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Abstract–Behavioural factors play a key and pivotal role in the 

success of a voluntary vaccination programme for combating 

infectious diseases. Individuals usually base their voluntary 

vaccination decisions on the perceived costs of vaccination and 

infection. The perceived cost of vaccination is easily influenced 

by the degree of protection conferred by vaccines against 

infection, also known as vaccine efficacy. Although certain 

vaccines have a decrease in its effectiveness in specific duration 

of time, they do offer a reduction of transmissibility and faster 

recovery for vaccinated infected individuals. These additional 

characteristics of imperfect vaccines are well-captured in an 

epidemic model with two classes of vaccine-induced immunity. 

In this paper, the interplays between these characteristics of 

vaccines, the dynamics of vaccination uptake and epidemics are 

investigated in the vaccination population games framework. 

Specifically, we study to what extent the population- and 

individual-level vaccination rates are influenced by these 

characteristics of vaccines at equilibrium state.  

 

Index Terms–Two Classes of Vaccine-Induced Immunity; 

Vaccination Population Games; Vaccine Efficacy.    

 

I. INTRODUCTION 

 

In modelling the voluntary vaccination behaviour on the 

disease spread by using game-theoretical approach (see 

review paper [1]), at microscopic level, upon receiving 

information on the diseases, susceptible individuals (i.e. the 

players of the game) decide whether or not to take vaccination 

(i.e. choosing vaccination or non-vaccination strategy) based 

on perceived costs of vaccination and disease. Individuals 

aim at minimizing the cost (i.e. maximizing the payoff). By 

opting for vaccination strategy, it is generally assumed that 

individuals get vaccinated immediately and the vaccine 

provides immunity against infection risks completely. 

However, if the assumption of perfect vaccine is relaxed, the 

perceived cost of vaccination could be vastly altered by the 

degree of protection offered by vaccines, which is highly 

associated with the vaccine efficacy and vaccine failure.  

The vaccine efficacy is referred to as the theoretical success 

rate in preventing vaccinated individuals from becoming 

infected with the disease [2]. In reviewing the literature, it is 

not uncommon that the assumptions about perfect vaccine 

efficacy are further relaxed so as to better reflecting the 

complexity of epidemic dynamics with vaccination. When 

vaccine is imperfect, the critical vaccination threshold for 

disease eradication becomes higher [3] due to the fact that 

being vaccinated does not necessarily confer vaccine-induced 

immunity. In general, vaccine failure could be categorized 

into the following three types. First, vaccine failure in take 

(“all-or-nothing”) which means that vaccine may not be able 

to generate immunity in a portion of people vaccinated [4]. 

Second, vaccine may not only offer partial protection to 

vaccinated individuals by lowering individuals’ susceptibility 

to infection, but also reduce the subsequent transmissibility 

and speed up recovery if the vaccinated individuals suffer 

from infection (i.e. breakthrough infection). This type of 

vaccine could be described as “leaky” in [4-5] or formally 

grouped as vaccine failure in degree. Centers for Disease 

Control and Prevention (CDC) [6] claims that if a person 

vaccinated with chickenpox vaccine does catch the disease, it 

is typically not that serious compared to other non-

vaccinators. Also, he/she may be able to recover faster. Third, 

the vaccine- and disease-induced immunity for quite a 

number of diseases fade with time, i.e. vaccine failure in 

duration [4,7]. Take the pertussis (whooping cough) vaccine 

as an example. For adolescents and adults, the vaccine could 

provide protection to roughly 7 out of 10 people in their first 

year after receiving the vaccine, whereas it just protects 3 or 

4 out of 10 people perfectly in four years after being 

vaccinated [8]. 

In voluntary vaccination program, individuals do not 

usually get vaccinated simultaneously. It follows that the 

population may consist of vaccinated individuals with fully 

protective vaccine-induced immunity, together with those 

who only have partial protection. This coexistence of fully 

and partially protected vaccinated individuals as well as its 

epidemic dynamics are well-captured in a Susceptible-

Vaccinated-Infected-Recovered-Susceptible (SVIRS) epide-

mic model with two classes of vaccine-induced immunity [9], 

in which vaccinated individuals first acquire high vaccine-

induced immunity with full protection from the disease. 

Then, their immunity wanes in two stages, namely from high 

to low immunity (i.e. individuals still have some partial 

protection) and from low to no immunity. In addition, the 

extended model in [9] also assumes that in breakthrough 

infections, the vaccine may be able to reduce transmissibility 

and speed up recovery for vaccinated infected individuals. 

Hence, the model is particularly useful for studying the 

epidemic dynamics with vaccine failure in degree and in 

duration. 

It could be postulated that people would not choose to 

vaccinate until the vaccine was sufficiently efficient in 

protecting vaccinated individuals from being infected, 

moreover, an increase in vaccine efficacy would boost the 
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vaccination rates. Having said that, when rational individuals 

act in their self-interest, free-riding effects can cause the 

vaccine uptake drops when the vaccine efficacy is high [10]. 

For vaccine immunity with low waning rate, vaccine 

coverage level is usually low but stable [11]. The reason is 

that the longer duration of protection given by the vaccine, 

the lower awareness of infection risk among susceptibles will 

be, and this usually cause severe infrequent epidemics [12]. 

The probability of non-vaccinating increases when vaccine is 

imperfect and this pose extra burden to the overall cost of 

optimum vaccination strategy [13]. It is found that the disease 

may invade in scale-free networks as vaccination behaviour 

is hard to spread across the population whenever the 

vaccination cost exceeds its threshold value for the vaccine 

imperfection [14]. Another likely consequence of the 

imperfect vaccine on voluntary vaccination behaviour is the 

phenomenon of multiple equilibria vaccination rates [15]. 

In light of the above-mentioned literatures, there exists an 

important interplay between vaccine imperfection, 

vaccination coverage and disease dynamics. But, these 

findings could be further elaborated by adding the definition 

of vaccine efficacy such that they are not simply limited to 

the reduction of susceptibility for vaccinated individuals. 

However, the influence of some other characteristics of 

imperfect vaccines (namely, the transition rate from high to 

low immunity for vaccinated individuals, the reduction of 

transmissibility and faster recovery in breakthrough 

infection) on individual vaccination decision-making has 

received relatively few attentions.  

Hence, in this paper, we make use of the SVIRS epidemic 

model with a two-class vaccine-induced immunity and 

additional characteristics of imperfect vaccine in [9], along 

with the vaccination population games framework [15], to 

explore the influence of these characteristics of vaccine 

failure in degree on the individual and population vaccination 

rates as well as the consequent effects on epidemic dynamics, 

without focussing on a specific vaccine-preventable disease. 

Besides that, the set of parameter values is purposely chosen 

to illustrate certain specific scenario or principle and explain 

the dynamical behaviour which the model can exhibit.  

In Section II, we present the details of vaccination 

population games for two-class vaccine-induced immunity 

model. Results are discussed in Section III and conclusion is 

given in Section IV.   

 

II. MODEL FORMULATION 

 

We develop the continuous-vaccination population game 

model for epidemic SVIRS dynamics (without demography) 

with two-class vaccine-induced immunity by taking into 

account the three additional characteristics of imperfect 

vaccines in the following four subsections. 

  

A. Population-scale dynamics  

The population-scale dynamics is given below: 

 

�̇� = −𝑆 − ̅𝑆 + 𝑅𝑅 + 𝑉𝑉2 

𝐼̇ = 𝑆 − 
𝑢
𝐼 

�̇� = 𝑉2 − 
𝑣
𝑊 

�̇� = 
𝑢
𝐼 + 

𝑣
𝑊 − 𝑅𝑅 

𝑉1̇ = ̅𝑆 − 
1
𝑉1 

𝑉2̇ = 
1
𝑉1 − 𝑉2 − 𝑉𝑉2 

(1) 

   

where dot represents time derivative. All variables and 

parameters in the model are listed in Table 1. The total 

population at time t, N(t), is divided into six compartments 

(or classes, states). We specifically denote the vaccination 

rate, ̅, with bar notation to emphasize that the quantity is of 

average population rate. The susceptibles, S, shift to the 

unvaccinated infected class, I, at the rate . We assume that 

individuals in the V1 class are fully protected from infection 

with high vaccine-induced immunity until they progress to 

the V2 class at a rate 1, in which they only have partial 

protection with low vaccine-induced immunity. When 

individuals in the V2 class suffer the breakthrough infection, 

they transfer to the vaccinated infected class, W, at a rate of 

 where  (0,1] is the probability of vaccine failure. 

Vaccinated infected individuals have faster recovery than 

unvaccinated infected individuals (i.e. 
𝑢
 

𝑣
). We assume 

that individuals in W class have reduction of transmissibility, 

 (0,1]. Hence, the force of infection is given by  =

 
𝐼+ 𝑊

𝑁
.     

 
Table 1 

Description of the variables and parameters of the model (1) 

 
Variables Description 

S 

I 
W 

R 

V1 
V2 

Susceptible individuals 

Unvaccinated and infected individuals 
Vaccinated and infected individuals 

Recovered individuals 

Vaccinated individuals with high vaccine-induced 
immunity 

Vaccinated individuals with low vaccine-induced 

immunity  

Parameters Description 

 

 

 

̅ 

 

Force of infection  

Disease transmission rate 

Reduction of transmissibility for individuals in W 
class 

Population vaccination rate  

Reduction of susceptibility for vaccinated individuals 
in V2 class; or equivalently, the probability of vaccine 

failure in degree, where 1   gives vaccine efficacy   

R 

V 

Disease-induced immunity waning rate  
Vaccine-induced immunity waning rate 

u 

v 

1 

Recovery rate for unvaccinated infected individuals 

Recovery rate for vaccinated infected individuals  
Transition rate for individuals in V1 class to V2 class 

 

The disease-free equilibrium (DFE) of model (1) is given 

by 𝐸0 = (𝑆0, 𝐼0,𝑊0, 𝑅0, 𝑉10, 𝑉20), where 𝐼0 = 𝑊0 = 𝑅0 = 0, 

𝑆0 =
𝑉1

𝑉1+(𝑉+1)̅
, 𝑉10 =

𝑉̅

𝑉1+(𝑉+1)̅
, 𝑉20 =

1̅

𝑉1+(𝑉+1)̅
  

and its effective reproduction number is: 

 

𝑅vac =



𝑢

𝑣

[

𝑣
𝑉1 +   

1
̅

𝑢

𝑉1 + (𝑉 + 
1
)̅

] (2) 

  

Let 𝐸∗ = (𝑆∗, 𝐼∗,𝑊∗, 𝑅∗, 𝑉1
∗, 𝑉2

∗) denote any endemic 

equilibrium point (EEP) of model (1). The non-zero equilibria 

of the model satisfy the following quadratic equation: 

 

𝑎2(
∗)2 + 𝑎1

∗ + 𝑎0 = 0 (3) 

  

where:  𝑎2 =  (𝑅 + 
𝑢
)

1

𝑣

> 0  

             𝑎1 =  
𝑢
[

1
̅(𝑅 + 

𝑣
) + 

𝑣
𝑅(

1
+ ̅)] 

+
1

𝑣
[𝑉(𝑅 + 

𝑢
) −   𝑅] 

             𝑎0 = 𝑅𝑢𝑣[𝑉1 + (𝑉 + 
1
)̅](1 − 𝑅vac) 
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The quadratic Equation (3) admits at most two feasible 

solutions.  

In the absence of vaccination (i.e. ̅ = 0), solving the 

quadratic Equation (3) gives two solutions, where one of 

them, ∗ = −
𝑉


< 0, is biologically infeasible. Thus, we 

take: 

 

∗(̅ = 0) = (− 
𝑢
)

𝑅

𝑅 + 
𝑢

 (4) 

  

In the case whereby susceptibles take vaccination instantly 

(i.e. ̅ → ), by rearranging equation (3) and finding the limit 

using L’Hopital’s rule, we obtain: 

 

lim
̅→ 

∗ =
[ 

1
− 

𝑣
(

1
+ 

𝑉
)]𝑅

 [
1
(𝑅 + 

𝑣
) + 

𝑣
𝑅]

 (5) 

  

B. Individual-scale Dynamics  

An efficient individual-scale model is developed based on 

a Markov process with variable transition rates derived from 

the population-scale model. That is, when the population 

dynamics reach its equilibrium (denoted by asterisk in 

superscript), the changes in a single individual’s disease state 

are governed by the following continuous-time Markov 

process [17]: 

 

�̇�(𝑡) = 𝐐∗𝐱(𝑡) 
 

with initial condition 𝐱(0) = [1, 0, 0, 0, 0, 0]𝑇, where 𝐱(𝑡) =
[𝑆(𝑡), 𝐼(𝑡),𝑊(𝑡), 𝑅(𝑡), 𝑉1(𝑡), 𝑉2(𝑡)]

𝑇 and: 

 

𝐐∗ =

[
 
 
 
 
 
 
−∗ −  0 0 𝑅 0 𝑉

∗ −
𝑢

0 0 0 0

0 0 −
𝑣

0 0 ∗

0 
𝑢


𝑣

−𝑅 0 0

 0 0 0 −
1

0

0 0 0 0 
1

−∗ − 𝑉]
 
 
 
 
 
 

 (6) 

 

In individual-scale dynamics, we denote the individual 

vaccination strategy rate with  (without bar notation). Note 

that  could either be the same or different from the 

population vaccination rate, ̅. In the context of game theory, 

the existence of a (Nash) equilibrium in a population game 

means a stable collection of individual strategies such that no 

one has any incentive to unilaterally switch his/her strategy 

[13]. Since player is regarded as playing the game against a 

single representative “individual” who plays the population 

average strategy in population games [16], the individual 

vaccination rate, , is said to be the same as the population 

vaccination rate, ̅, at Nash equilibrium, ∗ =  = ̅. Also, at 

Nash equilibrium, each player in a game is assumed to have 

selected the best response to the population’s strategy.  

       

C. Utility Calculation  

In population games, the utility (i.e. a measure of 

preference) of any strategy is dependent on both the 

individual’s strategy and population average strategy. Based 

on the assumption that nearly all individuals in the population 

use the population average strategy, the population is so large 

that its epidemic dynamics is not dramatically affected by the 

change of a single individual’s vaccination strategy [17]. 

 

Following [15], the closed form of the expected utility is 

given by: 

 

𝑈(, ̅) = [𝐟𝑇 + 𝟏𝑇(𝐅 • 𝐐∗)](ℎ𝐈 −  𝐐∗)−1𝐱(0) (7) 

 

where h represents the discount rate, 𝟏 = [1, 1, 1, 1, 1, 1]𝑇 , I 

denotes identity matrix, f is the vector of utility gains per unit 

time for individuals of each class and F gives the vector of 

instantaneous utility gains corresponds to each transition of 

state. F • Q* represents the Hadamard product. That is, the 

product of the components of F and Q*.   

When a person stays in the unvaccinated infected (resp. 

vaccinated infected) class, he/she accumulates the infection 

cost, cI (resp. cW). An instantaneous vaccination cost cV is 

being incurred to susceptibles when they move to vaccinated 

state in the V1 class. The cV includes not only the monetary 

cost (e.g. time spent) of getting vaccination, but also the 

psychological burden of developing vaccine side effects 

(VSE). Thus:  
 

             𝐟 =

[
 
 
 
 
 

0
−𝑐𝐼

−𝑐𝑊

0
0
0 ]

 
 
 
 
 

,      𝐅 =

[
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−𝑐𝑉 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

        

 

By using Equation (7) and taking lim
ℎ→ 0

ℎ𝑈(, ̅), the utility 

of strategy  to an individual in a population at steady state 

with strategy ̅ becomes: 

 

𝑈(, ̅) =
−𝑅1[𝑢1

∗ + 𝑢2]

𝑢3(
∗)2 + 𝑢4

∗ + 𝑢5

  (8) 

                                                                                   

where:  𝑢1 = (∗ + 𝑉)
𝑣
𝑐𝐼 + 

𝑢
𝑐𝑊 

             𝑢2 = 
𝑢

𝑣
 (∗ + 𝑉)𝑐𝑉 

             𝑢3 =  (𝑅 + 
𝑢
)

1

𝑣
 

             𝑢4 = 
1

𝑣
[𝑉(𝑅 + 

𝑢
) + 

𝑢
𝑅 ] 

+  
𝑢
[𝑅(

1
+ 

𝑣
) + 

1

𝑣
]  

             𝑢5 = 
𝑢

𝑣
𝑅[𝑉1 + (𝑉 + 

1
) ] 

 

As all the epidemiological parameters are positive, the 

utility calculated by Equation (8) is always in negative value 

(also known as disutility). Assuming that the population 

vaccination rate ̅ is given, individuals aim to minimize the 

loss of utility (i.e. maximize the disutility) by choosing their 

own individual vaccination rate . We assume that 𝑐𝑉  𝑐𝐼 and 

write the relative cost of vaccination to cost of infection as 

𝑐 =
𝑐𝑉

𝑐𝐼
, where 0 ≤ 𝑐 ≤ 1. For simplicity, hereinafter, we set 

𝑅 = 𝑉 =   and 𝑐𝑊 = 𝑐𝐼 = 1. 

We then compute the rate of change in utility when the 

individual vaccination rate  is varied by differentiating the 

utility Equation (8) with respect to . By equating the 

resulting derivative to zero, we obtain the following critical 

value c: 

 

𝑐 =
∗[ 2(∗)2𝑐11 + ∗𝑐12 +  2𝑐13]

 2(∗)3𝑐21 +  (∗)2𝑐22 +  2∗𝑐23 +  3𝑐24

 (9) 

 

where:  𝑐11 = 
𝑣
(

1
+ ) − 

1

𝑢

 

             𝑐12 = 2
𝑣
(

1
+ ) − ( + 1)

1

𝑢

 



Journal of Telecommunication, Electronic and Computer Engineering 
 

34 e-ISSN: 2289-8131   Vol. 9 No. 2-9  

             𝑐13 = 
𝑣
(

1
+ ) − 

1

𝑢

 

             𝑐21 = 
1

𝑣
(

𝑢
+ ) 

             𝑐22 = 
1

𝑣
[

𝑢
( + 2) + 2 ] 

             𝑐23 = 
1

𝑣
( + 2 

𝑢
+ 

𝑢
) 

             𝑐24 = 
1

𝑢

𝑣
 

 

Rearranging Equation (9), we obtain the following cubic 

equation in terms of *: 

 

𝐴3(
∗)3 + 𝐴2(

∗)2 + 𝐴1
∗ + 𝐴0 = 0 (10) 

 

where: 𝐴3 =  2[
1

𝑣
(

𝑢
+ )𝑐 + 

1

𝑢

− 
𝑣
(

1
+ )]  

            𝐴2 =  {
1

𝑣
[

𝑢
( + 2) + 2 ]𝑐 + 

1

𝑢
( + 1) 

 −2
𝑣
(

1
+ )} 

            𝐴1 =  2[
1

𝑣
( + 2 

𝑢
+ 

𝑢
)𝑐 +  

1

𝑢

 

                                         −
𝑣
(

1
+ )]  

            𝐴0 =  3
1

𝑢

𝑣
𝑐 > 0 

 

D. Population Games Analysis  

We assume that individuals are fully rational in making 

their vaccination decision and have complete knowledge of 

the epidemiological parameters, which includes the three 

additional parameters in the two-class vaccine-induced 

immunity model, namely the duration of staying in V1 class 

after vaccination, 1, the recovery rate, v and the reduced 

transmissibility, , for vaccinated infected individuals. 

Since Equation (3) is not linear and the mathematical 

relation between ̅ and * is not necessarily one-to-one, we 

could not replace the terms * in Equation (9) explicitly with 

its corresponding ̅  in order to examine the individuals’ best 

response (of their own vaccination rate ) on the population 

vaccination rate ̅. Considering that, we define the individual 

best response correspondence, best, by subdividing the 

relative cost of vaccination, c, into the following three 

subintervals: 

 

best(𝑐) = {

0            if              𝑐 >  𝑐no

[0,)    if 𝑐inst ≤ 𝑐 ≤ 𝑐no

            if            𝑐 <  𝑐inst

 (11) 

 

By taking 𝑅 = 𝑉 = , we first substitute Equation (4) 

into Equation (9) so as to determine the critical value of the 

relative cost of vaccination to infection, c, for the zero 

vaccination rate (i.e. ∗ =  = ̅ = 0), that is, the cost 

threshold for no vaccination, cno. If: 

 

𝑐 > 𝑐no =
( − 

𝑢
)[(

1
+ )𝑘0 −  

1

𝑢
(+ )]

 
1
(

𝑢
+ )𝑘0

 (12) 

 

where 𝑘0 = 
𝑣
[(1 − )

𝑢
+  +  ], then no one in the 

population will vaccinate at Nash equilibrium. Similarly, by 

substituting Equation (5) into Equation (9), we conclude that 

if 
1

> 
𝑣
(

1
+ ) and 𝑐 < 𝑐inst, with 𝑐inst is given by: 

𝑐inst = 
(1𝑘1−𝑘4𝑣)[𝑘1(𝑘4𝑣−1𝑢)−𝑘3 𝑢+𝑣𝑘4𝑘5]

1𝑣{𝑘51(𝑘1)2+𝑘1(𝑘3𝑢−𝑘5𝑘2)+𝑢𝑘3−𝑣𝑘4𝑘5}
 (13) 

  

where:  𝑘1 =    

             𝑘2 = 
𝑣
(

1
+ ) − 

1
 

             𝑘3 =  (
1
+ 

𝑣
) + 

𝑣

1
 

             𝑘4 = 
1
+  

             𝑘5 = 
𝑢

+  

 

then the susceptibles will vaccinate instantly (i.e. ∗ =  =
̅ →  ) at Nash equilibrium. Whenever 𝑐inst ≤ 𝑐 ≤ 𝑐no, the 

(Nash) vaccination rate is finite (i.e. ∗ =  = ̅ [0,)).   

As for every cubic equation with real coefficients, there 

always exists at least one solution among the real numbers. It 

is easy to obtain the closed-form discriminant of the cubic 

equation (10) with a formula: 

 

∆ = 18𝐴3𝐴2𝐴1𝐴0 − 4𝐴2
3𝐴0 + 𝐴2

2𝐴1
2 − 4𝐴3𝐴1

3 − 27𝐴3
2𝐴0

2 (14) 

 

By taking ∆ = 0, the cubic equation (10) is said to have a 

multiple root in which all its roots are real. This implies that 

the fold (or saddle-node) bifurcation occurs in the utility 

function (8). That is, the multiple endemic equilibria * (and 

its corresponding population vaccination rates ̅, if exist) 

collide and merge into one. After some algebraic 

manipulations, we obtain the following quadratic equation in 

terms of c, which gives the location of fold bifurcation:  

 

(𝑘7)
2{(𝑏2)

2𝑐2 + 2
1

𝑣
𝑏1𝑐 + (𝑏0)

2} = 0 (15) 

 

where:  𝑏2 = 
1

𝑣
[( − 1)

𝑢
− ] 

             𝑏1 = ( − 1)
𝑢
[(

𝑢
+ )

1
+ 𝑘6] + (

1

𝑢

− 𝑘6) 

             𝑏0 =  
1

𝑢

− 𝑘6 

             𝑘6 = 
𝑣
(

1
+ ) 

             𝑘7 = 
1

𝑢
(− 1) 3 

 

Theoretically, the fold bifurcation is expected to occur at 

the root(s) of the quadratic equation (15) which exists in an 

interval 0 ≤ 𝑐 ≤ 1.  

 

III. RESULTS AND DISCUSSION 

 

A. The cost thresholds for no, finite and instant 

vaccination  

Based on the Equation (11), with each corresponding pair 

of cost thresholds, we could divide the c- plane into three 

different regions, namely the regions for no vaccination, 

finite vaccination and instant vaccination, respectively. 

Whenever both c and  values fall under the region of no 

(resp. instant) vaccination, we concluded that no one (resp. 

everyone) in the population will choose vaccination strategy, 

at (Nash) equilibrium.   
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(a) Various values of 1, and  = 0.85 (b) Various values of 1, and  = 0.65 (c) Various values of v, and  = 0.85 

Figure 1: The cost thresholds for no vaccination and instant vaccination. 

      

Considering that the force of infection * in the limit of ̅ →
 will be non-negative whenever 

1
> 

𝑣
(

1
+ ) (see 

Equation (5), let   𝑉), we should view the region of 

instant vaccination as an unfavourable phenomenon in the 

context of infectious diseases control. This is due to the fact 

that the region of instant vaccination corresponds to a 

circumstance whereby even though every susceptible in the 

population vaccinated instantly, the disease eradication 

would still not be achieved. That is, the effective reproduction 

number could not be further reduced to below its sub-

threshold for disease eradication. The major factor 

contributing to this could be the vaccine efficacy. Unless 

otherwise specified, the parameter values (, , 
1
, 

𝑢
, 

𝑣
,) = 

(6, 0.85, 0.15, 1, 2, 0.05) are used for all numerical 

simulations in this paper.  

Since Equation (12) is a decreasing function of , the 

impact of vaccine efficacy on the case of no vaccination could 

be easily understood. For a specific vaccine efficacy (i.e. 1 −
 ), the longer duration the vaccinated individuals acquire 

high immunity (i.e. smaller 1), the higher the cost threshold 

for no vaccination, 𝑐no (three upper curves in Figure 1(a) and 

Figure 1(b)) will be. As far as the disease control is 

concerned, the higher 𝑐no, the better it will be simply because 

individuals will not get vaccinated if the relative cost of 

vaccination, c, exceeds 𝑐no. From an individual perspective, 

higher 𝑐no implies that a player’s utility is lower if he/she 

chooses not to vaccinate, and hence a rational individual is 

most likely to vaccinate when the rate of 1 is low. It is also 

worth noting that the Nash equilibrium vaccination rate is 

always finite when the parameter value 1 is small enough 

(say, 1 = 0.15) and the vaccine efficacy is almost perfect (i.e. 

 → 0). 

By examining Figure 1(a) in which  = 0.85, we note that 

the instant vaccination will occur for  > 0.4. As for 

intermediate values of , instant vaccination occurs for lower 

relative cost if the vaccinated individuals reside longer in the 

V1 class. Ironically, whenever  → 1, the smaller 1, the 

higher relative cost of vaccination will be for instant 

vaccination threshold. This could be attributed to the mixing 

of vaccinated individuals with two classes of vaccine-induced 

immunity in the population. That is, the model (1) are more 

realistic by including assumptions that the vaccine would 

offer, on one hand, full protection to individuals with high 

immunity and on the other hand, partial protection to 

individuals with low immunity. 

 

As the cost threshold for no vaccination (i.e. Equation (12)) 

is independent of , the three upper curves in Figure 1(a) and 

Figure 1(b) are identical. Since smaller , for instance  = 

0.65, implies that the greater reduction of transmissibility for 

vaccinated infected individuals, it follows that whenever the 

vaccinated individuals reside longer in the V1 class, the 

instant vaccination occurs but the diseases may not be 

eradicated, for lower c and narrower range of low vaccine 

efficacy (Figure 1(b)). If vaccine could offer greater reduction 

of transmissibility to individuals in the V1 class, then vaccines 

would bring greater benefit to the population than to the 

individuals who pay for the cost of vaccination. For that 

reason, opting for vaccination strategy voluntarily could be 

viewed as an altruistic behaviour [18], to some extent. If most 

susceptibles are altruistic, the spontaneous vaccination rate 

will eventually reach the social optimum [19]. In contrast 

with the assumption of selfishness in the classical game 

theory, indeed, it can be suggested that altruism play an 

important role in reducing the possibility of the coexistence 

of instant vaccination and disease prevalence with the 

reduction transmissibility, , as an additional characteristic of 

vaccine in our model even if the vaccine is not fully perfect. 

Figure 1(c) illustrates the effect of v on the Nash 

equilibrium vaccination rates. The most striking feature of 

this graph is that when v increases (i.e. faster recovery for 

vaccinated infected individuals), there is a significant upward 

shift for the cost threshold of no vaccination, particularly for 

higher probability of vaccine failure. This reflects that if 

vaccine is able to protect vaccinated individuals in the V2 

class from being infected, people will probably show minimal 

concern on the duration of infection in choosing their 

vaccination strategy. On the other hand, when vaccine does 

not reduce the vaccinated individuals’ susceptibility 

considerably, then the more the vaccine is able to speed up 

recovery in breakthrough infection, the higher the cost 

threshold for no vaccination will be. This implies that 

individuals will not refuse to vaccinate even though the 

relative cost of vaccination is high (i.e. low utility) whenever 

v value is large. Also, we observe that the unfavourable 

instant vaccination occurs for lower c but larger  when the 

duration of infection for individuals in the V2 class is 

shortened. 

 

B. Multiple Equilibria of Vaccination Rates 

We solve the cubic Equation (10) numerically for  = 0.15. 

Then, the graph of equilibrium force of infection * against 

relative cost of vaccination, c, is plotted in Figure 2(a). There 
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exists at most two endemic equilibria. Besides that, the 

numerical simulation in Figure 2(a) and Equation (15) both 

give the fold bifurcation at cfold = 0.874. When the c value is 

greater than cfold, no feasible endemic equilibrium is found. 

However, when the c value is smaller than and close to cfold, 

two endemic equilibria appear. By substituting * obtained 

into the quadratic Equation (3), and solving for ̅, the Nash 

equilibrium vaccination rate versus c is depicted in Figure 

2(b). It can be seen that neither instant vaccination nor 

multiple Nash equilibria vaccination rates are found for the 

parameter values used in Figure 2 in our vaccination 

population game with two-class vaccine-induced immunity. 

  
(a) (b)  

Figure 2: Dependence of * and * on c, for  = 6 and  = 0.15 

 

  
(a) (b) 

Figure 3: Dependence of * and * on c, for  = 18 and  = 0.15 
 

We then explore the extent to which a highly contagious 

disease could alter the individual vaccination decision-

making by increasing the disease transmission rate from  = 

6 to  = 18, for  = {0.85, 0.65, 0.15}. As ∗(̅ = 0) = 0.810, 

in Figure 3(a), we discard the graph whenever the numerical 

simulation produces ∗
 > 0.810. Likewise, the * in Figure 

3(a) shows the fold bifurcation does occur. This complicates 

the individual vaccination decision-making in the cases of  

= 18 whereby three Nash equilibria vaccination rates (i.e. two 

non-zero vaccination rates and one zero vaccination rate) 

appear in the interval 0.861  c  0.874 (Figure 3(b)). Since 

 is only implicitly appear in quadratic equation (3) through 

∗ =  
𝐼∗+ 𝑊∗

𝑁∗ , Figure 3(b) reveals that the greater reduction 

of transmissibility for vaccinated infected individuals (i.e. 

smaller ), the lower possibility that the unfavourable 

phenomenon of instant vaccination coexists with prevalent 

infectious diseases will be. For example, although its 

corresponding * are non-zero when the c values are small for 

all three values of , we find that the Nash equilibrium 

strategy for  = 0.15 is finite vaccination (i.e. * < 1), whereas 

for    0.65, the instant vaccination (i.e. * > 1) occurs. 

 

 

IV. CONCLUSION 

 

By using a two-class vaccine-induced immunity SVIRS 

model in the framework of vaccination population games, we 

find that the additional characteristics of imperfect vaccine 

may alter the individuals’ best response for vaccination 

strategy and consequently its epidemic dynamics. These 

characteristics complicate individuals vaccination behaviour 

and should not be overlooked in the effort of controlling 

infectious diseases by voluntary vaccination programme.   
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