1) 

 

where s is the similarity which is bounded on the interval of 

[0,1]. 

 

G. Clustering of Malware Behaviour using HDBSCAN 

Clustering is a basic machine learning technique to group 

data set into meaningful groups of data, whereby objects 

which are similar are in the same group while objects which 

are dissimilar are in different groups. Clustering can be done 

using the various kinds of clustering algorithms, where 

different algorithms will vary in its methods to determine the 

clusters, for example, by calculating the distance or statistical 

distributions of the cluster members. Generally, clustering 

algorithms can be grouped into two groups, which is 

partitional-based clustering or hierarchical-based clustering 

[26].  

Partitional-based clustering algorithm clusters the data by 

decomposing the data into a set of disjoint clusters. It 

produces clusters by emphasizing the local structure or the 

global structure of the by optimising the criterion function. It 

typically involves minimising the dissimilarity of data within 

clusters and maximising the dissimilarity of different clusters. 

Hierarchical-based clustering algorithm, on the other hand, 

are usually either agglomerative or divisive. Agglomerative 

approach starts with each pattern in a singleton, and 

iteratively merging clusters until conditions are satisfied. 

Divisive approach starts with a single large cluster and 

iteratively splitting the data into smaller clusters until 

conditions are satisfied. While the approach taken to achieve 

the results are different, they both have similar characteristic. 

Both produces a dendrogram, a tree-like clustering structure, 

which shows the nested grouping of patterns, and the 

similarity levels of the pattern grouping at which grouping 

level changes.  

There have been many techniques and approaches using 

clustering techniques to classify unknown samples into 

known malware families, or into unknown malware family, 

based on the behaviour of malware samples [9-12, 23]. When 

clustering is applied to malware behavioural report for 

malware analysis, it allows the learning of malware data 

structures and the discovery of unknown malware structures. 

Analysis of code-reuse by comparing malware families can 

also be done using clustering. Due to this nature of malware, 

many researchers use hierarchical clustering to exploit this 

information, as it can capture the level of similarities based 

on different levels of granularity shown as levels of groups in 

dendrograms. The dendrogram can also be used to determine 

the individual clusters of malware families. Another reason 

many researchers prefer hierarchical clustering is the fact that 

the number of clusters from the data set is not known and 

hierarchical clustering algorithm will determine it 

automatically. 

Despite that, hierarchical clustering is sensitive to noise and 

outliers. It is also unable to handle different sized clusters and 

convex shaped clusters. On the other hand, density-based 

algorithm such as DBSCAN does not suffer from noise and 

outliers as it is robust to it [27]. Another advantage of 

DBSCAN is that it can find clusters of arbitrary shape, as 

opposed to many other clustering algorithms. Like 

hierarchical clustering, DBSCAN does not require the 

number of clusters to be known a priori. However, DBSCAN 

is not able to cluster data of different density properly thus 

making it a limitation. 

By utilising the strength of these two types of algorithm, 

Hierarchical Density-Based Spatial Clustering of 

Applications with Noise (HDBSCAN) was developed [16].  

Its main capabilities are:  

1. the number of clusters are calculated automatically  

2. ability to handle clusters of different density and 

shapes 

3. ability to handle noise and outliers 

We propose that HDBSCAN to be used to solve the 

problem of having unbalanced and unknown malware 

dataset. It will be able to handle malware which cannot be 

added into any existing clusters by treating it as outliers. As 

such, it lowers the probability that a malware sample will be 

misclassified. HDBSCAN uses single-linkage clustering 

technique. To avoid the problem associated with this 

technique, it transforms the space by arranging the data space 

such as sparse points are pushed further away and the other 

points closer. This means that potential noise points are 

pushed further away in order to keep the results as accurate 

as possible. It does this by defining the core distance, 

𝑐𝑜𝑟𝑒𝑘(𝑥), where (𝑥) is the distance from its 𝑘-th nearest 

neighbour. It then calculates the mutual reachability distance 

which can be formalised as dmreach-k(a,b)=max (corek(a), 
corek(b), d(a,b)), where 𝑑(𝑎, 𝑏) is the metric distance 

between 𝑎 and 𝑏. From the transformed space, a distance 

matrix is formed, and a weighted graph can be used to 

represent the points. Then, the minimum spanning tree (MST) 

is constructed using Prim’s algorithm. 

The cluster hierarchy is then calculated from the minimum 

spanning tree. This is done by sorting the edges by distance 

from closest to furthest and iterate through. This creates a 

merged cluster for each edge. The result of this operation is a 

dendrogram. From this dendrogram, malware family 

relationship can be viewed. But for large dataset this can be 

infeasible. The clustering can stop here at this point, but it can 

still go further by turning the dendrogram into flat clusters 

automatically, as opposed to DBSCAN which requires the 

number of clusters to be specified. HDBSCAN first uses the 

minimum cluster size as a parameter to clean up the 

dendrogram by condensing it into a smaller tree. Once this is 

done, the clusters will be extracted by measuring the 

persistence and stability of the clusters. The persistence of the 

cluster can be formalised as λ =  1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁄  where 𝜆𝑏𝑖𝑟𝑡ℎ is 

defined as the distance at which a cluster’s parent split yield 

a cluster and 𝜆𝑑𝑒𝑎𝑡ℎ is defined as the distance at which a 

cluster splits into sub-clusters. Then the stability of each 

cluster is calculated for each point within each cluster based 

on the value defined by 𝜆𝑝, which is the point at which cluster 
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splits. The value lies between 𝜆𝑏𝑖𝑟𝑡ℎ and 𝜆𝑑𝑒𝑎𝑡ℎ. It can be 

formalised as ∑ (𝜆𝑝 −  𝜆𝑏𝑖𝑟𝑡ℎ)𝑝∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 . 

The leaf nodes are then declared as selected clusters. The 

algorithm works in reverse topological sort order to work 

through the tree to calculate the sum of stability. If the sum of 

the sub-cluster is greater than the cluster, then the stability of 

the cluster is set to the sub-cluster’s stabilities. On the other 

hand, if the sum of the cluster stability is more than the sum 

of the sub-cluster’s stability, then the cluster to be a selected 

cluster. The sub-cluster will then be part of the cluster. Once 

the operation reaches the root node, then the clusters are 

returned. Any points which are not selected are considered 

noise points. The pseudocode for HDBSCAN is shown in 

Figure 2. 

 

 
 

Figure 2: Pseudocode for HDBSCAN 

 

H. Report of Clustered Behaviour 

The results of the clustering will be saved in a file, e.g.: 

CSV format file, for storing the results. The results will 

contain the number of clusters generated, the properties of 

each clusters and the anomaly which are detected during the 

clustering. Anomalies in this case mean samples which 

cannot be clustered due to the number of similar samples 

being too low to be clustered. Visualisation techniques will 

also be used to display the results generated. 

 

VI. EVALUATION 

 

Evaluating the quality of clustering results is an inherently 

difficult task.  Therefore, to evaluate the correctness of the 

clustering, a reference data set of known malware samples 

from Malheur is obtained [22]. We will compare the results 

from the Malheur reference data set using labels by major 

anti-malware companies and results from our framework. 

Although anti-malware labels suffer from inconsistencies 

in naming, selecting vendors which follows CARO naming 

convention for samples would produce consistent and 

accurate results. Once the framework has been evaluated and 

calibrated, the application data set can then be analysed. The 

results of the application data set will be discussed after the 

framework has been completed. 

To evaluate our framework based on the reference data set, 

we use the evaluation metrics of precision and recall. 

Precision reflects the agreement between malware classes and 

individual clusters, while recall reflects the extent of classes 

scattering across clusters. Precision for the set of cluster C 

can be formally defined as; 

 

𝑃 =
1

𝑛
∑ #𝑐

𝑐∈𝐶

 (2) 

 

where #c is the largest number of reports in cluster c sharing 

the same class. Recall for the set of malware classes M can 

be formally defined as; 

 

𝑅 =  
1

𝑛
∑ #𝑚

𝑚∈𝑀

 (3) 

 

where #m is the largest number of reports labelled m within 

a cluster.  

The ideal case would be to have a 100% precision and 

100% recall value. However, in most cases, there will be a 

trade-off between precision and recall, as the threshold value 

needs to be set to determine the probability of the membership 

of malware classes. Thus, experiments will be conducted to 

find the best possible threshold value to get the best possible 

result based on precision and recall.  

A comparison of the analysis results of our framework 

against the framework created by [23] and [9] using the 

application data set will be done. 

 

VII. CONCLUSION & FUTURE WORKS 

 

The exponentially increasing malware threats in numbers and 

complexity means that there needs to be a way to efficiently 

analyse the large number of samples efficiently. This paper 

proposed a method to efficiently analyse malware in a 

scalable manner using clustering technique which is based on 

hierarchical structure and density. The methods used is 

designed to provide important analysis results such as 

common cluster behaviours, and this can assist in the creation 

of compact signatures and knowledge base. It can also be 

used for further manual analysis if required.  

Currently research is still being done on this framework. 

After completion, the framework will have additional 

capability to detect anomaly in the samples analysed and be 

capable of abnormal behaviour analysis. A comparison will 

be done with the state of art to compare and verify its 

effectiveness. 
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1. Transform the space according to the 
density/sparsity. 
a) Calculate core distance 
b) Spread points with differing density, 

calculate mutual reachability 
distance 
 

2. Build the minimum spanning tree of the 
distance weighted graph. 
a) Draw vertices for data points with 

weighted core points as edge 
 

3. Construct a cluster hierarchy of 
connected components. 
a) Convert minimum spanning tree into 

cluster hierarchy (dendrogram) 
 

4. Condense the cluster hierarchy based on 
minimum cluster size. 
a) Calculate minimum cluster size 
b) Determine cluster membership 

 
5. Extract the stable clusters from the 

condensed tree. 
a) Compute cluster stability 
b) Split clusters 
c) Data points which are not part of any 

clusters are considered noise 
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