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Abstract—Rainfall trends forecasting is essential for several 

fields, such as airline and ship management, flood control and 

agriculture and it can be solved by Fuzzy Neural Networks 

(FNN) approach. However, one of the challenges in 

implementing the FNN algorithm is to determine the neuron 

weights. In comparison to Gradient Descent approach, Particle 

Swarm Optimization (PSO) has been the common approach 

used to determine neuron weights that result in a more accurate 

output. However, one of the weaknesses of PSO approach is it 

tends to convergence after iteration. To overcome this weakness, 

this study uses a multi-population mechanism to improve the 

result of PSO approach. The result shows that FNN optimized 

by PSO with the multi-population mechanism provided a better 

result than FNN optimized by standard PSO approach and by 

Gradient Descent approach. Besides, FNN optimized by PSO 

with multi-population mechanism is capable to produce a better 

result than the standard Multi-layer Neural Networks optimized 

by PSO. 

 

Index Terms—Multi-Population; Particle Swarm 

Optimization; Rainfall Forecasting; Time-series Forecasting. 

 

I. INTRODUCTION 

 

Rainfall information and forecast have a significant role in 

some aspects of airline management, shipping, flood control, 

agricultural, drainage, and meteorological services 

worldwide. Rainfall rate is a stochastic process, which relies 

on weather parameters such as temperature average, surface 

pressure, relative humidity and wind speed [1]. However, the 

forecast on time series problems is a challenge due to the 

presence of a frequent increase in error rates almost every 

time. This is due to the upsurge in crisp-less conditions in the 

climates and season changes [2]. 

Vague conditions need special solutions, which we call 

special ‘IF-THEN’. Special ‘IF-THEN’ can solve the 

complex cases caused by the crisp-less conditions [3]. Beside 

special ‘IF-THEN’, we need the learning algorithm to solve 

the cases caused by the changes of conditions [4].  Then, to 

simulate a stochastic process, many scientists worldwide 

have developed a statistical model of stochastic weather 

generator to generate a random rainfall rate, which usually 

brings drawbacks when finding the similarities to their 

weather data [5]. However, the disadvantages rely on some 

tacit assumptions in most cases of the system. The 

uncontrolled atmosphere on any basis may also cause random 

(vague) behaviors of the system. Furthermore, the behaviors 

initialization of the random, sensitive, and nonlinear equation 

can result in inaccurate rainfall forecast as well as making it 

difficult to solve [3]. 

 

II. RELATED WORKS 

 

Predictions of rainfall trends have been generally made 

using linear regression analysis. Iriany et al. [6] carried out a 

study using Generalized Space-Time Autoregressive 

(GSTAR) model by engaging the Ordinary Least Square 

(OLS) method and approach with the Seemingly Unrelated 

Regression (SUR) system to make a forecast on Tengger area, 

East Java. However, this study can only predict the rainfall 

trend instead rainfall rate. 

Optimization of regression approach has been generally 

made using Particle Swarm Optimization approach. Zhao and 

Wang [7] applied a support vector regression optimized by 

particle swarm optimization to forecast the rainfall in 

Guangxi area. However, this study used only one month of 

data sets. 

For rainfall forecasting, Particle Swarm Optimization has 

been used to optimize the linear regression using Sugeno 

Fuzzy Inference System by Utomo and Mahmudy [8] and 

standard Multi-layer Neural Networks by Sulaiman et al. [9]. 

The two approaches have their own advantages, in which 

Fuzzy Inference System is capable to process crisp-less 

conditions, while Multi-layer Neural Networks is capable to 

process the cases caused by the changes of conditions. Multi-

layer Neural Networks is also a powerful algorithm for 

malware detection by Huda et al. [10]. Wahyuni et al. [11] 

proposed an approach of a dynamic system for rainfall 

prediction in Tengger, Indonesia. 

We proposed a hybrid Fuzzy Neural Networks to obtain 

both advantages and then optimized it using Particle Swarm 

Optimization with the multi-population mechanism. The 

Particle Swarm Optimization is necessary to determine the 

neuron weights after taking into consideration the challenges 

in building the Fuzzy Neural Networks [12]. We also used 

Utomo and Mahmudy [13] studies. The multi-population 

mechanism is necessary to improve the observation of 

Particle Swarm Optimization in wide area. 

Another reason for proposing our method is that Fuzzy 

Neural Networks are usually used to solve trends forecasting 

case. For example, Shen, Shen and Chang [14] proposed a 

Fuzzy Neural Networks for water flow estimation in the 

drains during wet weather. Another study was conducted by 

Corani and Guariso [15] that proposed a hybrid fuzzy model 

and artificial neural networks for river flood prediction. 
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III. RESEARCH METHOD 

 

The Fuzzy Neural Networks (FNN) algorithm is as shown 

in Figure 1. The figure shows a flowchart of FNN algorithm 

that consists of four steps:  Firstly, the algorithm received 

several forecasting parameters. While PSO strategy is 

optimizing the FNN approach, the datasets are read at this 

stage. Second, the parameters or datasets are processed by 

fuzzy logic, which uses fuzzy rules and fuzzy sets. Third, the 

parameters or datasets are processed by Multi-layer Neural 

Networks, and the fourth step involves the derivation of the 

forecasting result. The descriptions of developing the FNN 

containing fuzzy rules, fuzzy sets, Multi-layer Neural 

Networks and the optimization of FNN using Particle Swarm 

Optimization with multi-population mechanism are presented 

in this subsection. 

 

 
 

Figure 1: Fuzzy Neural Networks Flowchart 

 

 
 

Figure 2: Puspo, Sumber, Tosari, and Tutur Locations on Google Maps 
 

A. Datasets 

The rainfall trends datasets used in this study were from 

Iriany et al. [6] and comparative analysis was carried out 

among the datasets. The trends were collected from four 

stations at Tengger area, East Java, namely Puspo, Sumber, 

Tosari, and Tutur. Each location can be seen in Figure 2. We 

used these stations because the areas can affect each other. 

The collection was conducted and averaged each 10 days 

between the period from 2005 to 2014. Further, the daily data 

were recorded [16] in a time-series format [17]. The rainfall 

pattern can be seen as depicted in Figure 3. The rainfall trends 

data sets were obtained and recorded by the Body of 

Meteorology, Climatology and Geophysical (Badan 

Meteorologi, Klimatologi, dan Geofisika (BMKG)). 

 

B. Fuzzy Rules 

Drawn from a study by Utomo and Mahmudy [13], we 

derived a sample of the fuzzy rules as shown in Table 1. All 

of the Fuzzy Rules has 16-column parameters and 16-row 

rules in total. The (t-1) means one day ago, (t-2) means two 

days ago, (t-18) means eighteen days ago, and (t-36) means 

thirty-six days ago. We used these parameters because the(t-

36) is often the same as (t-0), and it is often significantly 

different from (t-0), and if (t-2) is nearly the same as (t-1), 

then (t-0) is often different. The table shows that the alphabet 

S represents a sunny condition, and alphabet R represents 

rainy condition. The variables in the table have AND 

relationship, therefore the first row can be read as, 

 
IF (t-1) = sunny AND (t-2) = sunny AND (t-18) = rain  

 AND (t-36) = sunny  
THEN (t-0) = f1 (z1-17) 

 

According to each condition on the rows, the result 

obtained from an equation on the (t-0) column. The equation 

on the (t-0) column is a zero order equation (or called as a 

linear regression equation) as in Equation (1), where P is 

Puspo, S is Sumber, O is Tosari, U is Tutur, and z1 until z17 is 

a linear regression constant variable that can be seen in the 

reference [13]. 

 
Table 1 

Fuzzy Rules 

 

t-0 Pt-1 Pt-2 Pt-18 . . . . Ut-36 

f1 (z1-17) S S R . . . . S 

f2 (z1-17) R R S . . . . R 

f3 (z1-17) S R R . . . . S 
f4 (z1-17) R S S . . . . R 

f5 (z1-17) S S S . . . . R 

. . . . . . . . . . . . . . . . . . . . . . . . 
f16 (z1-17) R R R . . . . S 

 

𝑓(𝑧1−17) = 𝑧1 + 𝑧2 ∗ 𝑃𝑡−1 + 𝑧3 ∗ 𝑆𝑡−1 + 𝑧4 ∗
𝑂𝑡−1+. . . . +𝑧16 ∗ 𝑂𝑡−36 + 𝑧17 ∗ 𝑈𝑡−36  

(1) 

C. Fuzzy Sets 

The fuzzy sets are required for normalization that converts 

rainfall rate into the fuzzy rate. From the study of Utomo and 

Mahmudy [13], we produced the fuzzy set as shown in Figure 

4. Figure 4 shows sunny line as Equation (2) and rainy line as 

Equation (3) to determine the association of the fuzzy rules 

that have been mentioned above. The 16 inputs variables in 

each column are processed by the fuzzy rules in each row. If 

the value of the fuzzy rules is 0 (sunny), then the 

normalization process uses Equation (2), otherwise, if the 

value of the fuzzy rules is 1 (rain) then the normalization 

process uses Equation (3), where x is the input variable. 

 

 
Figure 3: Rainfall Pattern 
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𝑓(𝑥) = {

1                 𝑥 ≤ 0
40 − 𝑥

40 − 0
    0 < 𝑥 < 40

0                 40 ≤ 𝑥

 (2) 

  

𝑓(𝑥) = {

0                 𝑥 ≤ 0
𝑥 − 0

40 − 0
    0 < 𝑥 < 40

1                40 ≤ 𝑥

 (3) 

 
Figure 4: Fuzzy Set 

 

D. Multi-Layer Neural Networks 

The simple example of Multi-Layer Neural Networks 

architecture can be seen in Figure 5. As shown in Figure 5, 

the architecture has two input neurons (X1, X2) with one bias 

neuron (B1) on input layer, three hidden neurons (Z1, Z2, Z3) 

with one bias neuron (B2) on a hidden layer, and lastly one 

output neuron (Y1) on output layer. Bias neuron always has 

the value of one. This study optimizes the number of hidden 

layer and hidden neurons (Z1, Z2, …., Zn) to be used. 

Between the neuron, there is one or are some lines following 

the name as V01, V02, V03, V11, V12, V13, V21, V22, V23, 

W01, W21, W21, and W31. Each line has a weight to process 

the value to the next neuron. The processing example follows 

Equation (4) that looks like Equation (1). The Y1 neuron can 

be changed to Z1, Z2, and Z3 neuron following the previous 

neuron and weight. This study also optimizes the weight of 

each line. 
 

 
 

Figure 5: The simple example of Multi-Layer Neural Networks 

 
𝑌1 = 𝐵2 ∗ 𝑊01 + 𝑍1 ∗ 𝑊11 + 𝑍2 ∗ 𝑊21 + 𝑍3 ∗ 𝑊31 (4) 

 

According to Fausett’s study [4], one hidden layer is 

usually sufficient in most case but in some case, it is better to 

have two hidden layers. Based on this opinion, this study 

compared the differences in performance between the usage 

of one hidden layer and two hidden layers. According to 

Haykin’s study [12], the number of the hidden neuron is 

between 2 to 9. According to Heaton’s study [18], the number 

of hidden neuron should be based on the following rules: 

i. between the amount of output layer to the amount of 

input layer; 

ii. 2/3 of the input neuron then plus with the output 

neuron, 

iii. not over than 2 times the amount of input neuron. 

 

Based on the above conditions, this study attempts to find the 

best requirement when using hidden neuron and determine 

the weights of the neuron using Particle Swarm Optimization. 

Fuzzy Rules has 16-row rules that have 16 output values. 

Based on the16 output values, we used 16 input neurons on 

multi-layer neural networks. Taking into consideration of 1 

as the result value of a requirement, we used 1 output neuron 

on multi-layer neural networks. By using 16 input neurons, 1 

output neuron, and according to a study conducted by Heaton 

[18], we obtained 12 hidden neurons. By using 16 input 

neurons, one hidden layer with 12 hidden neurons, and 1 

output neuron, we determined the neuron weights using 

Particle Swarm Optimization. 

 

E. Optimization 

One challenge of building an FNN accurately was 

determining neuron weights. To deal with this issue, we 

employed Particle Swarm Optimization (PSO). PSO works 

by representing several solutions of neuron weights as an 

array [8]. The solution was defined as particles and several 

solutions were defined as particle sizes. We also used a multi-

population mechanism to improve the result.  

 

 
 

Figure 6: PSO Algorithm FlowChart 

 

The PSO algorithm follows the sequence as shown in 

Figure 6.  To obtain the new solution, we update each particle 

with Equation (5), Equation (6), and Equation (7) in each 

iteration, 

 

𝑉𝑖(𝑡) = 𝜃𝑉𝑖(𝑒 − 1) + 𝐶1𝑅1(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑒 − 1))

+ 𝐶2𝑅2(𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖(𝑒 − 1)) 
(5) 

  

𝑋𝑖(𝑒) = 𝑉𝑖(𝑒) + 𝑋𝑖(𝑒 − 1) (6) 

  

𝜃(𝑖) = 𝜃𝑚𝑎𝑥 − (
𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

𝑒𝑚𝑎𝑥

) 𝑒 (7) 
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where: 

( X ) is an array of the solution. 

( V ) is an array of solution modifier (of called velocity). 

( i ) is an array’s index. 

( e ) is an iteration progress. 

( θ ) is an inertia moment. 

( C1 ) and ( C2 ) is a modifier’s constant. 

( R1 ) and ( R2 ) is a random floating value. 

( pBest ) is an array of the best solution from the ( X ) itself. 

( gBest ) is an array of the best solution from its population. 

 

This study represents the requirement of using hidden 

layer, hidden neuron in each hidden layer, and weights on 

each neuron in an array. Since this study determines one or 

two hidden layers only, the first index of the array contains 

the amount of neuron on the first layer and the second index 

of the array contains the amount of neuron of the second 

layer. Both of them cannot contain zero value. However, if 

one of them contains zero value, it means FNN algorithm uses 

one hidden layer only. Each index of the array on the next 

layer contains the weight for each neuron. The ordered of the 

weight is according to the ordered of the neuron. The length 

of the array is two plus the amount of weight requirement for 

FNN algorithm. Then, to measure the effectiveness of the 

FNN algorithm, we use RMSE equation as Equation (8), 

 

𝑦 = √∑ (𝑥′𝑡 − 𝑥𝑡)2𝑛
𝑡=1

𝑛⁄
2

 (8) 

 

where: 

( y ) is the RMSE result. 

( x ) is the real rainfall rate. 

( x’ ) is the prediction of rainfall rate. 

( t ) is an index of datasets. 

( n ) is a datasets size. 

 

F. Multi-Populations Mechanism 

In the multi-population mechanism, several particles were 

created as many as determined particle sizes and several 

populations were created as many as determined population 

sizes. In this study, we use double populations and each 

population has 70 particles. After each of the several 

iterations, a migration mechanism was performed. In the 

migration mechanism, the best particle from each population 

was switched. In this study, the migration mechanism was 

performed for each of the 10 iterations in 10000 iterations. 

Alongside the migration mechanism, random injection 

mechanism was also performed. In the random injection 

mechanism, several particles were selected and replaced with 

new initialization. In this study, 2% of the particle size was 

selected randomly and replaced with a new random 

initialization. 

 

IV. RESULTS AND ANALYSIS 

 

Because Particle Swarm Optimization is one of the 

heuristic algorithms, which provides a stochastic result, we 

run it for100 times to get an average result [19]. 

 

A. Hidden Layer Requirement Test 

According to Fausett [4], we tested the performance of 

using one and two hidden layers. To measure the performance 

of each requirement, we used Root Mean Squared Error 

equation [13]. A better performance was provided when the 

minimum RMSE was obtained. The result of the hidden layer 

requirement test is shown in Table 2. 

The table shows that using two hidden layers with RMSE 

as 9.607892 is better than using 1 hidden layer with RMSE as 

9.608295. But in our opinion, using 1 hidden layer is better 

than 2 hidden layers. This is because RMSE as 9.607892 

using 2 hidden layers is not significantly different from 

RMSE as 9.608295 using 1 hidden layer. The minimum of 

using hidden layer results in a lighter algorithm and this is the 

reason for using two hidden layers while having closed 

RMSE with one hidden layer. Therefore, we preferred to use 

one hidden layer only. 

 

 
Table 2 

Hidden Layer Requirement Test Result 

 

Hidden Layer RMSE 

1 9.608295 

2 9.607892 

 

B. Ranged Hidden Neuron Requirement Test 

In this section, we tried to find the best requirement of 

using hidden neuron. According to Haykin [12], we tried to 

find the best requirement between 2 to 9 of the hidden 

neurons.  According to Heaton [18], we tried to find the best 

requirement between 1 to16, and between 1 to 32 hidden 

neurons and compared them using 12 hidden neurons. 

To measure the best requirement on each distribution, we 

used mode. In statistics, the mode is the value that most 

frequently occur or repetitive in an array or range of data. It 

means that the most frequently occurring or repetitive is the 

most proven best requirement. To measure the performance 

of each requirement, we used Root Mean Squared Error 

equation. The minimum RMSE was obtained, the better 

performance was provided. The result of hidden neuron 

requirement test is shown in Table 3. 

Table 3 shows that the mode of 2 – 9 range requirement is 

8, the mode of 1 – 16 range requirement is 12, and the mode 

of 1 – 32 range requirement is 26. When we looked at the 

minimum RMSE and compared them to 12 and 26 hidden 

neurons with RMSE as 9.608905 and 9.609291, the 

requirement of using 8 hidden neurons with RMSE as 

9.607668 is better than the previous condition. It is abnormal 

because conceptually, the usage of more hidden neuron 

results in the achievement of minimum RMSE. We assumed 

that the wider the range of data, the more difficult to optimize 

using PSO. It is proven with the comparison with 12 range 

requirement only. In this section, we describe the comparison 

of several hidden neuron requirements individually. 

 
Table 3 

Best Hidden Neuron Requirement Test Result from Ranged of Data 

 

Range of Data Mode RMSE 

2 – 9 8 9.607668 

1 – 16 12 9.608905 

12 12 9.606 
1 – 32 26 9.609291 

. 

C. Individually Hidden Neuron Requirement Test 

In this section, we test the performance of using 12 hidden 

neurons than 9, 16, and 32 hidden neurons respectively. To 

measure the performance of each requirement, we used Root 

Mean Squared Error equation. The minimum RMSE has been 

obtained and the better performance was provided. The result 
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of neuron weights optimization test is shown in Table 4 and 

Figure 7. 

 

 
Figure 7: Best Hidden Neuron Requirement Test Result Individually 

Table 4 shows that using 12 hidden neurons with a RMSE 

as 9.605500 is better than using 9, 16, and 32 hidden neurons 

with RMSE as 9.605731, 9.605515, and 9.605516 

respectively. Conceptually, the usage of the more hidden 

neuron, the minimum of RMSE must be obtained. However, 

the test result in Table 4 shows that using 16 and 32 hidden 

neurons provides a worse solution than using 12 hidden 

neurons. We assumed that the use of more hidden neuron 

results in the difficulty to determine the neuron weights 

caused by its complexity. The complexity can cause the lack 

of proper values to be used. Besides, as shown in Figure 7, 

RMSE used together with all of the 12 hidden neurons is not 

significantly different from the RMSE using 16 and 32 hidden 

neurons since PSO is a stochastic algorithm [19]. In addition, 

as shown in Figure 8, the pattern between 12, 16, and 32, 

except 9 hidden neurons requirement were identified 

similarly. Therefore, we preferred to use 12 hidden neurons. 

 
Table 4 

Best Hidden Neuron Requirement Test Result Individually 
 

Hidden Neuron RMSE 

9 9.608526 

12 9.606946 
16 9.607048 

32 9.606853 

 

D. Comparison 

To know the value of this study, we compared it with a 

standard multi-layer neural network optimized by PSO 

strategy and FNN optimized by Gradient Descent strategy. 

The RMSE comparison of each approach is shown in Table 

5. 
Table 5 

RMSE Comparison 

 

Approach RMSE 

FNN-PSO with Multi-PopSize 9.605 
FNN-PSO with Single-PopSize 9.614 

Multi-layer ANN-PSO 9.614 

Multi-layer ANN-GD 10.104 
FNN-GD 14.765 

 

Table 5 shows that the proposed FNN optimized by PSO 

(FNN-PSO with Multi-PopSize) (with a RMSE as 

9.6053003) is better than FNN optimized by Gradient 

Descent (FNN-GD) (with a RMSE 14.764963). This study 

proved that PSO strategy was capable of optimizing FNN 

approach and performed better than Gradient Descent 

strategy. The proposed FNN optimized by PSO (FNN-PSO 

with Multi-PopSize) is also better than the standard multi-

layer neural networks optimized by PSO (Multi-layer ANN-

PSO) (with a RMSE as 9.614299). Therefore, PSO with 

multi-populations mechanism is better to optimize FNN 

approach (FNN-PSO with Multi-PopSize) than PSO with a 

single population (FNN-PSO with Single-PopSize) (with a 

RMSE as 9.6137196). 

 

 

 
Figure 8: Hidden Neuron Requirement per Iteration Test Result 

 

However, based on Figure 8, we were not satisfied with the 

results. Figure 8 shows that the PSO with multi-populations 

was converged after 1000 iteration and it was difficult to 

provide a better result. In the following study, we tried to use 

another evolutionary algorithm to optimize FNN weight for 

rainfall trends forecasting. 

 

V. CONCLUSION 

 

The comparison between the standard Multi-layer Neural 

Networks optimized by PSO with RMSE as 9.61, the hybrid 

FNN optimized by PSO with RMSE as 9.6 shows that it was 

capable of providing a better result. 

The comparison with the Gradient Descent strategy with 

RMSE as 14.76 and PSO strategy with RMSE as 9.6 proved 

that the optimization of FNN algorithm performed better. 

This is because PSO strategy processes several solutions than 

the Gradient Descent strategy that processes only one 

solution in the same iteration. Besides, the comparison with 

simple PSO strategy with a RMSE as 9.61 and PSO with a 

multi-population mechanism with a RMSE as 9.6 was better 

to optimize FNN approach. In the next study, we will use 

another evolutionary algorithm to optimize FNN algorithm 

for rainfall trends forecasting problem. 
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