

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 159

Hierarchical Density-based Clustering of Malware

Behaviour

Navein Chanderan, Johari Abdullah
Faculty of Computer Science & Information Technology,

 Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.

15020358@siswa.unimas.my

Abstract—The numbers and diversity of malware variants

grows exponentially over the years, and there is a need to

improve the efficiency of analysing large number of malware

samples efficiently. To address this problem, we propose a

framework for the automatic analysis of a given malware’s

dynamic properties using clustering technique. The framework

also provides outlier discovery, abnormal behaviour analysis

and discrimination of malware variants. We also created a

module for normalisation of malware labelling based on the

labels we get from VirusTotal, which provides consistency of

malware labels for accurate analysis of malware family and

types. An evaluation model for the proposed framework is also

discussed. Ultimately, the proposed framework will ensure

rapid analysis of malware samples and lead to better protection

for various parties against malicious malware.

Index Terms—Anomaly Detection; Automated Dynamic

Malware Analysis; Clustering; Malware Behaviour.

I. INTRODUCTION

Malicious software, which is also popularly known as

malware, is one of the major cybersecurity threats today. In

fact, many cybersecurity incidents are usually caused by

malware [1]. It comes in various forms, such as viruses,

Trojans, worms, botnets, and rootkits, to name a few. Recent

report from AV-Test reveals that it registers over 390,000

samples daily [2]. Due to the exponentially growing numbers

of malware over the years, a problem that is faced by analysts

is large scale malware analysis. The high number of malware

samples posed difficulty for analysis as analysts need to

extract meaningful information from the samples. To add to

this problem, the complexity of modern malware employing

evasion techniques such as polymorphism, code obfuscation

and metamorphism makes analysis harder. These techniques

are effective against static analysis of malware binaries [3].

In contrast, dynamic analysis of malware binaries does not

have this limitation for the most part, as these evasion

techniques are hard to conceal during run-time. Due to this,

there are many researches which focused on dynamic analysis

[5-8].

While dynamic analysis is a good approach for analysing

malware samples, it does not scale as it is a time-consuming

process. It also does not alleviate the problem of exponential

malware sample analysis. Therefore, the ability to efficiently

and automatically analyse malware behaviour is needed. This

is not a new concept as it has been studied and applied before,

either by clustering or by classification, usually by applying

different algorithms of clustering or classification, and by

applying different behaviour representations. The goal of

clustering is to discover patterns of similar behaviour and to

discover novel malware classes and variants [9-11].

Meanwhile, the goal of classification enables unknown

malware variants to be added to existing classes of behaviours

[12, 13].

In this paper, we proposed clustering of malware behaviour

using hierarchical and density based algorithm (HDBSCAN)

to cluster malware samples, and discover unknown variants

of malware in an efficient manner.

II. RELATED WORK

Machine learning is employed to automate analysis as it

can analyse large number of samples efficiently for the

discovery of novel malware, reduce analysis efforts and

provide insights into patterns and trends. There are basically

two main approaches to machine learning for malware

analysis, classification, and clustering. It can be done based

on static analysis or dynamic analysis. Based on previous

research [10], it has been shown that machine learning based

on dynamic analysis gives better results than machine

learning analysis based on static analysis, due to the

limitations of static analysis.

Since our work focuses on the clustering of malware

behaviour for unknown malware, to aid the discovery of

unique samples, reduce manual analysis time, and to discover

patterns of malware behaviour, we focus on these line of

research works. Various methods have been proposed for this

purpose with varying level of success. In [10], the authors

modelled malware behaviour as a non-transient state changes.

Although their technique achieves good results by abstracting

higher level calls, the system fails to recognize the

relationship between state changes, and thus does not paint a

complete picture of malware behaviour, as compared to fine-

grained analysis. In [28], the authors use dynamic analysis

and machine learning to estimate malware functions, which

is useful in identifying the characteristics and behaviour

family of malware. The methods and results of this research

looks promising.

Bayer et al. [11] proposed a fine-grained malware

behaviour analysis. Their framework utilised local sensitivity

hashing (LSH) on features extracted, to reduce the number of

comparisons during clustering. However, the variable length

feature representation makes their approach less scalable.

Rieck et al. [23] on the other hand, uses prototype-based

clustering to approximate malware behaviour, which reduces

the run-time complexity. However, the n-gram approach that

the framework uses is susceptible to behaviour obfuscation.

In [29], the authors used hybrid deep learning approach to

model malware call sequences for classification by

combining recurrent neural networks with convolutional

neural networks. Using these techniques, the algorithm gets a

Journal of Telecommunication, Electronic and Computer Engineering

160 e-ISSN: 2289-8131 Vol. 9 No. 2-10

hierarchical feature extraction architecture that combines

convolution of n-grams with full sequential modelling. The

results are good but we argue that it is impractical to run due

by many analysts due to the powerful hardware requirements

needed.

Labelling of malware samples and clustering of samples

based on behaviour are explored in [9]. The authors argued

that anti-malware labels by AV vendors are inconsistent,

based on the discrepancy clustering results they achieved

using self-organizing map (SOM), and the majority vote of

labels from antimalware vendors.

III. CHALLENGES IN ANALYSIS OF MALWARE BEHAVIOUR

Dynamic malware analysis systems can be evaluated based

on three main factors, which are efficiency, quality and

stealthiness. Malware behaviour analysis is a type of dynamic

analysis technique which overcomes the limitations of static

analysis. However, it does come with its own set of

downsides and challenges. As a start, it is time consuming

and resource intensive, thus the efficiency is low, when

compared to static analysis methods. This is an unavoidable

situation, but the advantages it brings outweigh the

disadvantages, as it is able to disclose the natural behaviour

of malware. In certain cases, malware samples might perform

differently when the sample detects that it is being executed

in a virtual environment, and may show artificial behaviour

instead of its real behaviour [24].

This is a problem of stealthiness which needs to be taken

care of seriously. For any data analysis work, data is the most

important resource, as the quality of the data determines the

output of the data analysis. Fortunately, there are

countermeasures which remedies this up to a certain extent,

such as the techniques used in [8]. To ensure that the analysis

environment is safe, we use pafish [25] to check and plug

vulnerabilities that might interfere with the analysis from

producing good results. With this, the analysis in the sandbox

environment can be done by reducing, if not eliminating, the

triggering the false or undesired behaviours of malware

samples.

There is also an issue of analysis quality, and whether the

analysis is coarse-grained or fine-grained. Coarse-grained

analysis is usually faster but it gives less valuable data and

the opposite is true for fine-grained analysis. This is always a

constant issue in malware analysis. Faster methods should be

researched which can bring a balance between these two

approaches. Besides that, the choice of dynamic analysis

methods such as bare-metal based or virtual machine based

also influences the quality and results.

A malware sample may also contain more than one

behaviour branch, but most dynamic analysis tools only

observe a single execution path. This might lead to the

analysis not showing the sample’s true behaviour, which may

only be triggered under specific condition. There have been

work done to mitigate this problem [5].

IV. REQUIREMENTS FOR AN AUTOMATED ANALYSIS OF

MALWARE BEHAVIOUR

The main objective of this research is to design and develop

a framework which is capable of automated and fast analysis

of malware behaviour. The resulting framework should

provide the following features to the end users:

A. Fully automated

Malware samples will be automatically analysed in a

malware sandbox which is run in a distributed virtual

machine environment. The resulting behaviour logs will be

processed to be used for further analysis using machine

learning algorithm. The results from the analysis will then be

provided to the analysts, all without analysts doing the

manual analysis on the large number of samples.

B. Minimal false positive

False positive is always an issue with malware detection

due to the nature of malware. Some malware variants mimic

benign software behaviour thus avoiding detection. By

understanding and exploiting the behaviour of malware

samples, this can be minimised. Using machine learning

algorithms to perform clustering, analysing abnormal

behaviours and anomalies, analysts can further inspect

analysis data so that false positives can be reduced.

C. Efficient, fast, and timely

A malware analysis framework should not take a long time

to perform analysis, because it can impede response time on

addressing malware threats. Thus, efficient method must be

explored and implemented for fast analysis time without

sacrificing quality and accuracy of analysis.

V. FRAMEWORK FOR AUTOMATIC ANALYSIS OF MALWARE

BEHAVIOUR

Behaviour of malware can vary from being simple, or it

can be very complex by having diverse behaviour. However,

more often than not, malware variants of the same family will

share common behavioural patterns. Based on this trait, it is

possible to exploit this and perform automatic analysis to

cluster malware of similar behaviour together. It is also

possible to analyse samples and identify anomalies and

abnormal behaviour which does not fit into any shared

patterns learned.

A diagram of the malware behaviour analysis framework is

shown in Figure 1. The general steps are summarised as the

following.

1. The framework will execute and monitor malware

binaries in a sandbox environment. Based on the

behaviour in terms of actions and operations, a report

is generated for each binary.

2. Important information in the reports are then extracted,

and features will be selected, in terms of spatial and

temporal information of behaviours. Spatial

information includes the operation and the arguments

of API calls, dynamic imports, mutex, processes,

filesystem operations, network operations and registry

operations while temporal information is the sequence

of the actions. The features are then embedded in a

vector space.

3. Clustering technique is then applied to the embedded

reports which are in vector space, to cluster similar

behaviours together, and identify novel malware

samples.

4. Report is then generated in file format and

visualisation format to help in analysis.

In the following sections, we discuss the individual steps

and technical background in detail by explaining how we plan

to develop and execute this framework.

Hierarchical Density-based Clustering of Malware Behaviour

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 161

A. Malware Behaviour Monitoring

A framework for runtime behaviour-based analysis is

required for efficient monitoring of malware behaviour.

There exist many tools towards this end, which monitors

malware behaviours by intercepting the system calls and

logging the execution sequences into log files [6][7]. This

contrasts with static based analysis, in which malware

binaries are disassembled or debugged. For this research, we

choose Cuckoo Sandbox [8]. It is an open source malware

sandbox which is widely used and provides good controlled

analysis environment for executing malware binaries. The

environment is setup behind a firewall to control inbound and

outbound traffic, and using VPN to mask the original IP

address for security and privacy reasons.

Figure 1: Framework Overview

B. Data set

For testing this framework, we gather our malware samples

from three sources: Virus Share [18], Das Malwerk [19],

Contagio Dump [20] and Malheur data set [22]. Malheur data

set will be used as reference data set. The other data set that

are gathered will be used as application data set. These

sources are selected for the application data set to provide

diverse file types and malware types for our analysis, besides

giving us the large number of volume of malware samples

collected from various point in time. For the application data

set, we have collection of 69,000 unidentified malware

binaries.

C. Labelling of malware

Unsupervised learning usually works with unlabelled data.

In the case of malware clustering, there is a need to label the

data for us to identify malware correctly. However, labelling

across Anti-malware systems is not consistent. Due to that,

there have been several researches regarding this. [10, 14,

16]. Inspired by these previous works, we have designed a

labelling algorithm which reflects the malware more

accurately by using CARO naming convention [15] as

guideline. This algorithm normalises the prediction of

malware labelling provided by VirusTotal [17] by using

CARO malware naming scheme:

“Family_Name.Group_Name.Major_Variant.Minor_

Variant[:Modifier]”

D. Feature Selection from Behavioural Report

Reports from Cuckoo Sandbox behaviour analysis contain

crucial information for analysis. It gives high level

information of malware behaviour usually in JSON

representation. From our study, we have identified that File

system, Windows registry, Process, and Network are critical

OS resources, as it represents the chokepoint in a Windows

OS. Regardless of whether it is a clean file or a malicious file,

every program utilises these resources. We focus on these

selected categories of information for this framework.

To fully exploit the information in a behaviour reports

based on the resources that we have selected, we look at both

spatial and temporal aspect of information. For spatial

information, the operation and the arguments of API calls,

dynamic imports, mutex, processes, filesystem operations,

network operations and registry operations will be extracted.

For temporal information, sequence of the actions is also

taken into account, as it will generally tell how samples

behave. Feature selection is important because it will help

keep the dimensionality lower by selecting only relevant

information and helps improve clustering performance and

results.

Based on the features that were selected, format abstraction

is applied. Each API call is map to the value of the call to

show the relationship between the operations and its values.

The sequence of the operations and its values will also be

mapped. Information abstraction is needed as JSON format is

not an appropriate format for machine learning, therefore

requiring a more suitable representation. Moreover, the

complexity of the extracted textual information from JSON

reports is high and it will impact the run-time of the

algorithm.

E. Feature Embedding

Once the features and its values are selected and abstracted

from the reports, the conversion into suitable format for use

in vector space model is done. Then, the sequence

characterisation of the instructions is performed. It is done by

considering the contiguous subsequence of fix-length tokens.

The result of this is referred to as w-shingling, an overlapping

word-based n-gram. The short behavioural sequence patterns

is designed in such a way that it will implicitly capture the

program semantic.

The report can then be embedded into a vector space. After

embedding the report into vector space, normalisation of the

Internet

Malware

Samples

VM Environment

Cuckoo

Sandbox

VPN

Firewall

Sandbox Report

Feature

Engineering

Feature

Embedding Clustering

Clustered Report

Journal of Telecommunication, Electronic and Computer Engineering

162 e-ISSN: 2289-8131 Vol. 9 No. 2-10

vector space is performed to remove implicit bias using the

technique presented in [4].

F. Comparing Embedded Malware Behaviour

The goal of this framework is to cluster malware with

similar behaviour together and give them meaningful label.

There are several methods that can be used to group samples

together. One way is to measure the similarities between

reports, and apply the metric to clustering. The distance

metric that is chosen to be used is the Jaccard distance, which

is a simple yet powerful technique. The equation of Jaccard

distance is;

𝐽𝑑(𝐴, 𝐵) = 1 − 𝐽𝑠(𝐴, 𝐵) =
|𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (1)

where s is the similarity which is bounded on the interval of

[0,1].

G. Clustering of Malware Behaviour using HDBSCAN

Clustering is a basic machine learning technique to group

data set into meaningful groups of data, whereby objects

which are similar are in the same group while objects which

are dissimilar are in different groups. Clustering can be done

using the various kinds of clustering algorithms, where

different algorithms will vary in its methods to determine the

clusters, for example, by calculating the distance or statistical

distributions of the cluster members. Generally, clustering

algorithms can be grouped into two groups, which is

partitional-based clustering or hierarchical-based clustering

[26].

Partitional-based clustering algorithm clusters the data by

decomposing the data into a set of disjoint clusters. It

produces clusters by emphasizing the local structure or the

global structure of the by optimising the criterion function. It

typically involves minimising the dissimilarity of data within

clusters and maximising the dissimilarity of different clusters.

Hierarchical-based clustering algorithm, on the other hand,

are usually either agglomerative or divisive. Agglomerative

approach starts with each pattern in a singleton, and

iteratively merging clusters until conditions are satisfied.

Divisive approach starts with a single large cluster and

iteratively splitting the data into smaller clusters until

conditions are satisfied. While the approach taken to achieve

the results are different, they both have similar characteristic.

Both produces a dendrogram, a tree-like clustering structure,

which shows the nested grouping of patterns, and the

similarity levels of the pattern grouping at which grouping

level changes.

There have been many techniques and approaches using

clustering techniques to classify unknown samples into

known malware families, or into unknown malware family,

based on the behaviour of malware samples [9-12, 23]. When

clustering is applied to malware behavioural report for

malware analysis, it allows the learning of malware data

structures and the discovery of unknown malware structures.

Analysis of code-reuse by comparing malware families can

also be done using clustering. Due to this nature of malware,

many researchers use hierarchical clustering to exploit this

information, as it can capture the level of similarities based

on different levels of granularity shown as levels of groups in

dendrograms. The dendrogram can also be used to determine

the individual clusters of malware families. Another reason

many researchers prefer hierarchical clustering is the fact that

the number of clusters from the data set is not known and

hierarchical clustering algorithm will determine it

automatically.

Despite that, hierarchical clustering is sensitive to noise and

outliers. It is also unable to handle different sized clusters and

convex shaped clusters. On the other hand, density-based

algorithm such as DBSCAN does not suffer from noise and

outliers as it is robust to it [27]. Another advantage of

DBSCAN is that it can find clusters of arbitrary shape, as

opposed to many other clustering algorithms. Like

hierarchical clustering, DBSCAN does not require the

number of clusters to be known a priori. However, DBSCAN

is not able to cluster data of different density properly thus

making it a limitation.

By utilising the strength of these two types of algorithm,

Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) was developed [16].

Its main capabilities are:

1. the number of clusters are calculated automatically

2. ability to handle clusters of different density and

shapes

3. ability to handle noise and outliers

We propose that HDBSCAN to be used to solve the

problem of having unbalanced and unknown malware

dataset. It will be able to handle malware which cannot be

added into any existing clusters by treating it as outliers. As

such, it lowers the probability that a malware sample will be

misclassified. HDBSCAN uses single-linkage clustering

technique. To avoid the problem associated with this

technique, it transforms the space by arranging the data space

such as sparse points are pushed further away and the other

points closer. This means that potential noise points are

pushed further away in order to keep the results as accurate

as possible. It does this by defining the core distance,

𝑐𝑜𝑟𝑒𝑘(𝑥), where (𝑥) is the distance from its 𝑘-th nearest

neighbour. It then calculates the mutual reachability distance

which can be formalised as dmreach-k(a,b)=max (corek(a),
corek(b), d(a,b)), where 𝑑(𝑎, 𝑏) is the metric distance

between 𝑎 and 𝑏. From the transformed space, a distance

matrix is formed, and a weighted graph can be used to

represent the points. Then, the minimum spanning tree (MST)

is constructed using Prim’s algorithm.

The cluster hierarchy is then calculated from the minimum

spanning tree. This is done by sorting the edges by distance

from closest to furthest and iterate through. This creates a

merged cluster for each edge. The result of this operation is a

dendrogram. From this dendrogram, malware family

relationship can be viewed. But for large dataset this can be

infeasible. The clustering can stop here at this point, but it can

still go further by turning the dendrogram into flat clusters

automatically, as opposed to DBSCAN which requires the

number of clusters to be specified. HDBSCAN first uses the

minimum cluster size as a parameter to clean up the

dendrogram by condensing it into a smaller tree. Once this is

done, the clusters will be extracted by measuring the

persistence and stability of the clusters. The persistence of the

cluster can be formalised as λ = 1 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁄ where 𝜆𝑏𝑖𝑟𝑡ℎ is

defined as the distance at which a cluster’s parent split yield

a cluster and 𝜆𝑑𝑒𝑎𝑡ℎ is defined as the distance at which a

cluster splits into sub-clusters. Then the stability of each

cluster is calculated for each point within each cluster based

on the value defined by 𝜆𝑝, which is the point at which cluster

Hierarchical Density-based Clustering of Malware Behaviour

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 163

splits. The value lies between 𝜆𝑏𝑖𝑟𝑡ℎ and 𝜆𝑑𝑒𝑎𝑡ℎ. It can be

formalised as ∑ (𝜆𝑝 − 𝜆𝑏𝑖𝑟𝑡ℎ)𝑝∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .

The leaf nodes are then declared as selected clusters. The

algorithm works in reverse topological sort order to work

through the tree to calculate the sum of stability. If the sum of

the sub-cluster is greater than the cluster, then the stability of

the cluster is set to the sub-cluster’s stabilities. On the other

hand, if the sum of the cluster stability is more than the sum

of the sub-cluster’s stability, then the cluster to be a selected

cluster. The sub-cluster will then be part of the cluster. Once

the operation reaches the root node, then the clusters are

returned. Any points which are not selected are considered

noise points. The pseudocode for HDBSCAN is shown in

Figure 2.

Figure 2: Pseudocode for HDBSCAN

H. Report of Clustered Behaviour

The results of the clustering will be saved in a file, e.g.:

CSV format file, for storing the results. The results will

contain the number of clusters generated, the properties of

each clusters and the anomaly which are detected during the

clustering. Anomalies in this case mean samples which

cannot be clustered due to the number of similar samples

being too low to be clustered. Visualisation techniques will

also be used to display the results generated.

VI. EVALUATION

Evaluating the quality of clustering results is an inherently

difficult task. Therefore, to evaluate the correctness of the

clustering, a reference data set of known malware samples

from Malheur is obtained [22]. We will compare the results

from the Malheur reference data set using labels by major

anti-malware companies and results from our framework.

Although anti-malware labels suffer from inconsistencies

in naming, selecting vendors which follows CARO naming

convention for samples would produce consistent and

accurate results. Once the framework has been evaluated and

calibrated, the application data set can then be analysed. The

results of the application data set will be discussed after the

framework has been completed.

To evaluate our framework based on the reference data set,

we use the evaluation metrics of precision and recall.

Precision reflects the agreement between malware classes and

individual clusters, while recall reflects the extent of classes

scattering across clusters. Precision for the set of cluster C

can be formally defined as;

𝑃 =
1

𝑛
∑ #𝑐

𝑐∈𝐶

 (2)

where #c is the largest number of reports in cluster c sharing

the same class. Recall for the set of malware classes M can

be formally defined as;

𝑅 =
1

𝑛
∑ #𝑚

𝑚∈𝑀

 (3)

where #m is the largest number of reports labelled m within

a cluster.

The ideal case would be to have a 100% precision and

100% recall value. However, in most cases, there will be a

trade-off between precision and recall, as the threshold value

needs to be set to determine the probability of the membership

of malware classes. Thus, experiments will be conducted to

find the best possible threshold value to get the best possible

result based on precision and recall.

A comparison of the analysis results of our framework

against the framework created by [23] and [9] using the

application data set will be done.

VII. CONCLUSION & FUTURE WORKS

The exponentially increasing malware threats in numbers and

complexity means that there needs to be a way to efficiently

analyse the large number of samples efficiently. This paper

proposed a method to efficiently analyse malware in a

scalable manner using clustering technique which is based on

hierarchical structure and density. The methods used is

designed to provide important analysis results such as

common cluster behaviours, and this can assist in the creation

of compact signatures and knowledge base. It can also be

used for further manual analysis if required.

Currently research is still being done on this framework.

After completion, the framework will have additional

capability to detect anomaly in the samples analysed and be

capable of abnormal behaviour analysis. A comparison will

be done with the state of art to compare and verify its

effectiveness.

ACKNOWLEDGEMENT

This research is funded by Universiti Malaysia Sarawak’s

Research and Innovation Management Centre (RIMC) under

Geran Penyelidikan: F08/SpFRC/1432/16/6. We would like

to thank Universiti Malaysia Sarawak for their support.

1. Transform the space according to the
density/sparsity.
a) Calculate core distance
b) Spread points with differing density,

calculate mutual reachability
distance

2. Build the minimum spanning tree of the
distance weighted graph.
a) Draw vertices for data points with

weighted core points as edge

3. Construct a cluster hierarchy of
connected components.
a) Convert minimum spanning tree into

cluster hierarchy (dendrogram)

4. Condense the cluster hierarchy based on
minimum cluster size.
a) Calculate minimum cluster size
b) Determine cluster membership

5. Extract the stable clusters from the

condensed tree.
a) Compute cluster stability
b) Split clusters
c) Data points which are not part of any

clusters are considered noise

Journal of Telecommunication, Electronic and Computer Engineering

164 e-ISSN: 2289-8131 Vol. 9 No. 2-10

REFERENCES

[1] “Internet Security Threat Report,” 2016. Available:

https://www.symantec.com/content/dam/symantec/docs/ report/istr-

21-2016-en.pdf

[2] Av-test.org, “AV-TEST – The Independent IT Security Institute,”
2016. Available: http://www.av-test.org/en/statistics/malware

[3] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for

malware detection,” in Computer Security Applications Conference,
2007, ACSAC 2007, Twenty-third annual, IEEE, 2007, pp. 421-430.

[4] K. Rieck, and P. Laskov, “Linear-time computation of similarity

measures for sequential data,” Journal of Machine Learning Research
9, Jan 2008, pp. 23-48.

[5] A. Moser, C. Kruegel, and E. Kirda, "Exploring multiple execution

paths for malware analysis," in Proceedings of the 2007 IEEE
Symposium on Security and Privacy, IEEE, 2007, pp. 231-245.

[6] C. Willems, T. Holz, and F. Freiling, “CWSandbox: Towards

automated dynamic binary analysis,” IEEE Security and Privacy 5, no.
2, 2007, pp. 32-39.

[7] A. Dinaburg, P. Royal, M. Sharif and W. Lee, “Ether: malware analysis

via hardware virtualization extensions,” in Proceedings of the 15th

ACM conference on Computer and communications security, ACM,

2008, pp. 51-62.

[8] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, The Cuckoo
Sandbox, 2012.

[9] R. S. Pirscoveanu, M. Stevanovic and J. M. Pedersen, "Clustering
analysis of malware behavior using Self Organizing Map," in 2016

International Conference On Cyber Situational Awareness, Data

Analytics and Assessment (CyberSA), London, 2016, pp. 1-6.
[10] M. Bailey, J. Oberheide, J. Andersen and Z. M. Mao, “Automated

classification and analysis of internet malware,” in International

Workshop on Recent Advances in Intrusion Detection, Springer Berlin
Heidelberg, 2007, pp. 178-197.

[11] U. Bayer, P. M. Comparetti, C. Hlauschek and C Kruegel, “Scalable,

Behavior-Based Malware Clustering,” in NDSS, vol. 9, Feb 2009, pp.
8-11.

[12] K. Rieck, T. Holz, C. Willems, P. Düssel and P. Laskov, “Learning and

classification of malware behaviour,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,

Springer Berlin Heidelberg, 2008, pp. 108-125.

[13] H. S. Galal, Y. B. Mahdy and M. A. Atiea, “Behavior-based features
model for malware detection,” in Journal of Computer Virology and

Hacking Techniques 12, no. 2, 2016, pp. 59-67.

[14] R. Perdisci, “VAMO: towards a fully automated malware clustering
validity analysis,” in Proceedings of the 28th Annual Computer

Security Applications Conference, ACM, 2012, pp. 329-338.

[15] CARO - Computer Antivirus Research Organization, “A New Virus

Naming Convention (1991)”. Available: http://www.caro.org/articles/
naming.html

[16] R. J. G. B. Campello, D. Moulavi and J. Sander, “Density-based

clustering based on hierarchical density estimates,” in Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Springer

Berlin Heidelberg, 2013, pp. 160-172.

[17] VirusTotal. Available: https://www.virustotal.com/
[18] VirusShare.com, “VirusShare.com,” 2016. Available:

http://virusshare.com/

[19] Dasmalwerk.eu, “DAS MALWERK,” 2016. Available:
http://dasmalwerk.eu/

[20] Contagiodump.blogspot.com, “contagion,” 2016. Available:

http://contagiodump.blogspot.com/
[21] M. Chandramohan, H. B. K. Tan and L. K. Shar, “Scalable malware

clustering through coarse-grained behavior modeling,” in Proceedings

of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ACM, 2012, p. 27.

[22] K. Rieck, “Malheur Dataset”. Available: https://www.sec.cs.tu-bs.de/

data/malheur/
[23] K. Rieck, P. Trinius, C. Willems and T. Holz. “Automatic analysis of

malware behavior using machine learning,” in Journal of Computer

Security 19, no. 4, 2011, pp. 639-668.
[24] C. Kolbitsch, E. Kirda, and C. Kruegel. “The power of procrastination:

detection and mitigation of execution-stalling malicious code,” in

Proceedings of the 18th ACM conference on Computer and
communications security, ACM, 2011, pp. 285-296.

[25] Pafish, “a0rtega/pafish: Pafish is a demonstration tool that employs
several techniques to detect sandboxes and analysis environments in

the same way as malware families do,” 2017. Available:

https://github.com/a0rtega/pafish
[26] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

in ACM computing surveys (CSUR) 31, no. 3, 1999, pp. 264-323.

[27] M. Ester, H. P. Kriegel, J. Sander, and X. W. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with

noise,” in Kdd, vol. 96, no. 34, 1996, pp. 226-231.

[28] N. Kawaguchi, and K. Omote, “Malware function classification using
APIs in initial behavior.” in 2015 10th Asia Joint Conference on

Information Security (AsiaJCIS), IEEE, 2015, pp. 138-144.

[29] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep Learning

for Classification of Malware System Call Sequences,” in Australasian

Joint Conference on Artificial Intelligence, Springer International

Publishing, 2016, pp. 137-149.

