

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 131

Achieving Reproducibility Incorporating Service

Versioning into Provenance Model

Dayang Hanani Abang Ibrahim1, Nadianatra Musa1, Chiew Kang Leng2, Jane Labadin2,

Johari Abdullah3, Sarina Sulaiman4
1Department of Information Systems,

 2Department of Computational Science and Mathematics,
3Department of Computer System and Communication Technology,

Faculty of Computer Science and Information Technology,

Universiti Malaysia Sarawak, Kota Samarahan, 94300 Sarawak, Malaysia.
4UTM Big Data Centre, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia.

hananii@unimas.my

Abstract—Reproducibility has long been a cornerstone of

science. Underpinning reproducibility is provenance, which has

the potential to provide scientists with a complete understanding

of data generated in e-experiments, including the services that

were produced and consumed. This paper explores the issues of

service versioning in provenance to achieve reproducibility.

Current provenance model does not directly support service

versioning. Therefore, this paper introduces an enhancement of

a provenance model to incorporate service versioning

mechanism that provides a way to access multiple versions of the

same service so that researcher can compare one version to

another, and understand their effects on processing data. The

enhanced provenance model is able to track the changes of the

same service (versions of the same service) over time and

correlates versioned services with the results they generate.

Index Terms—Reproducibility; Provenance; Provenance

Model; Service Versioning; Web Services Architecture;

I. INTRODUCTION

Provenance is particularly important when a scientific e-

experiment is to be reproduced and re-run. Provenance

provides the ability to reproduce all the steps leading to a

scientific e-experiment result. This means provenance can

show how the result was generated, thus illustrating how the

experiment was done before. Pizzi et al. [1] uses directed

acyclic graphs to track the provenance of data and

calculations in computational science to ensure

reproducibility. A service is a unit of work that performs a

computation that can be consumed by clients or consumers in

applications or experiments. When a workflow is executed,

a sequence of services is invoked. Provenance enables the

recording of these services, including the data parameters

used, and also timestamps of service invocations. Looking

inside each of these services, there are also service metadata

that may also be significant and therefore needs to be

recorded in provenance; for example, when a particular

service was created and which version it is. In existing

provenance literature, versioning has not been directly

supported in provenance model. It is often the case that a

service will need to change after its initial deployment to fix

bugs, improve the algorithm, or meet new requirements.

Therefore, service versioning should be supported to ensure

that even after new versions of a service are deployed; the old

version still remains available. This evolution of services will

eventually lead to multiple versions of a service, starting with

the current version, and leading back to older versions that

have in the past been used to generate data that may still be

in use. This piece of service metadata is important for

reproducibility. Therefore, reproducibility not only gives

relevant information to permit the re-running of the

experiment but also to look at the versions of a service that

have been invoked in the experiment. This approach opens up

the opportunity for discovery in examining the history of the

service. As researchers have realised that reproducibility can

promote sharing, and give other advantages to the scientific

community, there has been a growth in work on

reproducibility [2][3][4]. These works discuss the motivation

for reproducibility, as well as describing infrastructure to

support it.

Experimental reproducibility is concerned with being able

to re-execute past experiments in a different workflow

environment and to see if a prior result can be confirmed. This

is because it is not guaranteed that past experiments can be

re-executed successfully if the experiments were created in a

different workflow environment. This may due to a different

workflow structural differences and missing data, services or

processes. To reproduce experiments, the original

experimental entities must be accessible. To achieve this,

reproducibility requires provenance information that captures

all the important entities in an experiment. For this to be

successful, the entities must be described by a provenance

model. A major issue is that the experimental entities may be

changed from time to time: for example, new versions of

services used in an experiment may be deployed. Therefore,

in this paper we argue that versioning is an essential

mechanism needed to support experimental reproducibility.

Over the years, the research community has realised that a

major problem in sharing its research experiments with

others, is the inability to reproduce past experiments. This

problem is caused by i) insufficient information describing

the experiment and ii) research (experimental) artifacts and

processes (services) that are not available.

This reproducibility process therefore needs provenance

information to describe the execution of the experiment in a

way that can allow reproduction. In addition, the

experimental artifacts and services should be made accessible

for later use. Therefore, the essential concepts underlying the

reproducibility of experimental results are capturing the

computation, along with the data on which it operates. In

service-based e-science, the fundamentals of a computation

Journal of Telecommunication, Electronic and Computer Engineering

132 e-ISSN: 2289-8131 Vol. 9 No. 2-10

are processes that take inputs and transform them into

outputs. Therefore, the processes and all the datasets that are

involved must be captured in order to allow reproduction.

II. BACKGROUND

Reproducibility is a cornerstone of science and is a key

research area in e-Science. This is because it provides ways

for continuous improvement by supporting knowledge

transfer through the re-use of an existing body of knowledge

and methods. For example, a scientist (Scientist A) carries out

an experiment on sequence data from microbial proteins and

publishes his work. Five years later, Scientist B reads the

paper which explains the theory, experimental

implementation and results. Scientist B is very interested in

the data and would like to exactly reproduce the experiment.

If Scientist B is able to do so, he can learn from the knowledge

generated by the past experiment. He can then observe and

reflect on this experience, and may recognize problems or

discover new opportunities to build on the work. This

scenario enables Scientist B and other research communities

to continue to learn from past experience. According to one

of the most widely studied and cited learning process models,

the Kolb [5] experiential learning theory, experience from the

past can be taken as the source of learning for the future.

However, how can Scientist B reproduce the experiment?

Is there a database where he can download all the required

microbial protein sequence data? Bowker [6] points out that

in the standard scientific model, ‘one collects data, publishes

a paper or papers then gradually loses the original dataset’. In

addition to Bowker's concern, not only do datasets need to be

preserved if experiments are reproducible, but also the

computations that generated them. e-Science experiments

deal with computations, therefore reproducing experiments

involving computations is what is important.

Today, if a scientist wants to build on another's previous

work, it is often a painful process involving a tremendous

amount of reimplementation. The scientist has to write his

own scripts and code in order to process the data, if the data

is available. The scientist also needs to verify and test whether

the reimplementation produces the same results as the

previous one. Only then can the scientist proceed with

building on the results of this earlier experiment.

Therefore, reproducibility creates opportunities for

scientists to share, analyse and explore new problems and

refine the past experiments. The ideal ‘virtuous cycle’ of

reproducibility aimed to be realised through this work is

presented in Figure 1. However, achieving this is not

straightforward, and is therefore the key focus of the work

described in this paper. The key question is how to reproduce

experiments that involve computations and data? This

requires a way to preserve computations, data and methods so

that reproduction is achievable. This leads to the reason why

provenance has become another key research area.

Figure 1: Virtuous cycle of reproducibility

Provenance allows scientists to verify how results were

achieved. Storing and preserving data alone does not provide

sufficient information to allow experiments to be reproduced.

Preserving services that represent the computations is also

important in order to keep track of services that have been

invoked. Exposing the relationships between data and

services for an experimental run can be achieved using a

provenance trace [7]. The need to have a provenance trace of

the experiment that documents data and services explicitly is

a precondition for reproducibility. This trace will give the

scientist who is interested in the experiment a complete

understanding of the experiment data, including the services

that have been consumed and produced the data. However, as

we will see, a typical provenance trace does not contain all

the information needed to ensure that it is possible to

reproduce the experiment.

There are number of models that describe provenance such

as Provenir [8], Open Provenance Model (OPM) [9], PROV

[10], ProvONE [11] and Prov2ONE [12]. This paper shows

how OPM can be used to represent an experiment. The

question “Is OPM expressive enough to describe the

provenance of data and services used in the experiment so that

it can be reproduced?” is explored.

Versioning is particularly important because data and

services may be modified as time goes by. For example,

services can up upgraded to improve functionality or fix bugs.

Thus, it is argued that the versioning of data and services is

needed to prevent overwrites and deletions from preventing

reproducibility. However, while the current provenance

literature does address data versioning, it is lacking in

addressing service versioning directly supported in

provenance model. There are problems if the external

services are removed by the service provider or owner that

makes the services no longer available or inaccessible. There

is no mechanism to record the version number of external

services into provenance. The common practice of

researchers dealing with non-versioned services is that when

a service is upgraded, the earlier version is overwritten.

Therefore, the old versions of services are not available after

new versions of a service are deployed. If service version is

not applied, it is difficult for the user to know whether the

service in the past provenance trace is the same as the latest

service available.

The objective of this paper is to explore the issues of

service versioning in provenance to achieve reproducibility.

This paper introduces an enhancement of a provenance model

to incorporate service versioning mechanism that provides a

way to access multiple versions of the same service so that

researcher can compare one version to another, and

understand their effects on processing data.

III. PROPOSED SERVICE VERSIONING AND ITS APPROACHES

If reproducibility is to be achieved, it is important to be able

track service versioning. Users should be able to examine the

differences that occur if different versions of a service are

used in a workflow. The concept of service versioning on

third-party web services than is not within the control of

workflow executions has therefore been lacking in the

provenance literature, and in the design of existing systems.

This includes the standard mechanism to record service

versioning, how to find the correct version of a service when

it is called during reproduction, nor how to keep old versions

of services available.

Achieving Reproducibility Incorporating Service Versioning into Provenance Model

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 133

Provenance provides the ability to reproduce all the steps

leading to a scientific e-experimental result. This means

provenance can describe how the result was generated, thus

illustrating how the experiment was carried out. Provenance

enables the recording of the data and services, including the

data parameters used, and also timestamps of service

invocations. If we are to look inside each of these services,

there are also service metadata that may be significant and

need to be recorded in provenance; for example when a

particular service was created and which version it is. It is

often the case that a service will be changed after its initial

deployment to fix bugs, improve the algorithm, or meet new

requirements. This evolution of a service is likely to result in

different versions being used in different workflow

executions made at different times. Therefore, service

versioning should be supported by a reproducibility

infrastructure to ensure that: i) even after new versions of a

service are deployed, the old version still remains available

and ii) that the exact version is recorded in the provenance

trace. Therefore, it is possible to know if the currently

available version is the same that identified in the provenance

trace. In this paper the focus is on services using Web

Services technology.

Although there is no standard mechanism for this at the

present time, there are best practices which can offer some

suggestions with regard to incorporating Web Service

versioning in provenance. There are several approaches

available, however two web service versioning approaches

are now considered that are using XML Namespaces and

using tModels in the Universal Description, Discovery, and

Integration (UDDI) registry. UDDI is an XML-based

standard for describing, publishing, and finding web services

[13].

The first approach is using XML Namespaces. This

approach creates an entirely new Web Service with a new

Web Service Definition Language (WSDL) [14] file and

namespace for each version. This means supporting the

versioning of WSDL documents. Different namespaces (each

showing different versions) are used to achieve this. The

drawbacks of this approach are that it requires, after each

service update, changing all client applications so that they

now call the new service, and the collection of services may

become unmanageable as new versions are created, as it is not

possible to categorise services into collections.

The second approach uses UDDI's tModel structure,

specifically tModel instanceDetails which carries

information about a service, such as the URL of the related

WSDL document. A service version element can be added to

the tModel. The version element is added in the

keyedReference under the categoryBag in the tModel

structure. By adding this, the version information will be

available along with other existing service description in the

UDDI registry. When calling a service, a client can use the

UDDI APIs (for example using UDDIBrowser) to discover

the service's access point and which versions are available.

Both service versioning approaches take WSDL documents

as important documents in managing versions of multiple

services. Fang et al. [15] extended WSDL and UDDI to

manage version information. They designed a proxy to

dynamically update a client application if a new version of

the same service is created. Frank et al. [16] use a service

interface proxy as a router to provide a service selection

whenever a new version is available. However, this work will

not make any extension to WSDL and UDDI. Instead, it uses

the tModel service versioning approach where one tModel

corresponds to one WSDL.

IV. INCORPORATE SERVICE VERSIONING INTO A WEB

SERVICE ARCHITECTURE

Service versioning is essential in reproducibility. It also has

other benefits. For example, in a research community, it is an

advantage to be able to access multiple versions of the same

service so that researchers can compare one version to

another, and understand their effects on processing data.

Another reason to access multiple versions of the same

service is so that any amendments and enhancements to an

existing service do not affect the existing consumers of the

previous version of the service, who may choose not to move

to the new service (for example to keep consistency with

previous results). In the future, we might imagine

subscription services to inform the consumer that a new

service version is available. This will allow the consumer to

choose whether to remain with the existing service or to

upgrade to a new one.

Why web services are important in this work? Rather than

adopting a specific programming, publishing algorithms as

web services is an option for user. User can use the available

web services through execution environments. The execution

environments such as Taverna [17], provides user to take the

web services and connect the services into workflows and

execute them. WSDL is part of the standard and is well

documented. WSDL provides a formalised and detailed input

and output and this make it possible for user to use the web

services in the workflow system. However, the web services

need to be made available to public. The WSDL can be

registered by the service provider (owner) to service registry

to publish the location of available services. However, what

happen if the services have been removed by their owners?

The service may become inaccessible. Therefore, if service

version is recorded, other alternative of same services can be

recommended. This is described further in following sub-

sections.

Web service exists from service provider or service owner.

Therefore, it is recommended that service versioning is

handled at the early stage of service creation by service

provider or service owner. That means providing web

services via different ports. Therefore, in order to incorporate

service versioning, a service versioning convention scheme

needs to be followed. The service versioning convention is as

shown in Figure 2.

Journal of Telecommunication, Electronic and Computer Engineering

134 e-ISSN: 2289-8131 Vol. 9 No. 2-10

Figure 2: Service versioning convention scheme

Figure 3: Compatible and incompatible changes in service update

Figure 3 describes the service convention that takes into

account major and minor releases. If a service needs to add

new service parameters, therefore major release is applied. If

only minor code amendment such as fixing bugs, changes in

algorithm may only apply minor release, and is backward

compatible. Backward compatible means the new version is

compatible with current version. Existing clients can use the

new version. Also in this work, all service clients have the

same compatibility contract: WSDL and XML Schema.

Figure 3 illustrates the minor and major service releases.

Refer to example S3v2, in which the service version is a

minor release from S3v1, and is also backward compatible.

Client 1 application still can use the new service version.

However, for another service update S3v3, the service

version update is considered as a major release. This is an

incompatible change due to changes in ports to provide new

parameters, with new additional new label, as illustrated in

Figure 3.

Consider a scenario in which a service is created and

published to a server. A WSDL file is created and is used to

describe a web service. In order to ensure there is sufficient

information to invoke the service, the WSDL information

must provide the following: service description; service

abstract interfaces and service concrete implementation. A

consumer can have a clear understanding about a service's

interface and also the network access point to which messages

can be sent in order to invoke a service.

Once the WSDL has been created, the next step is to

publish it to a UDDI service registry. The service registry is

key to this reproducibility work. In the work of this paper, the

jUDDI registry is used and described, as this structure

supports the provision of information on service versioning.

jUDDI stands Java implementation of the Universal

Description, Discovery, and Integration specification for

Web Services. It provides a Web Services directory platform.

Through it, consumers may find information about businesses

and organisations offering web services, descriptions of those

web services, technical information that exposes location and

access information, and also the web service interface

information.

Consider a scenario in which a service is consumed by a

client. After the service is initially deployed, it may be

changed to meet new requirements, to improve its algorithm,

or simply to fix bugs. Later, a consumer wishes to reproduce

an experiment that used the service. The jUDDI service

registry can be used to ensure that the correct version is

utilised.

The approach taken here to service versioning takes

advantage of the loosely coupled architecture provided by

web services technologies. Service versioning is the approach

that should be taken by the Service developer, which is the

Web Service Provider in Figure 4. As highlighted by the red

circle dashed line, the Provider who is in control of creating

and updating the service should keep the versions of updated

Achieving Reproducibility Incorporating Service Versioning into Provenance Model

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 135

service available for consumption using the service

versioning approach, which is discussed in the next section.

Therefore, whenever a consumer sends a request for a

particular version of a service, the Provider will always be

able to invoke the service.

Figure 4: The Web Service Architecture extended with service update

Figure 5 illustrates the concept of how multiple versions

may exist (in this case ten years since the service is first

deployed), and the diagram shows that two versions of the

same service S2 are available, that are S2v1 and S2v2. In

order to have these versions available for the consumer, this

section will discuss how the web services architecture

component, in particular UDDI Web Service Registry, is

used, as highlighted by the blue circle dashed line. The

multiple documents represent the multiple versions of the

same service.

Figure 5: Two versions of S2; S2v1 and S2v2

The common practice is that only one version of a service

is kept, and therefore all consumers only refer to the one and

only version of the service. If there are new changes, the

developers normally overwrite the earlier version. This gives

a great advantage to consumers as only one fixed endpoint

URL is maintained, thus, maintenance is greatly simplified.

However, this is not a good practice as it makes the previous

service versions become unavailable. The important issues

are how to make versions of the same services available and

how to call the appropriate endpoint URL based on the

version number.

V. CAPTURING VERSIONING IN OPM

In this section, the focus is extending the current OPM to

support versioning of web services. Versioning is important

because web services evolve over time due to many reasons.

An OPM model has three main nodes and five types of edges

representing the causal dependencies. The nodes as illustrated

in Figure 6 denote the occurrences; artifact, process and

agent. The edges are used to describe the causal relationship

between the occurrences, for example how X is caused by Y.

In this paper, the focus is on web services, thus an extension

of edges to incorporate the services versioning issues is

proposed to be included in an OPM model. To recall, the

OPM process node can also represent a service. Process and

service have the same meaning, where both take input

(artifact) and produce output (artifact). This extension is

expressed by the attribution service metadata, for example

when a particular service is created, what the version is and

how the multiple versions of the same service are linked

together as one collection.

Figure 6: Open Provenance Model

In order to extend the current OPM edges is by taking the

similar concept of an opm:wasDerivedBy edge that expresses

the relationship from an artifact to another artifact. It

describes an update of an artifact resulting to a new artifact.

Journal of Telecommunication, Electronic and Computer Engineering

136 e-ISSN: 2289-8131 Vol. 9 No. 2-10

The derivation between the artifacts exists after performing

or going through a process. This work is dealing with the

derivation of services, an update of one service resulting to a

new service.

Another edge type in OPM that involves process is

opm:wasTriggeredBy edge that expresses the relationship

between processes (services), where Service 1 is required to

have started and completed in order to start Service 2. This

condition differs from versioning, as the two different

services may not have been related to each other and may not

have been referred to the same original service. Therefore,

opm:wasTriggeredBy edge is not applicable for the case of

versioning.

In web services, the services can develop from one service

to another service. The two services refer to two different

services which distinguished from each other but came from

the original same service. Unfortunately, the representation

of how the service was changed from one service version to

the other version of service is not available. No current

relation in OPM is defined to link the service versions, thus

an extension of the edges type in OPM is required. This paper

introduces an extension of the edges type in causal

dependencies with opm:wasVersionOf. Abang Ibrahim [18]

believed that if there is a relationship that shows the

dependency of the versions of a service, this will allow for

future tracing.

The extension structure that incorporates versioning has

three characteristics that describe the derivation for multiple

versions of services of the original service. The

characteristics are described as follows:

• Each version is an enhancement that requires

changes to a previous version of the same service.

• The next version of service is different from the

previous service version, the expanding to the

original service. This leads to the chain of services:

Sv1 -> Sv2 -> Sv3 -> Sv4, the last is the latest

version of the service as shown in Figure 7 as below.

• A set of services, thus a collection. Extension of

attribution of a causal relationship to provide further

information on how one occurrence relate to

previous occurrence.

Figure 7: The model wasVersionOf edge

Each service can change from time to time, thus we present

it as different versions of that particular service. In this work,

an OPM generator integrates with Service repository and

Experiment repository as shown in Figure 8. Service

repository contains information on wsdl and tModel that

include service version information. The service version

information includes date of service creation and service

versioning naming that supports minor and major releases.

Upon an execution run in a SOA system, the input and output

data parameters are stored in Experiment repository.

Figure 8: OPM Generator

By using the data from these two repositories, OPM

Generator generates an OPM provenance trace. To generate

wasVersionOf causal dependency in OPM trace, OPM

Generator takes the service versioning naming and service

creation date information from service repository to

recommend the appropriate version of a service to be used.

OPM Generator will take alternate service that created prior

to the services used during the execution run. If the service

used is the first version, thus no prior version, therefore OPM

Generator will take a service with the date of service creation

greater than the service is used. The example of the OPM

extension opm:wasVersionOf is described as follows:

• Constraints: No existing OPM edge of expressing the

versioning relationship of one service to another

service.

• Proposed Approach: An extension to have a new

opm:wasVersionOf edge to express the link of service

versions.

• Description: A service occurred and the service has

changed from one service version to the other version

of service.

• Example: The Service3V1 is opm:wasVersionOf

Service3V2, thus the next version of service

(Service3V2) is different from the previous service

version (Service3V1). In other words, Service3V1

preceded or exist first before Service3V2.

Achieving Reproducibility Incorporating Service Versioning into Provenance Model

 e-ISSN: 2289-8131 Vol. 9 No. 2-10 137

Figure 9: A description of an execution run that shows the versioning relationship from one service S3v1 to another service

Figure 9 illustrates an execution run that shows the

versioning relationship from one service S3v1 to another

service. The example consists of using three services to

calculate a person's Body Mass Index (BMI) (S1), check the

category (S2) and recommend exercise activity (S3). The

existing service, S3 is updated to a new version with added

parameters. The S3 now has an updated version of S3v2. The

OPM trace to illustrate the model of wasVersionOf for the S3

version 1 and the new S3 version 2 is presented in Figure 10.

The wasVersionOf edge describes the derivation of two

versions of the same service, namely myActivity1a is a newer

version of myActivity1. The cause and effect explicitly

describe the link between the two services based on the date

of service creation. This information is essential to provide

alternative service which is the nearest version in case the

current service is not available or missing. Thus,

myActivity1a is an alternate service with the date of service

creation greater than myActivity1.

Figure 10: wasVersionOf in OPM trace

The provenance trace must describe the version of the

service used in the execution. Using the tModel approach, one

WSDL corresponds to one tModel. This means that the

WSDL location in OPM trace uniquely indicates the specific

version of the service used in the execution. A unique WSDL

location is recorded that indicates a particular version of a

service. Additionally, execution information providing a

timestamp of each call to a service is recorded in OPM trace.

As in jUDDI Registry, the timestamp of each service created

is recorded. These time properties are essential as additional

information to work out which version of the service was in

used at the time of the service execution.

The features of the tModel have not previously been fully

exploited in supporting provenance. Therefore, it is

recommended that to achieve reproducibility, the service

developer should register every new web service interface

with jUDDI using the service versioning convention. By

using tModel, the developer can now preserve the multiple

versions of the same service.

In addition to this work, there are other works that propose

extensions on both WSDL and UDDI for version support in

web services [15, 16]. In their works, they introduced an

extension to WSDL structure to hold version information.

The main benefits of the tModel approach to supporting

service versioning are:

• The tModel approach exploits the existing jUDDI

registry standards and implementations.

• The tModel and its categorization feature facilitate the

discovery of versions of a service.

Therefore, tModel name and time properties are introduced

in OPM trace to make comparison of time at execution with

time service created can facilitate a service version discovery.

The tModel approach is described in detail to facilitate

service publishing and discovery. Including the

categorization information in tModel helps to preserve all

versions of the same service and making it easier to discover

and call the version of services accordingly. However, that is

only possible if we are in control of creating and updating the

services. For somebody on the consumer side, this is not

possible. Therefore, tModel name and time properties are

introduced in OPM trace to make comparison of time at

execution with time service created can facilitate a service

version discovery.

VI. CONCLUSION

In conclusion, the OPM model has been extended to

represent the experimental execution, encompassing services,

by introducing wasVersionOf causal dependency in OPM

trace. Thus, service versioning can be incorporated into

provenance to address deficiencies in the existing provenance

model.

Journal of Telecommunication, Electronic and Computer Engineering

138 e-ISSN: 2289-8131 Vol. 9 No. 2-10

Service versioning mechanism provides a way to access

multiple versions of the same service so that researcher can

compare one version to another, or has an option to access

another version of service if the current service is not

available. This research has the potential to provide

advantage over existing provenance model in incorporating

versioning in service provenance. Since this paper realised

that service versioning needs to be initiated at the first stage

of service creation by service provider or service owner,

therefore a further work on creating a standard mechanism or

template to record service versioning is an advantage. This

template will also incorporate subscription services to inform

consumer that a new service is available.

ACKNOWLEDGMENT

The funding for this project is made possible through the

research grant obtained from UNIMAS and the Ministry of

Education, Malaysia under the Fundamental Research Grant

Scheme 2/2013.

[Grant No:FRGS/ICT01(01)/1073/2013(19)]. The authors

would also like to thank Universiti Malaysia Sarawak for

providing the resources used in the conduct of this study.

REFERENCES

[1] G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, and B. Kozinsky,

“AiiDA: automated interactive infrastructure and database for

computational science,” Comput. Mater. Sci., vol. 111, pp. 218–230,
Jan. 2016.

[2] R. S. Barga, Y. L. Simmhan, E. Chinthaka, S. S. Sahoo, J. Jackson, and

N. Araujo, “Provenance for Scientific Workflows Towards
Reproducible Research.,” IEEE Data Eng Bull, vol. 33, no. 3, pp. 50–

58, 2010.

[3] S. Fomel and G. Hennenfent, “Reproducible Computational
Experiments using Scons,” in 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing - ICASSP ’07, 2007, vol. 4,

p. IV-1257-IV-1260.
[4] S. Woodman, H. Hiden, P. Watson, and P. Missier, “Achieving

Reproducibility by Combining Provenance with Service and Workflow

Versioning,” in Proceedings of the 6th Workshop on Workflows in

Support of Large-scale Science, New York, NY, USA, 2011, pp. 127–

136.
[5] D. A. Kolb, Experiential Learning: Experience as the Source of

Learning and Development. FT Press, 2014.

[6] G. C. Bowker, “The new knowledge economy and science and
technology policy,” in Science and Technology Policy - Volume I, vol.

1, 2004.

[7] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science,” SIGMOD Rec, vol. 34, no. 3, pp. 31–36,

Sep. 2005.

[8] S. Sahoo and A. Sheth, “Provenir Ontology: Towards a Framework for
eScience Provenance Management,” Knoesis Publ., Oct. 2009.

[9] L. Moreau et al., “The Open Provenance Model core specification

(v1.1),” Future Gener. Comput. Syst., vol. 27, no. 6, pp. 743–756, Jun.
2011.

[10] P. Missier, K. Belhajjame, and J. Cheney, “The W3C PROV Family of

Specifications for Modelling Provenance Metadata,” in Proceedings of
the 16th International Conference on Extending Database Technology,

New York, NY, USA, 2013, pp. 773–776.

[11] “The ProvONE Data Model for Scientific Workflow Provenance.”
[Online]. Available: http://vcvcomputing.com/provone/provone.html.

[Accessed: 29-Apr-2017].

[12] A. Prabhune, A. Zweig, R. Stotzka, M. Gertz, and J. Hesser,
“Prov2ONE: An Algorithm for Automatically Constructing ProvONE

Provenance Graphs,” in Provenance and Annotation of Data and

Processes, 2016, pp. 204–208.
[13] “The UDDI XML.” [Online]. Available: http://uddi.xml.org/uddi-org.

[Accessed: 29-Apr-2017].
[14] “XML WSDL.” [Online]. Available:

https://www.w3schools.com/xml/xml_wsdl.asp. [Accessed: 29-Apr-

2017].
[15] R. Fang et al., “A Version-aware Approach for Web Service

Directory,” in IEEE International Conference on Web Services (ICWS

2007), 2007, pp. 406–413.
[16] D. Frank, L. Lam, L. Fong, R. Fang, and M. Khangaonkar, “Using an

Interface Proxy to Host Versioned Web Services,” in 2008 IEEE

International Conference on Services Computing, 2008, vol. 2, pp.
325–332.

[17] K. Wolstencroft et al., “The Taverna workflow suite: designing and

executing workflows of Web Services on the desktop, web or in the

cloud,” Nucleic Acids Res., vol. 41, no. W1, pp. W557–W561, Jul.

2013.

[18] D. H. AbangIbrahim, “The Exploitation of Provenance and Versioning
in the Reproduction of e-Experiments,” PhD Thesis, University of

Newcastle.United Kingdom, UK, 2016.

