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Abstract—This paper discusses the artificial neural network 

(ANN) implementation into a field programmable gate array 

(FPGA). One of the most difficult problem encounters is the 

complex equation of the activation function namely sigmoid 

function. The sigmoid function is used as learning function to 

train the neural network while its derivative is used as a network 

activation function for specifying the point at which the network 

should switch to a true state. In order to overcome this problem, 

two-steps approach which combined the unequal segmentation 

of the differential look-up table (USdLUT) and the second order 

nonlinear function (SONF) is proposed. Based on the analysis 

done, the deviation achieved using the proposed method is 95%. 

The result obtained is much better than the previous 

implementation that uses equal segmentation of differential 

look-up table. 

 

Index Terms—Differential Look-Up Table; FPGA; Second 

Order Nonlinear Function; Sigmoid Function. 

 

I. INTRODUCTION 

 
Artificial neural networks (ANN) is an information 

processing system that aims to simulate human brain's 

architecture and function. It is now a popular subject in many 

fields and widely used in many applications such as speed 

estimation [1], pattern recognition and classification [2], 

control application, function approximation, optimization 

[3][4][5] and also as embedded system [6]. Almost any 

problem with high complexity can be solved by multilayer 

perceptron of ANN [1]. One of the advantages of ANN is the 

ability of parallel processing that makes it a useful 

computational tool in practice [7]. Even without the inner 

working knowledge of neural network elements itself, the 

designer can apply the ANN [5][8]. A clear disadvantage of 

the software implementation with ANN is a slow execution 

for the real-time applications [7] and in fact, it is not 

achievable when the several stages of code are needed to be 

executed sequentially [8]-[10].  

Recently, hardware implementation has become important 

due to the performance gains of hardware systems compared 

to software implementation [11],[12]. When implementing 

the ANN into hardware, certain measures are to be taken to 

minimize the hardware usage since the hardware has limited 

of memory. Essentially, there are two types of hardware 

solutions. Complementary metal-oxide semiconductor 

(CMOS) device is an analogue hardware is one of the 

solutions. However analogue hardware undergoes inexact 

computation result and lack re-programmability [8]. Though 

the field programmable gate array (FPGA) digital hardware 

solution is the most interesting implementation of ANN, after 

taking into consideration of higher processing speed, cost of 

each implementation, reliability, flexible and 

reprogrammable architecture [1][13][14]. The challenge of 

this approach lies in how to implement the neuronal 

activation function when involving the complex equation 

with limited hardware resources to achieve the high-precision 

of ANN output. 

    

II. ACTIVATION FUNCTION 

 

ANN consists of a huge class of different architecture. 

Several factors need to be considered when implementing the 

ANN to solve a certain problem since the ANN only perform 

excellently when the selection is matched perfectly with the 

targeted problem. Multiple feedforward networks, one of the 

important class of ANN consist of the input layer, hidden 

layer and output layer. Each neuron from the previous layer 

feeds every neuron on the next layer. Neuron accumulates the 

sum of each it is input. The output value of each neuron is 

determined by the activation function of each neuron. Figure 

1 shows the general structure of multilayer artificial neural 

network.  

 

 
 

Figure 1: General structure of multilayer artificial neural network. 
 

Figure 2 shows one of the neurons where the calculation of 

the activation function involved. Basically, there are many 

types of activation function such as hard-limiter, piecewise 

linear, hyperbolic tangent and sigmoid function. Figure 3 

showing the pattern of the hard limiter and piecewise linear 

activation function. 

Sigmoid function and hyperbolic tangent function 

represented by Equation (1) and (2) respectively, are most 

commonly used as an activation function [15][16][17].  
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Figure 2: Abstracted model of neuron with connection. 

 

 
 

Figure 3: (a) Hard Limiter and (b) Piecewise Linear activation function 

   

   

However, there is lack of theoretical background for the 

selection of the activation function [18]. Shamseldin et. al. 

[19] and Shrestha et. al. [15] indicated that transfer function 

is interchangeable as long as they are in sigmoid shape. The 

sigmoid function is the activation function focused in this 

study since it is the most frequently used in back propagation 

neural network [18][20]. 

 The sigmoid function is used as learning function for 

training the neural network while it derivative is used as a 

network activation function for specifying the point at which 

the network should switch to a true state. Transition in which 

improves the neural response; unlike the hard-limiter or 

saturated linear activation function. [4]. Figure 4 shows the 

curve of the sigmoid function.   

 

 
 

Figure 4: Sigmoid function curve 

 
In the hardware implementation of ANN, the computation 

of a sigmoid function is one of the factors that constrain either 

the computation time or occupied area of the system. 

Currently, a few methods have been proposed and three of the 

following approaches are widely being used for realizing the 

sigmoid function into FPGA; lookup table (LUT), the 

piecewise linear approximation (PWL) and functional 

approximation in different input/output interval. LUT-based 

evaluation is the fastest among these three methods [21]. 

There are also other methods such as coordinate rotation 

digital computer (CORDIC) function [22], piecewise linear 

approximation for nonlinear (PLAN) function [23] and 

second order nonlinear function (SONF) [24]. 

 

 Lookup Table (LUT) 

The simplest implementation of the sigmoid function is 

using LUT. With LUT, the function is approximated by a 

limited number of uniformly distributed point [25]. The 

sigmoid function curve will be uniformly divided into 

segments as shown in Figure 5. 

  

 
 

Figure 5:  LUT implementation 

 

The value of each segment is stored in a table. This method 

presents the fastest design since it involves a delay of only 

one memory-access time to produce the result [3][21]. 

However, to achieve a higher degree of accuracy, the area 

requirement increases exponentially. The deviation achieved 

by this method is ranging from -0.005 to 0.005 with the used 

of 16 Kb of hardware memory [8]. However, the LUT design 

does not optimize well under floating point format. To some 

extent, the inbuilt RAM available in FPGA is used to realize 

the sigmoid function to optimize the area. Although this 

technique is simple to implement, when higher precision is 

needed, it requires a large area of hardware [2][26]. Hence it 

would be impractical to implement the LUT in a massive 

parallel ANN. 

 

 Piecewise Linear Approximation (PWL) 

The piecewise approximation method approximates by 

dividing the sigmoid function into five linear segments called 

pieces. Equation (3), representing the segments of the 

sigmoid function. The accuracy of the approximation can be 

achieved by increasing the number of segments, subsequently 

increasing the area utilization of hardware also. Based on this 

method, H. Amin et. al. [23], proposed an efficient piecewise 

linear approximation of a nonlinear function (PLAN). Table 

1, shows the implementation of PLAN technique to 

approximate the sigmoid function.  
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Table 1 
Implementation of PLAN to Approximate the Sigmoid Function 

 

Operation Condition 

Y=1 |x| >= 5 
Y=0.03125 * |x| + 0.84375 2.375 =< |x| < 5 

Y=0.125 * |x| + 0.625 1 =< |x| < 2.375 

Y=0.25 * |x| + 0.25 0=< |x| < 1 
Y = 1 - Y X < 0 

 

The significance of this method is that the multiplications 

operation can be replaced by simple shift operations; for 

example, if X = 2, then X is shifted 3 times to the right 

(0.12510 = 0.001,) and then added to 0.625 (0.101,), and for 

X = -2 the same result is subtracted from 1. These shifts and 

add operations, however, can be totally removed and replaced 

with a simple logic design by performing a direct 

transformation from input to sigmoidal output [23]. Since this 

method replaced the need of multiply/add operation by a 

simple gate design, which leads to a very small and fast digital 

approximation of the sigmoid function. Figure 6 and Figure 7 

shows the deviation achieved by using the PLAN function 

compared to the sigmoid function, and range of deviation 

between PLAN and sigmoid function respectively. 

 

 
Figure 6: Output comparison between sigmoid function and PLAN 

 

 
 

Figure 7: Deviation range between sigmoid function and PLAN 

 

 Piecewise Nonlinear Approximation  

Another method that can be used to implement the sigmoid 

function is piecewise second order approximation. Generally, 

this method approximated the sigmoid function by: 
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The main drawback of this method is the need of two 

multiplication and two additions, which result in a low 

conversion speed [3][8]. Then, Zhang et. al. [24], has 

presented second order nonlinear function (SONF). Zhang 

has divided the sigmoid function into 4 segments, represented 

by: 
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After simplification, this method can be implemented with 

one multiplier, two shifters and two XORs. Figure 8 shows 

the comparison output between the sigmoid function and 

SONF. Meanwhile, Figure 9 shows the plotted graph of 

deviation between sigmoid function and SONF where the 

deviation ranging from -0.022 to 0.022 [8]. However, this 

method lacks accuracy compared to LUT or CORDIC 

function. 

 

 CORDIC Function 

The trigonometric CORDIC algorithms were originally 

developed as a digital solution for real-time navigation 

problems.  The original work is credited to Jack Volder [27]-

[29]. This method is an efficient algorithm for computing the 

elementary function such as hyperbolic function, 

multiplication and division. CORDIC function gains 

accuracy at the cost of latency, where latency is defined as the 

number of clock cycles required from the start of the 

calculation until the resulting data is ready. In other words, 

more iteration is needed to achieve higher accuracy. In order 

to get the deviation ranging from -0.005 to 0.005, the 

CORDIC required 50 clock cycle to achieve that [22]. 

 

 Hybrid Method 

All the method discussed above have their own advantages 

and disadvantages. Though, the demand for higher accuracy 

with using fewer hardware resources and less computation 

time still there. To get optimum balance between accuracy 

and the hardware memory usage, the researcher now starts 

doing the hybrid method by combining two or more methods 

together for realizing the sigmoid function into FPGA. Ngah 

et. al. have proposed the combination of SONF and 

differential lookup table (dLUT) [30]. Basically, the ideas of 

Ngah et. al. paper is used the deviation value between the 

SONF and sigmoid function as shown in Figure 9 to create 

another LUT namely differential lookup table (dLUT). The 

deviation value is then divided equally into 64 segments and 

stored into dLUT. That’s mean each segment will have the 

same value. 

By using this two-steps approaches, the deviation of the 

sigmoid function can be reduced. The deviation is ranging 

from -0.0022 to 0.0022. Figure 10 shows the achieved 
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deviation comparison between the hybrid methods and the 

SONF.  

Table 2 shows the summary of the previous 

implementation of the sigmoid function in hardware. It shows 

that the deviation achieved by the hybrid method 10 times 

better than the SONF and twice compared to LUT and 

CORDIC function methods. 

 

 

III. PROPOSED APPROACH 
 

Based on the idea proposed by Ngah et. al., this paper 

proposed improvement method on implementing the dLUT. 

The same two-steps are still used in this study. Figure 9 shows 

that the graph is symmetrical at X= 0 and Y= 0 (0,0). 

Therefore, the values needed to be stored in the dLUT are 

reduced in half.   

Also, as can be seen in Figure 8 and Figure 9, the deviation 

for certain area are different. Along the X axis, the deviation 

from 0 to 1.2, and 3.6 to 8 are less compared to the deviation 

achieved from 1.2 to 3.6. Based on this situation, the value 

needed to be store for creating the differential LUT should be 

different. Instead of dividing the deviation value between 

SONF and sigmoid function, equally into 64 segments, this 

paper proposed the deviation value is divided unequally into 

64 segments.  

 

 
 

Figure 8: Output comparison between sigmoid function and SONF 
 

 
 

Figure 9: Deviation range between sigmoid function and SONF 

To realize this idea, first the deviation value between SONF 

and sigmoid function are first divided into 3 main areas A, B 

and C. These areas then are divided into 12, 32 and 20 

segments respectively. These numbers are choosing based on 

the deviation where area A is between -0.14 to 0, area B is 

between -0.014 to 0.022 and area C is between 0 to 0.022. 

These 3 areas (A, B and C) are having 3 different values. 

These values then are used to create dLUT. Figure 11 shows 

the proposed segmentation portion. Once the unequal 

segmentation of dLUT is created, it will be used to calculate 

the sigmoid function. 

 

 
 

Figure 10: Deviation achieved by Ngah et. al. is lesser than the SONF 

 

  
 

Figure 11: Deviation value between SONF and sigmoid function unequally 

divided into 64 segments 

 
IV. RESULT AND DISCUSSION 

 

Figure 12 shows the step of calculating the sigmoid 

function. First, the SONF is used to calculate the sigmoid 

function. As proposed, the deviation between the SONF and 

sigmoid function are used to create the dLUT by using 

unequal segmentation method. That’s mean, the value in each 

segment in dLUT is already known either positive of 

negative.  In the Second step, the output of SONF in the first 

step then is add/minus with the value from the dLUT to 

produce the final output of the sigmoid function. If the output 

from the first step is a positive number, and the value in the 

dLUT is a negative number, then these two number will be 

added. However, if the output from the first step in a positive 

number, and the value in the dLUT also a positive number, 

then the minus operation is used. By using this two-step 

approach, the combination of the SONF and the unequal 

segmentation of dLUT, the output of the sigmoid function can 

be reduced. 

The simulation was running on Altera Cyclone IV DE-115 

board. The program was implemented in Verilog HDL and 

post-simulated in Quartus II 13.0. The result from the 

simulation shows that the total of clock cycle and memory 

  Table 2 

Summary of Previous Sigmoid Function Implementation 

 

Implementation 
Clock 

Cycle 

Range different 

with Equation (1) 

Memory 

used 

LUT[22] 3 -0.005 to 0.005 16Kbits 
CORDIC[22] 50 -0.005 to 0.005 0 

SONF[24] 10 -0.022 – 0.022 0 

Two-step 
implementation  

with equal 

segmentation[30] 

13 -0.0022 to 0.0022 320 Bits 
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needed are same as Ngah et. al. These results are as expected 

since this paper used the same method as Ngah et. al. On the 

other hand, by using the proposed idea, unequal segmentation 

of deviation between SONF and the sigmoid function to 

create the dLUT while maintaining the step used by Ngah et. 

al., the deviation value for implementing the sigmoid function 

in hardware is improved. The deviation achieved by using 

this method is ranging from -0.0006 to 0.0006. More than 

95% improved compared to Ngah et. al. method. 

 

 
 

Figure 12: Two-steps implementation of the sigmoid function [30] 

 

V. CONCLUSION 

 

One of the characteristic features of ANN is performing the 

parallel mathematical calculations. Yet, this property is not 

achievable with PC software even with the fastest sequential 

processor when involving a large number of neurons where 

several stages of code are executed sequentially [7][9][31]. 

Implementing the ANN into the FPGA is one of the solutions. 

Challenge faced by the researcher is how to implement the 

activation function, especially the sigmoid function that 

involving the complex equation as shown by Equation (1). A 

few methods have been discussed. LUT is the simplest and 

fastest but required a huge amount of hardware resources to 

achieved higher accuracy. The same argument goes with 

CORDIC function. However, instead of hardware resources, 

CORDIC function suffers from long computation time since 

it required more iteration to achieve higher accuracy. 

Meanwhile, PWL and piecewise nonlinear approximation 

remove the need for multiplication and addition operation. 

Both methods need fewer hardware resources and are faster 

in computation time. However, in term of accuracy, both are 

still low compared to LUT and CORDIC. Then Ngah et. al. 

proposed two-steps approach where it had achieved 50% 

improvement compared to LUT and CORDIC function. 

While retain used the two-steps approach and proposed a new 

method by unequal segmentation for implementing the 

dLUT, this paper further reduces the deviation value of the 

sigmoid function by more than 95% compared to its 

predecessor.  
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