
 

 e-ISSN: 2289-8131   Vol. 9 No. 2-9 163 

 

Quantifying Critical Parameter in Disease 

Transmission 
 

 

W. C. Kok and J. Labadin 
Department of Computational Science and Mathematics, 

Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 

94300, Kota Samarahan, Sarawak, Malaysia. 

woonchee.kok@gmail.com 

 

 
Abstract—The values of each parameter introduced in a 

disease model play important role in providing the prediction of 

a disease transmission. Some parameters values are easily 

quantified through collected statistical data usually made 

available from clinical research. However, there may be some 

parameters that are not easily found. For such case, the 

parameters values are estimated through many trial-and-error 

numerical runs. In this paper, it is shown that a statistical 

modeling approach coupled with the Maximum Likelihood 

Estimate method can be used to quantify critical model 

parameters. A Hand-Foot-Mouth disease (HFMD) model was 

taken as a case study where infected population data provided 

by the Sarawak State of Health was fitted onto the Susceptible-

Infected-Removal (SIR) model. The concerned parameter is the 

transmission coefficient of HFMD in the year 2012.  Using the 

mentioned method, it was found that the value for the 

transmission coefficient of HFMD in 2012 is 1.2654 (CI: 1.15-

1.43). It can be concluded that the critical parameter with 95% 

confidence interval in SIR model has been quantified effectively. 

Due to the possibility of obtaining other sets of infected 

population data, a web application called the Disease Modeling 

Parameter Calculator was developed to assist in estimating the 

transmission coefficient. 

 

Index Terms—Hand, Foot and Mouth Disease; Maximum 

Likelihood; Parameter Estimation; Susceptible-Infected-

Recovered; Statistical Modeling. 

 

I. INTRODUCTION 

 

Infectious disease is one of the top ten causes of death in the 

world [1-3]. Thus, infectious disease modeling plays a key 

role in basic science and public policy. Disease models 

summarize what is known about disease epidemiology, 

prevention and treatment. Disease modeling is beneficial to 

clinical practitioner, manufacturers, policy makers and 

researchers to control or eradicate infectious diseases. To 

date, public health professionals have significantly increased 

the usage of disease model to assist public health policy 

decisions and to explore questions in disease control [4]. 

Disease researcher and modeler formulate a disease model to 

identify a disease trends, make general forecast, and estimate 

the uncertainty in the forecast by synthesizing information 

from different data sources.  

In order to understand the human population distribution 

and the spread of disease, researcher develop mathematical 

disease model [5, 6]. In different approach and model, there 

is a flow of process, computing tools and mathematical model 

to help in disease modeling. Different modeling approach 

suits different situation, different fields and different 

problems. One of the key challenges in building a disease 

model is in quantifying some parameters that are not easily 

available.  

One of the methods to quantify parameter is the Maximum 

Likelihood Estimation (MLE). “MLE estimates parameter 

values that make the observed data the most likely to have 

happened” [7]. The principle of MLE, originally developed 

by R. A. Fisher in 1920s, states the “most likely” means that 

one must seek the value of the parameter vector that 

maximizes the likelihood function [8, 9]. MLE is 

asymptotically consistent, as the data size gets larger, the 

estimated parameters gets closer to the true values and 

converge to the actual values [7]. MLE method is also 

asymptotically efficient, for large data size it can generate the 

most precise estimates compared to others. MLE method is 

scale free or parameterization invariance which the estimated 

parameters are not affected by the transformation of variables 

[10]. The values of fit function are independent with the scale 

of response data [11]. Apart from that, MLE is reported by 

many researchers as being an unbiased estimation with large 

data sizes which is more than 30 samples. Sufficiency is one 

of the most important properties of MLE [7, 12]. Sufficiency 

indicates the completeness of the information about the 

parameters that the researcher is interest in. If there is a 

sufficient statistic for a parameter, the MLE of the parameter 

is a function of a sufficient statistic. A sufficient statistic is a 

statistic that uses all of the information in the sample about 

the parameter of interest [12]. However, MLE can be biased 

for small samples when the sample size is less than 30. It 

requires large data sizes in order to overcome the accuracy 

issue. Normally in infectious disease modeling, likelihood 

equation can be very complicated, for example in creating 

likelihood function or other complex model such as negative 

log-likelihood function.  

The Susceptible-Infected-Recovered (SIR) model is an 

epidemiological model that computes the number of 

susceptible, infected and recovered with an infectious disease 

in a closed population over time. Disease model is governed 

by fundamental parameters that include transmission 

coefficient, recovered rate, birth rate and death rate. 

Unfortunately, not all parameter values are available 

therefore the researchers need to estimate the parameters. 

Researchers need to make an initial estimate of the starting 

values of some parameters for example transmission 

coefficient. After making an initial guess of the parameter 

value, the researcher needs to run the computer simulation 

and a set of numerical results. If the fitted result is not 

satisfied and not compromised, researchers need to estimate 

again and run the simulation again until a minimum 

discrepancy between the actual data and fitted result is 

obtained. However, this process is time-consuming because 
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it is an exhaustive search of the parameter space. And it is less 

likely to get the best-estimated value that is the nearest to the 

actual data by using such trial-and-error runs.  

Most of the times, researchers use trial-and-error method to 

fit the data in order to obtain the parameter value. The trial-

and-error procedure is complex and computationally 

expensive. It is time-consuming if the estimation of the 

parameter values with this conventional approach involved 

large data set [13-15]. Therefore, researchers need an 

efficient parameter quantification method to address this 

problem. Statistical modeling approach promotes cheaper 

computing power, which allows users to quantify critical 

parameter quickly and easily compared to the trial-and-error 

approach. In this study, a set of three parameter values was 

quantified but our analysis will focus only on the transmission 

coefficient of an SIR model.  

 

II. METHODS AND MATERIALS 

 

A Hand-Foot-Mouth disease (HFMD) model was taken as 

a case study where this HFMD mainly affects young children 

below 10 years old and occurs in clusters or outbreak as it is 

a highly viral disease. Typical manifestations of HFMD in 

children include fever, vesicles in the mouth and skin 

eruptions on hands and feet. HFMD isolates itself every three 

years since the large outbreak in year 1997. The prediction 

suggested a large outbreak in year 2015 and has raised public 

fear and anxiety due to the outbreak [16]. In most cases for 

disease models, some parameters are required to be estimated 

for further analysis. This study investigated the value of the 

transmission coefficient in the years 2010 until 2014 using 

the constructed mathematical model. The clinical data is 

provided from the Sarawak State Health Department, which 

consists of number of patients versus time from year 2010 

until 2014. A deterministic SIR model has been chosen to 

model the spread of HFMD in Sarawak as shown in equations 

(1), (2) and (3) [17]. There are different variables and 

parameters in the SIR model and the description of the 

variables and parameters are shown in Table 1 and 2. 

 
 𝑑𝑆

𝑑𝑡
= 𝛼𝑆(𝑡) − 𝛽𝐼(𝑡)𝑆(𝑡) − 𝜇0𝑆(𝑡) + 𝛿𝑅(𝑡)                       (1)  

            

           
𝑑𝐼

𝑑𝑡
= 𝛽𝐼(𝑡)𝑆(𝑡) − 𝛾𝐼(𝑡) − (𝜇0 + 𝜇1)𝐼(𝑡)                              (2) 

                                          
𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝛿𝑅(𝑡) − 𝜇0𝑅(𝑡)                                      (3) 

 
Table 1 

Description of variables for SIR model 

 

Variable Description 

𝑆(𝑡) Number of susceptible at time t 

𝐼(𝑡) Number of infective at time t 

𝑅(𝑡) Number of recovered at time t 

 
Table 2 

Description of parameters for SIR model 

 

Parameter Description 

𝛼 Natural birth rate 

𝛽 Transmission coefficient 

𝛾 
Rate at which an infectious individual recovers 

per unit time 

𝛿 
Rate at which a recovered individual loses 

immunity 

𝜇0 Natural death rate 

𝜇1 Rate of death caused by the disease 

 

This study involves in the analysis of the estimated 

parameter value of the transmission coefficient only. 

Transmission coefficient is the rate of susceptible population 

getting infected with HFMD at the rate of . Figure 1 outlines 

the quantification procedures. 

Actual disease data in year 2012 comprises of number of 

weeks and number of cases has been plotted as shown in 

Figure 2. If there is any unbalance of the data, pre-process of 

the data can be performed to trim the data set or sampling the 

data from the whole data set. The data trend and distribution 

of the actual data in Figure 2 shows that there is no outlier of 

the HFMD data. Next, we need to set the state variable, which 

is dynamically varying characteristic of the model that 

indicates the storage of volume of time varying quantity of 

interest within the model. Different state variables, taken 

together maybe used to define the model “state”. The state 

variables are the susceptible, 𝑆(𝑡) and the infected 𝐼(𝑡) in this 

study. To run the simulation, we have prescribed the initial 

values as 𝐼0 = 1 and 𝑆0 = 𝑁 − 𝐼0 where N is total population 

[18]. The returned results of the ode function are the number 

of susceptible and number of infected at a given time t. The 

researcher needs to set the initial values to start the 

computation. We set the initial number of infected, 𝐼0 = 1 and 

the total population, 𝑁=6580 according to the actual data 

obtained for year 2012, and thus the initial number of 

susceptible, 𝑆0=6579. 

 

 
 

Figure 2: Boxplot of HFMD data in year 2012 
 

Next, researchers need to specify the span of time to run the 

model. Researchers need to call a seq function, which is a 

built-in function in R package. This function can create time 

sequences of the model. The data contains of 30 weeks and 

we set the interval between these 30 weeks as 200 intervals. 

Researchers can decide the number of interval themselves. 

However, the smaller steps of the time sequence make the 

result more accurate [20-22]. In other words, small time step 

sizes are desirable for better accuracy. A system of 

differential equations can be solved by using deSolve function 

which is the default integration routine in R package. Having 

(1), (2) and (3) solved, the built-in ode function in R packages 

takes input of the initial values of the parameters where 𝛽 =
1, 𝛾 = 0.5 and 𝛿 = 1. 𝛼, 𝜇0 and 𝜇1 in Table 2 are 

conveniently available from some published literature. In this 

study, we adopted the parameter values from [17]: 𝛼 =
0.02923, 𝜇0 = 0.01077 and 𝜇1 = 0.001731. 

 



Quantifying Critical Parameter in Disease Transmission 
 

 e-ISSN: 2289-8131   Vol. 9 No. 2-9 165 

Function ode returns an object of class deSolve with a 

matrix that contains the values of the state variables at the 

requested output times. The model function returns outputs 

number of susceptible (S) and number of infected (I) at time 

t. 

 

 
 

Figure 1: Step to quantify disease model parameter 
 

The model function, which is a user-defined function, will 

return the rate of change and the parameters vector, which are 

𝛽, 𝛾 and 𝛿. Function ode returns an object of class deSolve 

with a matrix that contains the values of the state variables at 

the requested output times. The model function returns 

outputs number of susceptible (S) and number of infected (I) 

at time t. 

The most important step is the researcher writes a function 

to return a negative log-likelihood of the data. This is due to 

the fact that the value of the transmission coefficient (Beta/ 

𝛽) must always be a positive value. After a simple 

transformation of these two parameters, 𝛽 = 𝑒𝑏 and = 𝑒𝑔 . 

These b and g values are defined from negative infinity to 

positive infinity. This helps the numerical algorithms to 

perform better and provide better result. Theoretically, the 

idea of finding the maximum or the minimum of a function 

by taking its derivative is based on the extreme value 

theorem. This means if a function 𝑓(𝑥) is continuous on a 

closed interval [a,b], then 𝑓(𝑥) has a maximum and minimum 

value on the interval [a,b]. For multiple unknown parameters, 

researchers need to determine simultaneous solution set for 𝑛 

equations, where 𝑛 is the number of unknown parameters. 

Particularly, for the negative log likelihood function neg log 

ℒ and  𝑛 = 2, the system is shown in equations (4) and (5): 

 
𝜕𝑛𝑒𝑔 log ℒ(𝛽,𝛾)

𝜕𝛽
= 0,                           (4) 

𝜕𝑛𝑒𝑔 log ℒ(𝛽,𝛾)

𝜕𝛾
= 0.                              (5) 

We solve equations (4) and (5) by applying mle2 built-in 

function in bbmle R package. This package provides the 

routine for maximum likelihood estimation. The package is 

an optimiser from the stats package that is based on Nelder-

Mead algorithm. The Nelder-Mead algorithm is the default 

optimiser in the function optim in R Packages and can 

approximate covariance matrix for the parameters by 

inverting the Hessian matrix at the optimum, which can be 

later used to derive confidence intervals. The mle2 function 

returns the estimated parameter results as shown in Figure 3. 

 

 
 

Figure 3: Return parameter results from the mle2 function 

 

We plot the predicted values versus actual data points to 

visualize the effectiveness of applying the Maximum 

Likelihood method by using the algorithm as shown in Figure 

4 of which x-axis is the time unit and y-axis represents the 

number of cases. Here, the red dots shows the actual cases 

while the red line indicates the predicted cases. The plot of 

predicted values is based on the estimated parameters: 𝛽 =
1.2654, 𝛾 = 0.8443 and 𝛿 = 110.4. If there is any outlier or 

not resemble curve, researcher may need to pre-process the 

data set by sampling or trimming the data size into smaller 
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size and quantify the parameters again. 

 

 
 

Figure 4: Predicted cases versus actual cases 

 

Quantifying the parameters of a disease model can be 

defined as finding the parameters that make a disease model 

fit the actual data best or as close as possible. Researchers’ 

goodness-of-fit metrics is based on the likelihood which the 

probability or chance of seeing the collected data given a 

particular model. To validate the parameters that are 

quantified through the Maximum Likelihood method, we 

compute the confidence interval and superimpose the plot of 

the predicted cases versus actual cases as shown in Figure 5. 

The standard is 95% confidence level, the blue dotted line is 

the confidence interval for this case, from the plot, researcher 

can observe whether the actual data points fall between the 

confidence interval or not. The results validated the MLE 

algorithms as majority of the actual case (green dots) fall into 

the intervals. If the actual data points fall in confidence 

interval, the estimated parameters can be considered to be 

effective and are of good quality. If they do not fall in the 

confidence interval, researchers may choose to re-run the test 

again. 

 

 
 

Figure 5: Predicted cases versus actual cases with 95% confidence interval 

 

We also computed the likelihood profile for the fitted 

model. By constructing the likelihood profile, researchers can 

plot and look for confidence interval at several different α 

values, so it is more efficient. By default, the plot method for 

likelihood profiles displays the square root of the deviance 

difference (twice the difference in negative log-likelihood 

from the best fit), so it will be a V-shaped for cases where the 

approximation works well. The likelihood profile of the 

transmission coefficient in year 2012 for 𝛽 = 1.2654 is 

shown in Figure 6. Figure 6 shows that the 𝛽 value falls into 

95% confidence interval which is between 1.15-1.43 and the 

𝛽 value with 1.2654 has the lowest z-score. Z-score shows 

how many standard deviations in an element is from the 

mean. A z-score equal to 0 represents the element equal to the 

mean. 

 

 
 

Figure 6: Likelihood profile for transmission coefficient 
 

III. RESULTS AND DISCUSSION 

 

To make the quantification process easier for the 

researchers who have no programming knowledge, a web-

application named Disease Modeling Parameter Calculator 

was developed to assist in quantifying the disease model 

parameter(s) for instance the transmission coefficient. This 

calculator was developed using R and Shiny package (a web 

application framework available in R that can turn the 

statistical analysis into interactive web applications). This 

tool is integrated in one disease monitoring system named 

Online Communicable Disease Monitoring System 

(OCDMS) [23]. This OCDMS aimed to provide occurrences 

prediction to inform the public health authorities about the 

seriousness of infected disease if no control measures are 

taken. This OCDMS driven by the SIR model and the 

calculator provide the critical parameters to this mathematical 

model in the OCDMS.  

 This tool provides a simple graphical user interface (GUI) 

that can estimate the parameter values with no additional 

programming skill. The GUI provides wizards which guide 

end users through the process as portrayed in Figure 7. Users 

can select a suitable model either an SIR model or a 

Susceptible-Exposed-Infected-Recovered (SEIR) model. 

Next, users can import the epidemiological dataset from 

Comma-Separated Values (CSV) files or text (txt) files by 

one click. Then, users need to input an initial value for the 

parameter for instance the transmission coefficient and finally 

users need to specify the time sequence. After finishing all 

parameterization in the first tab of the calculator, the 

calculator will automatically prompt the boxplot about the 

dataset for users to observe whether there is any outlier. 

Besides that, the transmission coefficient value will be 
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prompted in third tab and finally the final tab displays the 

visualization of the actual data and the estimated data 

according to the estimated transmission coefficient value 

from the calculator. The users can navigate and use the 

transmission coefficient value in their disease model for 

further analysis. 

 

 

 
 

Figure 7: Graphical Interface of the Disease Modeling Parameter Calculator 

 

As mentioned earlier, we would like to investigate the 

transmission coefficient of HFMD cases in Sarawak from 

year 2010 until 2014. The epidemiological data from year 

2010 until 2014 are imported into the calculator and the 

results of transmission coefficient are tabulated in Table 3. 

 
Table 3 

Estimated Parameter Results 

 

Year Number of Cases 
Transmission 

Coefficient Values 

2010 3904 37.438 

2011 979 38.592 

2012 10077 1.26 
2013 5877 36.178 

2014 6580 29.941 

 

Infectious disease is transmitted from some source to the 

susceptible individual. Transmission coefficient represents 

the infectiousness of a disease [21]. Transmission coefficient 

of infectious disease varies in time. For instance, the 

influenza varies seasonally due to the change of seasonal 

humidity [24]. A disease transmission from infected 

individuals to susceptible individuals defines the dynamic of 

an infectious disease. Transmission coefficient can be defined 

as the product of the total contact rate and transmission 

probability [5, 25]. Effective contact can be defined as any 

kind of contact between two individuals when one is 

infectious and another is susceptible. Effective contact rate is 

effective contacts per unit time while this can be expressed as 

total contact rate, which is the total number of contacts either 

effective or not, per unit time. The transmission probability, 

on the other hand, is the risk of infection given the contact 

between an infectious and a susceptible individual. 

The result shows the relationship where transmission rate 

in Table III is inversely proportional to number of cases. As 

the transmission coefficient increases, the numbers of HFMD 

cases will decreases. This happens because the number of 

population affect. We observed this relationship with the 

concept of parameter units in Table 4. The transmission 

coefficient is inversely proportional to the people or patients 

or can be considered as cases in Table 4. 

 
Table 4 

SIR Model Parameter Units [24] 

 
Parameter Description Unit 

𝛽 Transmission coefficient 
1

𝑝𝑒𝑜𝑝𝑙𝑒 𝑥 𝑑𝑎𝑦
 

𝛾 Recovery coefficient 
1

 𝑑𝑎𝑦
 

𝑆(𝑡, 𝑥) 
Number of susceptible people at time t 

and space x 
𝑝𝑒𝑜𝑝𝑙𝑒 

𝐼(𝑡, 𝑥) 
Number of infected people at time t 

and space x 
𝑝𝑒𝑜𝑝𝑙𝑒 

𝑅(𝑡, 𝑥) 
Number of recovered at time t and 

space x 
𝑝𝑒𝑜𝑝𝑙𝑒 

 

IV. CONCLUSION 

 
It can be concluded that we implemented the algorithm to 

quantify disease parameter effectively. By using the 

statistical modelling approach coupled with the Maximum 

Likelihood Estimation method, the parameter quantification 

process can be done in lesser time. Nevertheless, the 

transmission coefficient has been quantified with accuracy of 

95% confidence interval. Furthermore, an automated 

prototype, Disease Modeling Parameter Calculator has been 

developed to assist end-user to estimate the parameter in 

shorter time and less hassle. This automated tool is used to 

quantify parameter for Susceptible-Infected-Recovered (SIR) 

routine, the tool is ready to include different model routines 
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for example Susceptible-Exposed-Infected-Recovered 

(SEIR) model to quantify other parameters. 
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