
 e-ISSN: 2289-8131 Vol. 9 No. 2-8 95

A Framework for Visual Modular Design of

Educational Operating System

Naeem Al-Oudat
Communications and Computer Engineering Department, Tafila Technical University, Jordan

naeemodat@ttu.edu.jo

Abstract— Operating systems are a vital part in most

computing systems. However, learning basic concepts of

operating systems are hard for normal students although they

are necessary and important. State of the art in teaching

operating systems depends on studying existing open source

operating systems like Linux, hacking teaching operating

systems like Xv6, or using simulators. Difficulties of learning

still there in these methods, since they require a great deal of

system programming techniques. In this paper, we propose a

novel direction in learning operating systems that is solely

dependent on visually building the operating system. By using

this method, we mitigated the complexity of going into system

programming details. The development platform consists of key

building blocks that a user can drag and drop into a working

panel to build his own operating system. Then, the user can

compile and run his own-built system on a virtual machine or

any Intel architecture hardware. This paper provides the

framework’s key points for building an operating system by

modules. It also discussed a simple prototype as a proof of the

concept.

Index Terms—Educational Framework; GTK+ GUI;

Modular Design; Teaching Operating System; Visual

Programming.

I. INTRODUCTION

The operating system is an important part of any computing

system no matter how complex it is. Therefore, teaching

operating systems concepts to computer engineering and

computer science students is necessary. Many researchers

have tried to make operating systems learning as simple as

possible through two main tracks. The first track is using

existing open source and free operating systems or designing

customized operating systems to let the students learn their

internals [1]-[11]. Internals learning is conducted by

modifying or rewriting some parts of the system. The second

track is mainly dependent on simulations on either virtual

machines or using some carefully designed standalone

applications [12]-[17]. The common goal for all of these

efforts is teaching the learners basic concepts of operating

systems.

Any operating system must have all or some of the

following basic components:

• Booting component. This part is responsible for

loading the first/basic stage of the kernel.

• Kernel component. The core or the inner part of the

operating system, where (in some operating system

architectures) the bulk of the operating system is

residing in it.

• Processes manager. Scheduling of the processes

loaded on the system is the main task of this

component.

• Memory manager. Utilizing the RAM and its

extensions in an efficient way is the role of this

component.

• File system. The main job of this component is to

abstract the way of dealing with data and storing it in

a permanent media as a hard disk.

Designing an environment where learners can work and

design the above basic components of an operating system

without getting into the complicated details is an urgent need

in today’s university classes of software systems. This

simplicity should not make the whole process as a

simulation/emulation-like design. A good option would be

using pre-programmed components. The learner can select

components and connect them to build and test a customized

operating system. Each component has several versions, one

can choose from them. Further, anyone who has good

programming abilities can open any component and modify

it, as he wants.

In this paper, we particularly concentrate on making

operating system design simple and at the same time ready to

run on an actual hardware. This is possible when using the

idea of visual programming. Where the learner drags and

drops blocks onto a workspace. Each block represents a ready

to run source code when properly connected to other blocks.

As such, a broader band of learners can benefit from the

proposed framework. To make the design as simple as

possible, we propose a visual drag and drop user interface

environment. However, the designed operating system is

ready to run on an actual computer architecture.

The rest of this paper is organized as follows. Framework

system architecture along with its details are given in Section

II. Section III discusses some of the characteristics of our

prototype for the proposed framework. In Section IV, some

related work is given. The paper is concluded and some future

work directions are given in Section V.

II. SYSTEM ARCHITECTURE

The proposed framework consists of three main stages,

Figure 1; operating system construction stage, operating

system building stage and test stage.

 Construction Stage

In this stage, the learner uses the operating system

construction interface for visually building an operating

system from the basic building blocks that are provided.

Figure 2 shows an example for an operating system

construction field.

Journal of Telecommunication, Electronic and Computer Engineering

96 e-ISSN: 2289-8131 Vol. 9 No. 2-8

Figure 1: System architecture

Figure 2: Construction field

Several components are available for the designer to

choose from them. Further, any student/learner can open any

component and modify the code therein to try whatever

functionality she/he wants.

Some of the basic components that can be included come

in four groups; core kernels, process managers, memory

managers and file systems group. In each group, we propose

two icons to be included, as shown in Figure 2, on the right

pane; main icon and a dummy icon. When choosing the main

icon in any group, a drop-down list of several options will

appear. The learner can choose from these options. One of the

available options is a custom choice, where the user can

modify the code directly. The other icon is a dummy icon.

The dummy icon is based on the group. For example, the

dummy icon in core kernel group displays a message of user

choice when the operating system is running.

One important notice is that a user can choose what

architecture he is intended to use. Each architecture has its

own low-level code that is different from other architectures.

In our prototype, we assumed Intel Architecture.

 Building Stage

The build and deploy part is used as a second stage where

the design is complete. If there is no error in the design, the

building stage is successful. Then a designed OS image is

deployed into a test stage as a virtual machine image or

burned/dumped in any removable media to run on a real

hardware.

This stage includes clicking on two buttons one after the

other. The first button is the build button, where the modules

dropped (during design stage) on the workspace are known.

By clicking on build button, a compilation process is started

for the source code. Then when this is successful, the image

runs on a virtual machine by clicking "Run Image" button.

 Test Stage

To test the performance of the built OS, a set of

experiments should be carried out on this OS and some

performance measures are recorded for further investigations

by the learner. These experiments can be preloaded on the

image or can be loaded during run time. The details of these

experiments are reserved for future work.

III. SYSTEM PROTOTYPE

We have designed a simple prototype for the described

framework. This prototype is depicted in Figure 2. The design

in this prototype is based on a monolithic kernel operating

system architecture [18].

The user interface consists of two panes. The right-hand

pane contains a set of icons groups: core kernel, process

managers, memory managers and file system group. Each

group has two icons, a main and a dummy icon. The main

icon is intended to give the user a set of choices. However,

we reserve this part for future work. For the kernel group,

dummy icon gives the learner an ability to enter a message,

which is shown on screen once the image is booted. The main

icon in kernel group defines the low-level codes to be used in

modules that come on top of the kernel. Main kernel module

starts other modules on top as well. Once the module icon

crosses the border, it turns to its final shape (see Figure 3).

For other groups the main and dummy icons do the same

job as follows:

• Process managers. This set uses RR (Round Robin)

scheduling algorithm to switch between two tasks.

Each of the tasks runs forever and print some message

on the screen, as shown in Figure 4.

• Memory managers. This set does basic and necessary

functionalities like preparing the memory as a set of

pages and allocating memory for the built-in tasks.

• File system. This group does not have any role in this

prototype since all the necessary code is loaded into

the memory and run from there.

Figure 3: Core kernel block

A Framework for Visual Modular Design of Educational Operating System

 e-ISSN: 2289-8131 Vol. 9 No. 2-8 97

Figure 4: Task switching between two tasks. One print on screen “I am task
2” and the other prints “I am task 1”

The designer should follow a logical building process.

Where he cannot add any block above the dummy block. For

example, when a dummy kernel block is added the user

cannot add process manager block or any other block. He can

remove the dummy kernel, add the core kernel block then add

the above blocks.

When finishing the design, a user can click on the build

button. By clicking the build button, the application starts to

include the needed file names in a Makefiles file (Figure 5),

then make utility can starts the compilation and copying (to

appropriate place) process. The copying (deployment)

method used here is writing an image to a disk. "dd" utility is

used to write the created image to a file that represents a

floppy disk. Once these steps completed successfully, a user

can click on "Run Image" button. Then the configured

VMWare player, [20], runs the image of the built operating

system.

Figure 5: Makefile file that is used to generate and deploy the OS image

IV. RELATED WORK

To hide the complexity of real-world operating systems

from new comers to the field, researchers proposed

educational operating systems that concentrate on learning

the implementation of basic concepts. The authors of [13]

proposed a simulator to ease teaching operating systems

concepts. [21] introduces an educational operating system

that is built upon larc architecture that is used in computer

architecture course. This operating system cannot be used on

real world systems.

Tiny educational operating systems is proposed in [10] to

help learners of OS courses. Ruth et. al. [22] proposed a new

implementation of Embedded Xinu on Qemu virtual machine

for operating systems course. Authors in [23], proposed an

operating system that provides undergraduate students a

platform for studying the multi-core systems. Tyrone

Nicholas and Jerzy A. Barchans [24] described a distributed

educational operating system (TOS) that is based on java.

Felix and Juan-Carlos proposed webgeneOS [25] where

students send their system programs via a network to run on

the actual operating system then they receive back the results.

BabyOS was presented in [26] as a compact operating system

that can be used also for embedded systems besides helping

learners of operating systems. In [14], the authors present a

graphical simulator for teaching the operating system.

Soetrisno Cahya, in [27], presented another simulator to help

students in understanding the basics of operating systems.

Fan Yile in [28], provides another virtual environment to run

many operating systems for educational purposes. In [29], a

complete user level operating system is proposed that can be

used for teaching operating systems. In [30], the authors

proposed MOS, another tiny operating system for students to

play with.

None of the researchers succeeded in hiding the complexity

of programming while building a real-life operating system.
The idea of visual development of programs and designs is

not new. It is out there for developer and learners in many

areas. Some examples are included here: Alice [31],

TouchDevelop [32] (programming environment by

Microsoft), Scratch [19] (coding tool by MIT for kids), Studio

[33] (Studio for game creation by YoYo Games), and

LabVIEW [34] (for engineers and scientists) to mention a

small list. We adopted their idea of design easiness for the

new comers to the field of operating systems.

V. CONCLUSIONS

In this paper, a novel method for teaching and building

operating system course was proposed. It is based on using

small configurable code blocks. Code blocks are represented

as visual modules, which can be added to each other in a

controlled way to build a functional OS image. The power of

this method is hiding the complexity of involving learners in

programming (system-level programming).

The proposed system is in its building phase. It needs

feedback from learners. As a future work, next operating

systems courses in Tafila Technical University will be taught

based on this design. Subsequently, feedback notes from

teachers, students and teaching assistants will be analyzed

and further modifications to the system will be conducted to

reflect the needs of all parties. In addition, as a future work,

this design can be on a server, where users can connect to and

build their own customized OS then receive the built image

for testing and experimenting.

ACKNOWLEDGMENT

This work is totally supported by Scientific Research and

Graduate Studies Deanship, Tafila Technical University,

Jordan, under the grant number 2016/4. The views and

Journal of Telecommunication, Electronic and Computer Engineering

98 e-ISSN: 2289-8131 Vol. 9 No. 2-8

conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied,

of the university.

REFERENCES

[1] Nieh, Jason, and Chris Vaill. "Experiences teaching operating systems

using virtual platforms and Linux." ACM SIGCSE Bulletin. Vol. 37.

No. 1. ACM, 2005.

[2] Laadan, Oren, Jason Nieh, and Nicolas Viennot. "Structured Linux
kernel projects for teaching operating systems concepts." Proceedings

of the 42nd ACM technical symposium on Computer science education.

ACM, 2011.
[3] Schmidt, Alexander, Andreas Polze, and Dave Probert. "Teaching

operating systems: windows kernel projects." Proceedings of the 41st

ACM technical symposium on Computer science education. ACM,
2010.

[4] Hess, Rob, and Paul Paulson. "Linux kernel projects for an

undergraduate operating systems course." Proceedings of the 41st

ACM technical symposium on Computer science education. ACM,

2010.

[5] Yodaiken, Victor. "Cheap operating systems research and teaching
with Linux." disponível on-line em http://luz. cs. nmt. edul-

rtlinux (1996).

[6] Román Otero, Rafael, and Alex A. Aravind. "MiniOS: An Instructional
Platform for Teaching Operating Systems Projects." Proceedings of the

46th ACM Technical Symposium on Computer Science Education.

ACM, 2015.
[7] Andrus, Jeremy, and Jason Nieh. "Teaching operating systems using

android." Proceedings of the 43rd ACM technical symposium on

Computer Science Education. ACM, 2012.
[8] Nieh, Jason, and Chris Vaill. "Experiences teaching operating systems

using virtual platforms and Linux." ACM SIGOPS Operating Systems

Review 40.2 (2006): 100-104.
[9] Ayers, D., P. Smith, and P. Ashton. SunOS Minix: a tool for use in

Operating System Laboratories. Department of Computer Science,

University of Canterbury, 1993.

[10] Qu, Bo, and Zhaozhi Wu. "Design and Implementation of Tiny

Educational OS." Recent Advances in Computer Science and

Information Engineering. Springer Berlin Heidelberg, 2012. 437-442.
[11] Cox, Russ, M. Frans Kaashoek, and Robert Morris. "Xv6, a simple

Unix-like teaching operating system." 2013-09-05]. http://pdos. csail.

mit. edu/6.828/2012/xv6. html (2011).
[12] Cohen, Shimon. "Teaching Operating Systems

Scheduling." Proceedings of Informing Science and IT Education

Conference. 2010.
[13] Mustafa, Besim. "YASS: a system simulator for operating system and

computer architecture teaching and learning." European Journal of

Science and Mathematics Education 1.1 (2013): 34-42.
[14] Maia, Luiz Paulo, Francis Berenger Machado, and Ageu C. Pacheco Jr.

"A constructivist framework for operating systems education: a
pedagogic proposal using the SOsim." ACM SIGCSE Bulletin 37.3

(2005): 218-222.

[15] Jones, David, and Andrew Newman. "RCOS. java: a simulated
operating system with animations." Teaching package 1 (2001).

[16] Maia, Luiz Paulo, and A. C. Pacheco. "A simulator supporting lectures

on operating systems." Frontiers in Education, 2003. FIE 2003 33rd
Annual. Vol. 2. IEEE, 2003.

[17] Koh, Jeong-Gook. "CPUSim: A Simulator supporting the education of

CPU Scheduling Algorithms." Journal of the Korea Institute of
Information and Communication Engineering 16.4 (2012): 835-842.

[18] Tanenbaum, Andrew S., and Herbert Bos. Modern operating systems.

Prentice Hall Press, 2014.
[19] Resnick, Mitchel, et al. "Scratch: programming for

all." Communications of the ACM 52.11 (2009): 60-67.

[20] Workstation, VMware, and VMWare Player. "VMware Inc." Palo
Alto, California, USA (2002).

[21] Corliss, Marc L., and Marcela Melara. VIREOS: an integrated,

bottomup, educational operating systems project with FPGA support.
Proceedings of the 42nd ACM technical symposium on Computer

science education. ACM, 2011.

[22] Ruth, Paul, and Dennis Brylow. An Experimental Nexos Laboratory
Using Virtual Xinu. Frontiers in Education Conference (FIE), 2011.

IEEE, 2011.

[23] Ziwisky, Michael, Kyle Persohn, and Dennis Brylow. A down-to-earth
educational operating system for up-in-the-cloud many-core

architectures. ACM Transactions on Computing Education (TOCE)

13.1 (2013): 4.
[24] Nicholas, Tyrone, and Jerzy A. Barchanski. TOS: an educational

distributed operating system in Java. ACM SIGCSE Bulletin. Vol. 33.

No. 1. ACM, 2001.
[25] Buenda, Felix, and Juan-Carlos Cano. Webgene: A Generative and

Web-Based Learning Architecture to Teach Operating Systems in
Undergraduate Courses. IEEE Transactions on Education 49.4 (2006):

464-473.

[26] Liu, Haifeng, Xianglan Chen, and Yuchang Gong. BabyOS: a fresh
start. ACM SIGCSE Bulletin 39.1 (2007): 566-570.

[27] Cahya, Soetrisno. Designing Operating System Simulator: A Learning

Tool. Computer Modeling and Simulation, 2009. UKSIM’09. 11th
International Conference on. IEEE, 2009.

[28] Yile, Fan. Utilizing the Virtualization Technology in Computer

Operating System Teaching. Measuring Technology and Mechatronics
Automation (ICMTMA), 2016 Eighth International Conference on.

IEEE, 2016.

[29] Atkin, Benjamin, and Emin Gn Sirer. PortOS: an educational operating

system for the Post-PC environment. ACM SIGCSE Bulletin. Vol. 34.

No. 1. ACM, 2002.

[30] Li, Hongwei, et al. Construction of the practical teaching system on
operating systems course. Education Technology and COMPUTER

Science (ETCS), 2010 Second International Workshop on. Vol. 1.

IEEE, 2010.
[31] Cooper, Stephen, Wanda Dann, and Randy Pausch. "Alice: a 3-D tool

for introductory programming concepts." Journal of Computing

Sciences in Colleges. Vol. 15. No. 5. Consortium for Computing
Sciences in Colleges, 2000.

[32] Horspool, R. Nigel, and Nikolai Tillmann. "TouchDevelop:

Programming on the Go. The Expert’s Voice. Apress, 2013."
[33] Rohde, Michael. GameMaker: Studio for Dummies. John Wiley &

Sons, 2014.

[34] Wells, Lisa K., and Jeffrey Travis. LabVIEW for everyone: graphical
programming made even easier. Prentice-Hall, Inc., 1996.

