

 e-ISSN: 2289-8131 Vol. 9 No. 2-8 37

Determining the Neuron Weights of Fuzzy Neural

Networks Using Multi-Populations Particle Swarm

Optimization for Rainfall Forecasting

M. Chandra C. Utomo, Wayan F. Mahmudy and Syaiful Anam
Universitas Brawijaya

ccahyo@hotmail.com

Abstract—Rainfall trends forecasting is essential for several

fields, such as airline and ship management, flood control and

agriculture and it can be solved by Fuzzy Neural Networks

(FNN) approach. However, one of the challenges in

implementing the FNN algorithm is to determine the neuron

weights. In comparison to Gradient Descent approach, Particle

Swarm Optimization (PSO) has been the common approach

used to determine neuron weights that result in a more accurate

output. However, one of the weaknesses of PSO approach is it

tends to convergence after iteration. To overcome this weakness,

this study uses a multi-population mechanism to improve the

result of PSO approach. The result shows that FNN optimized

by PSO with the multi-population mechanism provided a better

result than FNN optimized by standard PSO approach and by

Gradient Descent approach. Besides, FNN optimized by PSO

with multi-population mechanism is capable to produce a better

result than the standard Multi-layer Neural Networks optimized

by PSO.

Index Terms—Multi-Population; Particle Swarm

Optimization; Rainfall Forecasting; Time-series Forecasting.

I. INTRODUCTION

Rainfall information and forecast have a significant role in

some aspects of airline management, shipping, flood control,

agricultural, drainage, and meteorological services

worldwide. Rainfall rate is a stochastic process, which relies

on weather parameters such as temperature average, surface

pressure, relative humidity and wind speed [1]. However, the

forecast on time series problems is a challenge due to the

presence of a frequent increase in error rates almost every

time. This is due to the upsurge in crisp-less conditions in the

climates and season changes [2].

Vague conditions need special solutions, which we call

special ‘IF-THEN’. Special ‘IF-THEN’ can solve the

complex cases caused by the crisp-less conditions [3]. Beside

special ‘IF-THEN’, we need the learning algorithm to solve

the cases caused by the changes of conditions [4]. Then, to

simulate a stochastic process, many scientists worldwide

have developed a statistical model of stochastic weather

generator to generate a random rainfall rate, which usually

brings drawbacks when finding the similarities to their

weather data [5]. However, the disadvantages rely on some

tacit assumptions in most cases of the system. The

uncontrolled atmosphere on any basis may also cause random

(vague) behaviors of the system. Furthermore, the behaviors

initialization of the random, sensitive, and nonlinear equation

can result in inaccurate rainfall forecast as well as making it

difficult to solve [3].

II. RELATED WORKS

Predictions of rainfall trends have been generally made

using linear regression analysis. Iriany et al. [6] carried out a

study using Generalized Space-Time Autoregressive

(GSTAR) model by engaging the Ordinary Least Square

(OLS) method and approach with the Seemingly Unrelated

Regression (SUR) system to make a forecast on Tengger area,

East Java. However, this study can only predict the rainfall

trend instead rainfall rate.

Optimization of regression approach has been generally

made using Particle Swarm Optimization approach. Zhao and

Wang [7] applied a support vector regression optimized by

particle swarm optimization to forecast the rainfall in

Guangxi area. However, this study used only one month of

data sets.

For rainfall forecasting, Particle Swarm Optimization has

been used to optimize the linear regression using Sugeno

Fuzzy Inference System by Utomo and Mahmudy [8] and

standard Multi-layer Neural Networks by Sulaiman et al. [9].

The two approaches have their own advantages, in which

Fuzzy Inference System is capable to process crisp-less

conditions, while Multi-layer Neural Networks is capable to

process the cases caused by the changes of conditions. Multi-

layer Neural Networks is also a powerful algorithm for

malware detection by Huda et al. [10]. Wahyuni et al. [11]

proposed an approach of a dynamic system for rainfall

prediction in Tengger, Indonesia.

We proposed a hybrid Fuzzy Neural Networks to obtain

both advantages and then optimized it using Particle Swarm

Optimization with the multi-population mechanism. The

Particle Swarm Optimization is necessary to determine the

neuron weights after taking into consideration the challenges

in building the Fuzzy Neural Networks [12]. We also used

Utomo and Mahmudy [13] studies. The multi-population

mechanism is necessary to improve the observation of

Particle Swarm Optimization in wide area.

Another reason for proposing our method is that Fuzzy

Neural Networks are usually used to solve trends forecasting

case. For example, Shen, Shen and Chang [14] proposed a

Fuzzy Neural Networks for water flow estimation in the

drains during wet weather. Another study was conducted by

Corani and Guariso [15] that proposed a hybrid fuzzy model

and artificial neural networks for river flood prediction.

Journal of Telecommunication, Electronic and Computer Engineering

38 e-ISSN: 2289-8131 Vol. 9 No. 2-8

III. RESEARCH METHOD

The Fuzzy Neural Networks (FNN) algorithm is as shown

in Figure 1. The figure shows a flowchart of FNN algorithm

that consists of four steps: Firstly, the algorithm received

several forecasting parameters. While PSO strategy is

optimizing the FNN approach, the datasets are read at this

stage. Second, the parameters or datasets are processed by

fuzzy logic, which uses fuzzy rules and fuzzy sets. Third, the

parameters or datasets are processed by Multi-layer Neural

Networks, and the fourth step involves the derivation of the

forecasting result. The descriptions of developing the FNN

containing fuzzy rules, fuzzy sets, Multi-layer Neural

Networks and the optimization of FNN using Particle Swarm

Optimization with multi-population mechanism are presented

in this subsection.

Figure 1: Fuzzy Neural Networks Flowchart

Figure 2: Puspo, Sumber, Tosari, and Tutur Locations on Google Maps

A. Datasets

The rainfall trends datasets used in this study were from

Iriany et al. [6] and comparative analysis was carried out

among the datasets. The trends were collected from four

stations at Tengger area, East Java, namely Puspo, Sumber,

Tosari, and Tutur. Each location can be seen in Figure 2. We

used these stations because the areas can affect each other.

The collection was conducted and averaged each 10 days

between the period from 2005 to 2014. Further, the daily data

were recorded [16] in a time-series format [17]. The rainfall

pattern can be seen as depicted in Figure 3. The rainfall trends

data sets were obtained and recorded by the Body of

Meteorology, Climatology and Geophysical (Badan

Meteorologi, Klimatologi, dan Geofisika (BMKG)).

B. Fuzzy Rules

Drawn from a study by Utomo and Mahmudy [13], we

derived a sample of the fuzzy rules as shown in Table 1. All

of the Fuzzy Rules has 16-column parameters and 16-row

rules in total. The (t-1) means one day ago, (t-2) means two

days ago, (t-18) means eighteen days ago, and (t-36) means

thirty-six days ago. We used these parameters because the(t-

36) is often the same as (t-0), and it is often significantly

different from (t-0), and if (t-2) is nearly the same as (t-1),

then (t-0) is often different. The table shows that the alphabet

S represents a sunny condition, and alphabet R represents

rainy condition. The variables in the table have AND

relationship, therefore the first row can be read as,

IF (t-1) = sunny AND (t-2) = sunny AND (t-18) = rain

 AND (t-36) = sunny
THEN (t-0) = f1 (z1-17)

According to each condition on the rows, the result

obtained from an equation on the (t-0) column. The equation

on the (t-0) column is a zero order equation (or called as a

linear regression equation) as in Equation (1), where P is

Puspo, S is Sumber, O is Tosari, U is Tutur, and z1 until z17 is

a linear regression constant variable that can be seen in the

reference [13].

Table 1

Fuzzy Rules

t-0 Pt-1 Pt-2 Pt-18 Ut-36

f1 (z1-17) S S R S

f2 (z1-17) R R S R

f3 (z1-17) S R R S
f4 (z1-17) R S S R

f5 (z1-17) S S S R

.
f16 (z1-17) R R R S

𝑓(𝑧1−17) = 𝑧1 + 𝑧2 ∗ 𝑃𝑡−1 + 𝑧3 ∗ 𝑆𝑡−1 + 𝑧4 ∗
𝑂𝑡−1+. . . . +𝑧16 ∗ 𝑂𝑡−36 + 𝑧17 ∗ 𝑈𝑡−36

(1)

C. Fuzzy Sets

The fuzzy sets are required for normalization that converts

rainfall rate into the fuzzy rate. From the study of Utomo and

Mahmudy [13], we produced the fuzzy set as shown in Figure

4. Figure 4 shows sunny line as Equation (2) and rainy line as

Equation (3) to determine the association of the fuzzy rules

that have been mentioned above. The 16 inputs variables in

each column are processed by the fuzzy rules in each row. If

the value of the fuzzy rules is 0 (sunny), then the

normalization process uses Equation (2), otherwise, if the

value of the fuzzy rules is 1 (rain) then the normalization

process uses Equation (3), where x is the input variable.

Figure 3: Rainfall Pattern

-1.000

4.000

9.000

14.000

19.000

24.000

29.000

34.000

39.000

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

3
0
5

3
2
1

R
ai

n
fa

ll
 R

at
e

Recorded as Timeseries

Determining the Neuron Weights of Fuzzy Neural Networks Using Multi-Populations Particle Swarm Optimization

for Rainfall Forecasting

 e-ISSN: 2289-8131 Vol. 9 No. 2-8 39

𝑓(𝑥) = {

1 𝑥 ≤ 0
40 − 𝑥

40 − 0
 0 < 𝑥 < 40

0 40 ≤ 𝑥

 (2)

𝑓(𝑥) = {

0 𝑥 ≤ 0
𝑥 − 0

40 − 0
 0 < 𝑥 < 40

1 40 ≤ 𝑥

 (3)

Figure 4: Fuzzy Set

D. Multi-Layer Neural Networks

The simple example of Multi-Layer Neural Networks

architecture can be seen in Figure 5. As shown in Figure 5,

the architecture has two input neurons (X1, X2) with one bias

neuron (B1) on input layer, three hidden neurons (Z1, Z2, Z3)

with one bias neuron (B2) on a hidden layer, and lastly one

output neuron (Y1) on output layer. Bias neuron always has

the value of one. This study optimizes the number of hidden

layer and hidden neurons (Z1, Z2, …., Zn) to be used.

Between the neuron, there is one or are some lines following

the name as V01, V02, V03, V11, V12, V13, V21, V22, V23,

W01, W21, W21, and W31. Each line has a weight to process

the value to the next neuron. The processing example follows

Equation (4) that looks like Equation (1). The Y1 neuron can

be changed to Z1, Z2, and Z3 neuron following the previous

neuron and weight. This study also optimizes the weight of

each line.

Figure 5: The simple example of Multi-Layer Neural Networks

𝑌1 = 𝐵2 ∗ 𝑊01 + 𝑍1 ∗ 𝑊11 + 𝑍2 ∗ 𝑊21 + 𝑍3 ∗ 𝑊31 (4)

According to Fausett’s study [4], one hidden layer is

usually sufficient in most case but in some case, it is better to

have two hidden layers. Based on this opinion, this study

compared the differences in performance between the usage

of one hidden layer and two hidden layers. According to

Haykin’s study [12], the number of the hidden neuron is

between 2 to 9. According to Heaton’s study [18], the number

of hidden neuron should be based on the following rules:

i. between the amount of output layer to the amount of

input layer;

ii. 2/3 of the input neuron then plus with the output

neuron,

iii. not over than 2 times the amount of input neuron.

Based on the above conditions, this study attempts to find the

best requirement when using hidden neuron and determine

the weights of the neuron using Particle Swarm Optimization.

Fuzzy Rules has 16-row rules that have 16 output values.

Based on the16 output values, we used 16 input neurons on

multi-layer neural networks. Taking into consideration of 1

as the result value of a requirement, we used 1 output neuron

on multi-layer neural networks. By using 16 input neurons, 1

output neuron, and according to a study conducted by Heaton

[18], we obtained 12 hidden neurons. By using 16 input

neurons, one hidden layer with 12 hidden neurons, and 1

output neuron, we determined the neuron weights using

Particle Swarm Optimization.

E. Optimization

One challenge of building an FNN accurately was

determining neuron weights. To deal with this issue, we

employed Particle Swarm Optimization (PSO). PSO works

by representing several solutions of neuron weights as an

array [8]. The solution was defined as particles and several

solutions were defined as particle sizes. We also used a multi-

population mechanism to improve the result.

Figure 6: PSO Algorithm FlowChart

The PSO algorithm follows the sequence as shown in

Figure 6. To obtain the new solution, we update each particle

with Equation (5), Equation (6), and Equation (7) in each

iteration,

𝑉𝑖(𝑡) = 𝜃𝑉𝑖(𝑒 − 1) + 𝐶1𝑅1(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑒 − 1))

+ 𝐶2𝑅2(𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑒 − 1))
(5)

𝑋𝑖(𝑒) = 𝑉𝑖(𝑒) + 𝑋𝑖(𝑒 − 1) (6)

𝜃(𝑖) = 𝜃𝑚𝑎𝑥 − (
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

𝑒𝑚𝑎𝑥

) 𝑒 (7)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

F
u

zz
y
 R

at
e

Rainfall Rate

Rain Sunny

Journal of Telecommunication, Electronic and Computer Engineering

40 e-ISSN: 2289-8131 Vol. 9 No. 2-8

where:

(X) is an array of the solution.

(V) is an array of solution modifier (of called velocity).

(i) is an array’s index.

(e) is an iteration progress.

(θ) is an inertia moment.

(C1) and (C2) is a modifier’s constant.

(R1) and (R2) is a random floating value.

(pBest) is an array of the best solution from the (X) itself.

(gBest) is an array of the best solution from its population.

This study represents the requirement of using hidden

layer, hidden neuron in each hidden layer, and weights on

each neuron in an array. Since this study determines one or

two hidden layers only, the first index of the array contains

the amount of neuron on the first layer and the second index

of the array contains the amount of neuron of the second

layer. Both of them cannot contain zero value. However, if

one of them contains zero value, it means FNN algorithm uses

one hidden layer only. Each index of the array on the next

layer contains the weight for each neuron. The ordered of the

weight is according to the ordered of the neuron. The length

of the array is two plus the amount of weight requirement for

FNN algorithm. Then, to measure the effectiveness of the

FNN algorithm, we use RMSE equation as Equation (8),

𝑦 = √∑ (𝑥′𝑡 − 𝑥𝑡)2𝑛
𝑡=1

𝑛⁄
2

 (8)

where:

(y) is the RMSE result.

(x) is the real rainfall rate.

(x’) is the prediction of rainfall rate.

(t) is an index of datasets.

(n) is a datasets size.

F. Multi-Populations Mechanism

In the multi-population mechanism, several particles were

created as many as determined particle sizes and several

populations were created as many as determined population

sizes. In this study, we use double populations and each

population has 70 particles. After each of the several

iterations, a migration mechanism was performed. In the

migration mechanism, the best particle from each population

was switched. In this study, the migration mechanism was

performed for each of the 10 iterations in 10000 iterations.

Alongside the migration mechanism, random injection

mechanism was also performed. In the random injection

mechanism, several particles were selected and replaced with

new initialization. In this study, 2% of the particle size was

selected randomly and replaced with a new random

initialization.

IV. RESULTS AND ANALYSIS

Because Particle Swarm Optimization is one of the

heuristic algorithms, which provides a stochastic result, we

run it for100 times to get an average result [19].

A. Hidden Layer Requirement Test

According to Fausett [4], we tested the performance of

using one and two hidden layers. To measure the performance

of each requirement, we used Root Mean Squared Error

equation [13]. A better performance was provided when the

minimum RMSE was obtained. The result of the hidden layer

requirement test is shown in Table 2.

The table shows that using two hidden layers with RMSE

as 9.607892 is better than using 1 hidden layer with RMSE as

9.608295. But in our opinion, using 1 hidden layer is better

than 2 hidden layers. This is because RMSE as 9.607892

using 2 hidden layers is not significantly different from

RMSE as 9.608295 using 1 hidden layer. The minimum of

using hidden layer results in a lighter algorithm and this is the

reason for using two hidden layers while having closed

RMSE with one hidden layer. Therefore, we preferred to use

one hidden layer only.

Table 2

Hidden Layer Requirement Test Result

Hidden Layer RMSE

1 9.608295

2 9.607892

B. Ranged Hidden Neuron Requirement Test

In this section, we tried to find the best requirement of

using hidden neuron. According to Haykin [12], we tried to

find the best requirement between 2 to 9 of the hidden

neurons. According to Heaton [18], we tried to find the best

requirement between 1 to16, and between 1 to 32 hidden

neurons and compared them using 12 hidden neurons.

To measure the best requirement on each distribution, we

used mode. In statistics, the mode is the value that most

frequently occur or repetitive in an array or range of data. It

means that the most frequently occurring or repetitive is the

most proven best requirement. To measure the performance

of each requirement, we used Root Mean Squared Error

equation. The minimum RMSE was obtained, the better

performance was provided. The result of hidden neuron

requirement test is shown in Table 3.

Table 3 shows that the mode of 2 – 9 range requirement is

8, the mode of 1 – 16 range requirement is 12, and the mode

of 1 – 32 range requirement is 26. When we looked at the

minimum RMSE and compared them to 12 and 26 hidden

neurons with RMSE as 9.608905 and 9.609291, the

requirement of using 8 hidden neurons with RMSE as

9.607668 is better than the previous condition. It is abnormal

because conceptually, the usage of more hidden neuron

results in the achievement of minimum RMSE. We assumed

that the wider the range of data, the more difficult to optimize

using PSO. It is proven with the comparison with 12 range

requirement only. In this section, we describe the comparison

of several hidden neuron requirements individually.

Table 3

Best Hidden Neuron Requirement Test Result from Ranged of Data

Range of Data Mode RMSE

2 – 9 8 9.607668

1 – 16 12 9.608905

12 12 9.606
1 – 32 26 9.609291

.

C. Individually Hidden Neuron Requirement Test

In this section, we test the performance of using 12 hidden

neurons than 9, 16, and 32 hidden neurons respectively. To

measure the performance of each requirement, we used Root

Mean Squared Error equation. The minimum RMSE has been

obtained and the better performance was provided. The result

Determining the Neuron Weights of Fuzzy Neural Networks Using Multi-Populations Particle Swarm Optimization

for Rainfall Forecasting

 e-ISSN: 2289-8131 Vol. 9 No. 2-8 41

of neuron weights optimization test is shown in Table 4 and

Figure 7.

Figure 7: Best Hidden Neuron Requirement Test Result Individually

Table 4 shows that using 12 hidden neurons with a RMSE

as 9.605500 is better than using 9, 16, and 32 hidden neurons

with RMSE as 9.605731, 9.605515, and 9.605516

respectively. Conceptually, the usage of the more hidden

neuron, the minimum of RMSE must be obtained. However,

the test result in Table 4 shows that using 16 and 32 hidden

neurons provides a worse solution than using 12 hidden

neurons. We assumed that the use of more hidden neuron

results in the difficulty to determine the neuron weights

caused by its complexity. The complexity can cause the lack

of proper values to be used. Besides, as shown in Figure 7,

RMSE used together with all of the 12 hidden neurons is not

significantly different from the RMSE using 16 and 32 hidden

neurons since PSO is a stochastic algorithm [19]. In addition,

as shown in Figure 8, the pattern between 12, 16, and 32,

except 9 hidden neurons requirement were identified

similarly. Therefore, we preferred to use 12 hidden neurons.

Table 4

Best Hidden Neuron Requirement Test Result Individually

Hidden Neuron RMSE

9 9.608526

12 9.606946
16 9.607048

32 9.606853

D. Comparison

To know the value of this study, we compared it with a

standard multi-layer neural network optimized by PSO

strategy and FNN optimized by Gradient Descent strategy.

The RMSE comparison of each approach is shown in Table

5.
Table 5

RMSE Comparison

Approach RMSE

FNN-PSO with Multi-PopSize 9.605
FNN-PSO with Single-PopSize 9.614

Multi-layer ANN-PSO 9.614

Multi-layer ANN-GD 10.104
FNN-GD 14.765

Table 5 shows that the proposed FNN optimized by PSO

(FNN-PSO with Multi-PopSize) (with a RMSE as

9.6053003) is better than FNN optimized by Gradient

Descent (FNN-GD) (with a RMSE 14.764963). This study

proved that PSO strategy was capable of optimizing FNN

approach and performed better than Gradient Descent

strategy. The proposed FNN optimized by PSO (FNN-PSO

with Multi-PopSize) is also better than the standard multi-

layer neural networks optimized by PSO (Multi-layer ANN-

PSO) (with a RMSE as 9.614299). Therefore, PSO with

multi-populations mechanism is better to optimize FNN

approach (FNN-PSO with Multi-PopSize) than PSO with a

single population (FNN-PSO with Single-PopSize) (with a

RMSE as 9.6137196).

Figure 8: Hidden Neuron Requirement per Iteration Test Result

However, based on Figure 8, we were not satisfied with the

results. Figure 8 shows that the PSO with multi-populations

was converged after 1000 iteration and it was difficult to

provide a better result. In the following study, we tried to use

another evolutionary algorithm to optimize FNN weight for

rainfall trends forecasting.

V. CONCLUSION

The comparison between the standard Multi-layer Neural

Networks optimized by PSO with RMSE as 9.61, the hybrid

FNN optimized by PSO with RMSE as 9.6 shows that it was

capable of providing a better result.

The comparison with the Gradient Descent strategy with

RMSE as 14.76 and PSO strategy with RMSE as 9.6 proved

that the optimization of FNN algorithm performed better.

This is because PSO strategy processes several solutions than

the Gradient Descent strategy that processes only one

solution in the same iteration. Besides, the comparison with

simple PSO strategy with a RMSE as 9.61 and PSO with a

multi-population mechanism with a RMSE as 9.6 was better

to optimize FNN approach. In the next study, we will use

another evolutionary algorithm to optimize FNN algorithm

for rainfall trends forecasting problem.

REFERENCES

[1] J. Patel and F. Parekh, “Forecasting Rainfall Using Adaptive Neuro-

Fuzzy Inference System (ANFIS),” Int. J. Appl. Innov. Eng. Manag.,
vol. 3, no. 6, pp. 262–269, Jun. 2014.

[2] W. T. Zaw and T. T. Naing, “Modeling of Rainfall Prediction Over
Myanmar using Polynomial Regression,” presented at the International

Conference on Computer Engineering and Technoloogy (ICCET).,

2009, pp. 316–320.
[3] P. Guhathakurta, “Long-range monsoon rainfall prediction of 2005 for

the districts and sub-division Kerala with artificial neural network,”

Curr. Sci., vol. 90, no. 6, pp. 773–779, 2006.
[4] L. V. Fausett, Fundamentals Of Neural Network: Architecture,

Algorithms, and Applications, International Editions. Prentice-Hall,

1994.
[5] D. S. Wilks, “Multisite generalization of a daily stochastic

precipitation generation model,” J. Hydrol., vol. 210, no. 1, pp. 178–

191, 1998.

9.606

9.6065

9.607

9.6075

9.608

9.6085

9.609

9 12 16 32

R
M

S
E

Hidden Neuron

9.602

9.604

9.606

9.608

9.61

9.612

9.614

9.616

1

4
5

8
9

1
3
3

1
7
7

2
2
1

2
6
5

3
0
9

3
5
3

3
9
7

4
4
1

4
8
5

5
2
9

5
7
3

6
1
7

6
6
1

7
0
5

7
4
9

7
9
3

8
3
7

8
8
1

9
2
5

9
6
9

R
M

S
E

Iteration

9 12 16 32

Journal of Telecommunication, Electronic and Computer Engineering

42 e-ISSN: 2289-8131 Vol. 9 No. 2-8

[6] A. Iriany, W. F. Mahmudy, S. Handoyo, A. D. Sulistyono, and S. K.
Nisak, “GSTAR-SUR Model for Rainfall Forecasting in Tengger

Region, East Java,” in Planning for Environmental Sustainability for

the Well Being of Future Humanity, Malang, Indonesia, 2015.
[7] S. Zhao and L. Wang, “Support Vector Regression Based on Particle

Swarm Optimization for Rainfall Forecasting,” presented at the 3rd

International Joint Conference on Computational Science and
Optimization (CSO), 2010, pp. 484–487.

[8] M. C. C. Utomo and W. F. Mahmudy, “Optimization of Fuzzy’s Rules

for Rainfall Forecasting using Particle Swarm Optimization,” Int. J.
Eng. Inform., no. 2016.

[9] J. B. Sulaiman, H. Darwis, and H. Hirose, “Monthly Maximum

Accumulated Precipitation Forecasting Using Local Precipitation Data
and Global Climate Modes,” J. Adv. Intell. Intell. Inform., vol. 18, no.

6, pp. 999–1006, Nov. 2014.

[10] F. A. Huda, W. F. Mahmudy, and H. Tolle, “Android malware
detection using backpropagation neural network,” Indones. J. Electr.

Eng. Comput. Sci., vol. 4, no. 1, 2016.

[11] I. Wahyuni, P. F. E. Adipraja, W. F. Mahmudy, and A. Iriany, “Rainfall
Prediction in Tengger Indonesia: A System Dynamic Approach,” Int.

J. Intell. Eng. Syst., 2017.

[12] S. Haykin, Neural Networks. A Comprehensive Foundation, 2nd ed.
Singapore: Pearson Prentice Hall, 2005.

[13] M. C. C. Utomo and W. F. Mahmudy, “Optimization of Sugeno Fuzzy

Inference System’s Rules for Rainfall Forecasting,” IAENG, no. 2016.
[14] J. Shen, W. Shen, J. Chang, and N. Gong, “Fuzzy Neural Network for

Flow Estimation in Sewer Systems During Wet Weather,” Water

Environ. Res., vol. 78, no. 2, pp. 100–109, Feb. 2006.
[15] G. Corani and G. Guariso, “Coupling Fuzzy Modeling and Neural

Networks for River Flood Prediction,” IEEE Trans. Syst. Man Cybern.

Part C Appl. Rev., vol. 35, no. 3, pp. 382–390, Aug. 2005.
[16] K. G. Abistado and C. N. Arellano, “Weather Forecasting Using

Artificial Neural Network and Bayesian Network,” J. Adv. Intell.

Intell. Inform., vol. 18, no. 5, pp. 812–817, Sep. 2014.
[17] J. B. Yabuuchi and J. Watada, “Fuzzy Autocorrelation Model with

Confidence Intervals of Fuzzy Random Data,” J. Adv. Intell. Intell.

Inform., vol. 18, no. 2, pp. 197–203, Mar. 2014.
[18] J. T. Heaton, Introduction to Neural Networks for Java, 2nd ed. Heaton

Research, Inc., 2008.

[19] D. Novitasari, I. Cholissodin, and W. F. Mahmudy, “Hybridizing PSO
With SA for Optimizing SVR Applied to Software Effort Estimation,”

Telkomnika, vol. 14, p. 1, 2016.

