
 

 e-ISSN: 2289-8131   Vol. 9 No. 2-9 175 

 

Enhancer Prediction in Proboscis Monkey Genome: 

A Comparative Study 
 

 

Norshafarina Omar1, Yu Shiong, Wong1, Xi, Li2 and Yee Ling, Chong3, Mohd Tajuddin Abdullah4  

and Nung Kion, Lee1 
1Department of Cognitive Sciences, Universiti Malaysia Sarawak. 

2Life Science Informatics, Data 61, CSIRO.  
3Faculty of Resource Sciences and Technology , Universiti Malaysia Sarawak. 

4Kenyir Research Institute, Universiti Malaysia Terengganu.  

nklee@unimas.my 

 

 
Abstract—Genome annotation is an essential task for 

understanding and analyzing the whole genome and its function. 

We have sequenced the complete proboscis Monkey (Nasalis 

larvatus) genome due to its importance for medical and 

evolutionary studies. We have performed an initial annotation of 

the genes genome using the MAKER gene annotation pipeline. 

3084 genes were predicted from chromosome 18 of the genome 

using six eukaryotic model species. Intergenic regions possibly 

enriched with enhancers are then predicted using five different 

tools: DeepBind, LS-GKM, GMFR-CNN, CSI-ANN and 

iEnhancer-2L. These tools find the enhancers of the complex 

intergenic regions based on epigenetic features, in which 

intergenic regions are seen as a potential region for enhancers with 

a certain epigenetic features bound to it.  Empirical results 

demonstrate competitive performance using different prediction 

tools with multiple epigenetic features to predict the enhancers for 

chromosome 18 in proboscis monkey. Based on the findings of this 

study, predicted enhancers can be used for the purpose of  

scientific and genomic discoveries. 

 

Index Terms—Enhancer Annotation; Enhancer Prediction; 

Motif Discovery; Proboscis Monkey.  

 

I. INTRODUCTION 

 

Annotation is the first step in understanding the biological 

functions, identifying functional elements, and for performing 

scientific inquiries using the genome of a species. Fundamental 

annotation tasks includes identifying coding and non coding 

DNA regions in a genome. Regulatory elements are important 

functional DNA sequences located in non coding region of a 

genome. They play a major role in regulating gene expression 

for the production of RNA and proteins. Regulatory elements 

include promoters, enhancers, proximal regulatory and distal 

regulatory elements. Predicting enhancer is one of the important 

tasks since enhancer has a capability to regulate gene 

expression. However, experimental approaches are costly and 

time consuming, therefore, a reliable and effective 

computational approach is needed for annotation of enhancers.  

There were several studies of experimental approaches and 

computational approaches which have been done with enhancer 

prediction. Liu et al. [1] aimed to identify enhancers along with 

their strength by using the pseudo  k-tuple nucelotide 

composition in order to formulate the DNA sequences. 

Meanwhile, Dai et al. [2] investigate the relationship between 

low methylated regions (LMRs) that derived from whole 

genome bisulfite sequencing (WGBS) with the enhancer 

prediction. Some studies learned enhancers from DNA 

sequence features by capturing the combination of binding sites 

[3]. Since enhancer tend to be bound on certain epigenetic 

features,  [4,5,6]  combined transcription factors, and chromatin 

histone modifications to identify enhancers and it has been 

found to improve the accuracy of enhancer predictions. 

According to Zhu et al. [7] enhancers are generalized as the 

peaks of the H3K4me1 enriched regions, and it was supported 

by [6,8] where the presence of this histone modification along 

with H3K4 methylation, H3K27ac and few transcription factors 

(TF) such as EP300, CTCF, TAL1, GAT1 were used to predict 

the enhancers [5]. 

Different enhancer prediction tools have been developed and 

widely used. [1] used SVM to distinguish enhancers from the 

whole genome sequences. In [9], they proposed an enhancer 

predictor called DELTA by integrating shape features of 

histone modifications with AdaBoost algorithm. The DeepBind 

[10] is one of the promising pattern discovery, a tool that is 

based on deep convolutional neural networks. [6] identified 

functional DNA features by making use of chromatin signatures 

and applied artificial neural network on it. Wong et al. [11] 

proposed an integrated enhancer predictor based on gapped 

motif features representation (GMFR) and  deep convolutional 

neural network (CNN). 

 

II. RELATED WORK 

 

MAKER is an automated gene annotation pipeline that  

mainly include masking repetitive elements, ab initio gene 

prediction using programs such as: SNAP, AUGUSTUS and 

GeneMark, aligning the predicted ab initio gene models 

together with reference protein sequences and transcript 

sequence (EST/RNA) from closely related species, applying 

certain refinement metrics to produce the final annotated gene 

models. For more details about MAKER pipeline and how it 

works, readers can refer to refs [12,13]. Coombe et al. [14] used 

MAKER to annotate the coding and non-coding genes of Sitka 

spruce and used gene sequences of Norway spruce as 

evidences. MAKER also has been used to annotate the whole 

genome of desert woodrat [15]. A total of 24,574 coding genes 
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were annotated in desert woodrat genome using two gene 

prediction programs; SNAP and Augustus with evidences from 

mouse and rat proteins. In [16], the authors annotated 61,773 

genes  from valley oak genome using seven plant species as 

their evidences and three gene predictors including SNAP, 

Augustus, and FGENESH. By annotating the brewer’s yeast 

genome using one reference for both transcript and protein 

sequence evidence, MAKER was able to annotate 9,939 genes 

[17]. Another genome annotation using MAKER was done by 

Choo et al. [18] to annotate pangolin genomes. They used 

multiple evidences to predict 23,446 and 20,298 genes in the 

two pangolin species, which is based on ab initio gene 

prediction, transcriptomic data and protein evidence from one 

different species as reference genome. 

  

III. GENOME ANNOTATION 

 

The enhancer annotation for chromosome 18 in proboscis 

monkey consists of several steps (Figure 1). One of our goals is 

to identify the gene regions within the chromosome 18. 

Chromosome 18 of proboscis monkey can be accessed at NCBI 

GenBank under accession number GCA_000772465.1. We 

used MAKER annotation pipeline to annotate our genome and 

as for reference data, we collected the annotated protein and 

transcript sequences from six different species  which are 

gorilla gorilla, macaca mulatta, mus musculus, pan 

troglodytes, homo sapiens and pongo abelii  

(ftp://ftp.ncbi.nlm.nih.gov/genomes/). In addition, we used 

three gene prediction programs: SNAP, Augustus, and 

Genemark.  In total, we have identified 3084 genes in 

chromosome 18 of proboscis monkey.  During the annotation 

process, we first masked repetitive elements from the 

Chromosome 18, then carried out the gene prediction and 

aligned the evidence protein and EST sequences from six 

species  using BLAST.  We further refined the ab initio gene 

models predicted by SNAP, Augustus and GeneMark together 

with the aligned evidences through MAKER pipeline. After 

that, we proceed with the extraction process  to identify the 

intergenic regions, which possibly contain enhancers. In order 

to extract the intergenic regions, we  used GFF-Ex [19] to 

process the gff file generated from MAKER. GFF-Ex is able to 

extract sequences based on numerous region boundaries such 

as exons and introns regions, gene regions, upstream regions 

and also the intergenic regions. GFF-Ex extracted 1783 

intergenic regions, 19 782 exon and 15 769 introns. The final  

was constructed by excluding intergenic regions with length 

less than 500bp and only considered those located 500bp away 

from the transcription start site (TSS) and transcription end site 

(TSE). 
 

Table 1 

Summarized description of benchmark datasets 

 

Tool Benchmark Dataset 

DeepBind CTCF,EP300 

LS-GKM CTCF,EP300 
GMFR-CNN CTCF,EP300 

CSI-ANN H3K4me1 

iEnhancer-2L H3K4me1, H3K4me3,H3K27ac,etc. 

 

 

 
Figure 1: Enhancer Annotation Pipeline 

 

IV. ENHANCER PREDICTION IN PROBOSCIS MONKEY 

 
To predict enhancers, we employed five computational tools 

including DeepBind [11], LS-GKM [20], GMFR-CNN [12], 

CSI-ANN[6] and iEnhancer-2L[1]. DeepBind is a deep 

convolutionary neural networks that learn to model motifs in 

datasets using one-hot encoding of input DNA sequences. LS-

GKM is based on creating a prediction model using SVM with 

k-mer feature as inputs. CSI-ANN is based on fisher 

discriminant analysis and time delay neural network that learn 

the features using chromatin signals. GMFR-CNN is a 

convolutionary neural networks based on the dependencies 

feature in the k-mers. Meanwhile iEnhancer is an SVM 

predictor based on the feature in the k-tuple nucleotide. Table 1 

summarized the datasets used by each of the tool for prediction 

of enhancers. For DeepBind, LS-GKM, and GMFR-CNN, we 

used the binding sequences of CTCF transcription factor and 

sequences associated with co-factor EP300. Both datasets are 

known to be associated with enhancers [5,21]. Since not all 

enhancers are associated with those two datasets, additional two 

tools CSI-ANN and iEnhancer-2L which utilitized histone 

datasets are employed. CSI-ANN used H3K4me1 histone 

marks for predicting enhancer, meanwhile iEnhancer-2L is 

based on multiple histone marks including  H3K4me1, 

H3K4me3,H3K27ac, etc.  

The input to the computational tools were obtained via the 

previous annotation. There are a total of 1783 intergenic 

sequences are extracted from Chromosome 18. Next we input 

the intergenic sequences to DeepBind, LS-GKM, GMFR-CNN, 

CSI-ANN and iEnhancer-2L for enhancer locations prediction. 

However, there are two primary challenges to predict enhancers  

using different prediction tools. First, each tools may have 

required different input features. Second, the parameters for 
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each tools are different from one another. Some tools may have 

few  parameters that need to be tuned, but some may have 

numerous of it. The parameters used for each tools are 

summarized in Table 2. 

 
Table 2 

Parameters used by different prediction tools 

 
Tools Parameter 

DeepBind 

We used trained model provided by DeepBind; 

Consist of input layer,convolutional 

layer,rectification layer, pooling layer, neural 
network prediction layer and an output layer; 

Learning rate=0.0005,0.05; 

Learning momentum=0.95,0.99 
Number of iteration=4000-20 000 

LS-GKM 

We trained the model using CTCF and EP300 

datasets; 
l =14(CTCF), 9(EP300); 

k =6 (CTCF), 6(EP300) 

GMFR-CNN 

Consist of 6 layer (input layer,2 concolutional 
layers,2 subsampling layers,an output layer); 

We trained the model using CTCF and EP300 

datasets; 
Learning rate=0.8; 

Number of iteration =200 

CSI-ANN 

Time delay neural network( TDNN) classifier with 

a delay of 9,2 hidden layer nodes and an output 

layer; 
We treained the model using chromosome18 

intergenic regions; 

w is train using particle swarm optimization (PSO)  

iEnhancer-2L 

2-layer predictor with 2968 trained samples 

obtained from final benchmark daraset; 

k  = 6 (1st and 2nd layers); 
w = 0.1(1st layer), 0.4(2nd layer); 

λ =9 (1st and 2nd layers) 

 

Using two transcription factors, both DeepBind, LS-GKM 

and GMFR-CNN produced two set of predicted enhancers. We 

combined those two sets of predicted enhancers from each tool 

into a single file. We then merged these files using bedtools 

merge utility[22]. The merge utility allowed us to merge 

features that are overlapping. In Figure 2, we show an example 

of merging two overlapped predicted enhancer regions into 

single region using bedtools merge. 

 

 
 

Figure 2: Merging predicted enhancer regions 

 

The predicted enhancers for chromosome 18 are chosen 

based on overlapping features obtained by all five tools. In 

order to determine if any of the features in the two, three, four 

or five tools are overlapping with one another, we used bedtools 

intersect. Figure 3 shows an example of using bedtools function 

called intersect. This bedtools intersect aimed to identify any 

common features between two or more set of genomic features. 

Now using the same bedtools  merge, we merged the 

overlapping features by varying the combination of tools, as 

will be further discussed on the next section.  

 

. 
 

Figure 3: Intersection between tools 

 

 

V. RESULTS AND DISCUSSIONS 

 

In order to evaluate the performance of the predictor tools in 

predicting enhancers, we used intergenic sequences generated 

from the previous annotation process and we limited the 

analysis to chromosome 18 in proboscis monkey. In Table 3, 

we listed the number of predicted enhancers of DeepBind, LS-

GKM, GMFR-CNN, CSI-ANN and iEnhancer-2L. The number 

of predicted enhancers for CSI-ANN and iEnhancer-2L are 

22,954 and 14,700 respectively. As mentioned in Section IV, 

by using the bedtools merge for DeepBind, LS-GKM and 

GMFR-CNN, we combined the overlapping features for 

DeepBind, LS-GKM and GMFR-CNN and thus we obtained 

31,805, 65,349 and 73,133 enhancer regions, respectively.  
 

Table 3 
Performance of Each Tools 

 

Tool Number of Predicted Enhancer 

DeepBind 31 805 
LS-GKM 65 349 

GMFR-CNN 73 133 

CSI-ANN 22 954 
iEnhancer-2L 14 700 

 

In addition, we computed the coverage values for each tools 

by using bedtools functions called coverage. This bedtools 

coverage is used to find the coverage of a single tool features 

compared to the other four tools features coverage (Table 4) and 

to count the mapped reads on the predicted enhancer regions 

and on the non-enhancer regions of chromosome 18 in 

proboscis monkey genome. To compute the percentage of 

coverage, we calculated the sum of a fraction of bases in each 

tools that had coverage in four other tools. And then we divided 

by the total predicted enhancers to obtain the percentage of 

coverage. We performed coverage analysis because we wanted 

to measure the sensitivity of the tools. The sensitivity of the 

tools which based on the coverage across the predicted 

enhancer regions are reported in Table 4. The number of 

predicted enhancers features in GMFR-CNN tool had highest 

coverage (79.04%) from features in GMFR-CNN, LS-GKM, 

CSI-ANN and iEnhancer-2L, followed by DeepBind with 

37.90% of coverage from features in four other tools. LS-GKM 

and iEnhancer-2L almost had similar coverage, 23.04% and 

28.70% respectively, with iEnhancer-2L had slighty higher 

merge 

GMFR-CNN 

ctcf 

ep300 

intersect 

DeepBind 

LS-GKM 

GMFR-CNN 
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percentage of coverage than LS-GKM. On the other hand, CSI-

ANN had the less coverage among all the tools (15.61%). The 

overall mean sensitivity of the tools is 36.86%. 
 

Table 4 

Coverage Values for Each Tools 
 

Tool 

 

Sum 
Total Enhancer 

Features 

Percentage of 

Coverage (%)-

Sensitivity 

DeepBind 12053.15 31 805 37.90 

LS-GKM 15055.69 65 349 23.04 

GMFR-CNN 57803.93 73 133 79.04 

CSI-ANN 3582.889 22 954 15.61 

iEnhancer-2L 4218.954 14 700 28.70 

 

We have performed many experiments varying combination 

of different tools among those five listed tools. For example 

using two tools, we run 20 combination of tools. In three tools, 

the experiments can be combined in 60 ways. There are 120 and 

20 ways of combination using four and five tools respectively, 

to identify the overlapping predicted enhancer regions. Table 5 

listed the number of predicted enhancer for 20 combination of 

two tools.  Using all the result from these combination, we 

combined it and removed the redundance predicted enhancers 

to finalize the exact number of predicted enhancers. 

 
Table 5 

Numbers of overlapped enhancers predicted by two tools 

 

 DeepBind LS-GKM GMFR-CNN 
CSI-

ANN 
iEnhancer-2L 

DeepBind - 13872 28874 1707 9079 

LS-GKM 13872 - 57695 3513 21208 

GMFR-CNN 28874 57695 - 3861 22341 

CSI-ANN 1707 3513 3861 - 3394 

iEnhancer-2L 9079 21208 22341 3394 - 

 

To compare and contrast different combinations of tools, we 

used bedtools intersect to find the overlapping features between 

combination of any two tools. As shown in Table 6,  using 3 

different tools,  we can see that the number of overlapping 

features among those number of tools is slightly higher 

compared to others. Reading from Table 5, using two and five  

different tools has less in number of overlapping enhancers. 

Probably, this is due to the less number of combination tools 

and as a result,  not many overlapped are found between the 

overlapping features from two and five tools. 

 
Table 6 

Number of overlapping enhancers 

 

Number of tools Number of overlapping enhancer features 

2 165544 
3 500145 

4 496632 

5 3861 

 

Because the combination of tools (from 2,3,4 and 5 tools)  

may predict the same enhancer location, we finalized the 

predicted enhancers by merging the results using the bedtools 

merge. In Table 7, it showed that enhancer features extracted 

by using 2, 3 and 4 number of tools generated the same number 

of predicted enhancers. Not just the number  of predictions are 

the same, but they did predict the same location of enhancers 

on chromosome 18 of proboscis monkey. Although these tools 

using different epigenetic features as benchmark to extract 

enhancer location in proboscis genome, but they did predict the 

same enhancer features. This suggest that using multiple 

epigenetic features to predict enhancer might improve the 

prediction. The fact that enhancer is not only occupied by 

certain transcription factors but also different histone marks. 

 
Table 7 

Number of predicted enhancers 

 

Number of tools Number of predicted enhancers 

2 77387 
3 77387 

4 77387 

5 3861 

 

VI. CONCLUSION 

 

The goal of this study is to identify the potential enhancer 

regions in proboscis monkey for the purpose of scientific and 

genomic discoveries. By using different epigenetic features and 

enhancer associated TFs and co-factor to predict the enhancers, 

we have achieved promising results. The combination of 

different enhancer  prediction tools along with multiple 

epigenic features  is capable of predicting almost similar 

enhancer features. Other epigenic features that have not been 

included in this study such as DNase I hypersensitivity, TAL1 

and GATA1 can also be included, this should improve the 

predicting of the enhancer. However, the limitation of this study 

is that the annotation process required long computational 

runtime. Further study may focus on other chromosomes in 

proboscis monkey genome. 
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