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Abstract—A method of the synthesis of memristive systems 

with prescribed pinched hysteresis loops is described. Since the 

loop has a connection to the Fourier components of the system 

response to sinusoidal excitation, the method can be used for 

designing nonlinear applications of memristive systems that 

work on the principle of spectrum enrichment. 

 

Index Terms—Memristor; Pinched Hysteresis Loop; 

Spectrum; Synthesis. 

 

I. INTRODUCTION 

 

The development of a nano-device in Hewlett-Packard Labs 

in 2008 [1] whose behavior resembles that of the memristor, 

i.e. the ideal circuit element introduced into the circuit theory 

in 1971 by L. Chua [2], initiated intensive research in the field 

of memristive systems [3], particularly towards nonvolatile 

memories for computer industry [4]. Since the memristor is, 

in fact, an analog circuit element, a number of papers have 

also been published about the potential applications of 

memristive systems for analog signal processing [5]. 

Current advances in nanotechnologies aim at creating 

conditions that enable designing and implementing 

memristive systems of prescribed characteristics. For 

example, some works describe an “HP memristor” with a 

special geometry which will provide a nonlinear relationship 

between memristance and the integral of the terminal voltage 

[6], [7]. However, papers dealing with a systematic design of 

memristive systems with prescribed behavior for concrete 

applications are not currently available. 

The v – i (voltage-current) pinched hysteresis loop as the 

well-known fingerprint of the memristive system is 

observable under its periodical excitation [8]. Since this loop 

is a Lissajous curve generated by periodical voltage and 

current waveforms, it raises the possibility of analyzing the 

connection between the type or the shape of the loop and the 

spectral components of the waveforms. The advantage of 

such an approach consists in coming to know the Fourier 

components of the response (for example the current) to the 

excitation (for example the voltage). This spectrum can be 

modified via tweaking the loop such that it will be optimal for 

a given application (for example with the aim to generate a 

dominant higher harmonic component for a frequency 

multiplier). 

Since memristive systems introduce nonlinear distortion, 

particularly in the hard switching operation, some works deal 

with the analysis of this distortion, especially in the frequency 

domain. It is shown in [9] that, under certain conditions, 

dominant spectral components can appear in the response of 

the memristive system to sinusoidal excitation. This 

phenomenon can be made use of for designing analog 

systems that work on the principle of spectrum enrichment 

via the nonlinear operation and subsequent frequency-domain 

filtering. The paper [10] studies the generation of the second 

and higher harmonic components in the response of a passive 

memristor to sinusoidal excitation in a simple circuit with one 

memristor and also with four memristors in a bridge. It is 

proved that, in comparison with conventional diode-based 

circuits, memristive networks can provide considerably 

higher ratios of powers of the higher harmonics to the power 

of the driving signal. 

This paper deals with the synthesis of memristive systems 

that can generate pinched hysteresis loops with the so-called 

higher-order touching points at the v-i origin. The synthesis 

is based on the knowledge that such a type of touching is 

possible only under a specific spectrum of the memristor 

current. The methodology described is also useful for various 

modifications of the task, and here it can serve as an 

introductory study of the synthesis of memristive systems 

with prescribed types of behavior. 

 

II. STARTING POINTS OF THE SYNTHESIS 

 

Consider a voltage-controlled first-order memristive 

system and its port and state equations 

 
 )(),()( tvvxgti  , (1) 

 

 ),( vxf
dt

dx
 . (2) 

 
where, i, v, and x are the voltage, current, and internal state 

variable, g is the memductance, and f is a piece-wise-

continuous function. The conclusions of this paper can be 

also used for the dual case of current-controlled memristive 

systems. 

With the exception of special cases such as the ideal 

memristor in the sense of its axiomatic definition [2], the 

region of the values of the state variable x is limited to a 

certain subset Rx of real numbers. This is given by the 

principle of operation of the concrete mem-system. For 

example, the state variable of the well-known TiO2 memristor 

[1] is the normalized width of the doped region, which can 

swing within the interval [0,1]. 

Consider a memristive system with its initial state x0ϵ Rx. 

At time t = 0 we start its excitation by a sinusoidal voltage 

 

 v(t) = Vmax sin(t), (3) 

 

where Vmax is the amplitude,  = 2/T is the angular 

frequency, and T is the repeating period. Let us analyze only 

such systems (1), (2) that can provide transitions to periodical 
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steady state, modeled by a periodical function x(t) ϵ Rx, whose 

fundamental harmonic component will have the repeating 

frequency . Then the current i in (1) will be a periodic 

function of time which can be expanded into the Fourier 

series 
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The v – i pinched hysteresis loop is a Lissajous curve drawn 

via a sinusoidal voltage v and periodical current i according 

to (3), (4). 

The starting condition for a correct operation of an arbitrary 

memristive system is zero current for zero voltage, or the 

passage of the loop through the v – i origin. For the excitation 

(3) and the response (4), the consequent condition for the 

cosine components of the current is 
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According to the character of the loop about the v – i origin, 

the loops can be either of type-I (crossing arms of the loop) 

or of type-II (non-crossing touching) [11]. The ideal 

memristor according to Chua [2] can exhibit only type-I 

loops, which must be odd-symmetric [12]. The order of 

touching, n, is defined in [13]. It is shown in [14] that every 

loop must fulfill the following conditions for the sine and 

cosine components of the Fourier series (4): 
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The continuation depends on the loop type: 

Type-I (n even): 
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Type-II (n odd): 
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Comparing the first Equation in 6(a) and the condition (5), 

it is obvious that the sum of even-order cosine components 

and the DC component must also be zero: 
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Equations (6), (5), and possibly also (7) represent 

theoretical starting points of the synthesis of memristive 

systems. 

 

III. GENERAL PROCEDURE OF THE SYNTHESIS 

 

Equation (6) for even or odd order of touching n represents 

a set of n+1 equations with an infinite number of unknowns, 

with the limiting condition in the form of the inequality (6b) 

or (6c). This set provides an infinite number of solutions, each 

modeling a memristive system with the given spectrum of the 

current for the sinusoidal excitation (3). The task is to find the 

model of a system whose loop has the nth-order touching. This 

system will be selected from the above set on the basis of 

some other limiting conditions. Examples of these conditions 

are as follows:  

i. The system must be an ideal memristor (but only if it 

is possible in principle, thus only for an even n).  

ii. The frequency bandwidth of the current must be as 

low as possible.  

iii. Conditions (i) and (ii) must be fulfilled 

simultaneously, if possible. 

 

Regardless of the order of touching, the synthesis of the 

corresponding memristive system can be done as follows: 

a) We select a set of sine and cosine components of the 

current that conforms to Equation (6) for a given order of 

touching n. 

b) We write formally the memductance g as a ratio 
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c) We express the cosines and sines of the multiple angles 

kt via the sines and cosines of the simple angle t. We 

can use the well-known identities such as [15] 
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where Tk and Uk are the Chebyshev polynomials of the first 

and the second kind. Then the memductance will be a 

nonlinear function of the sine and cosine of the angle t: 
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It is obvious that the numerator of (11) is a polynomial of 

the sines and cosines of the angle t, thus it can be modified 

by the familiar rules such as sin2() = 1-cos2(). That is why 

a number of different forms of Equation (11) can enter the 

synthesis, each generating a different model of the 

memristive system. However, all of them will provide 

identical behavior under concrete conditions (type of the 

excitation and the initial state). 

All the mathematical arrangements must be correct: They 

must start from identities that hold for an arbitrary range of 

the arguments of the functions. For example, the well-known 

identities 

 

 )(cos1)sin( 2   , (12) 

 

 )(sin1)cos( 2   . (13) 

 

are not correct because the square root generates only 

nonnegative numbers. The correct versions of (12) and (13) 

are 

 

 )(cos1))sgn(sin()sin( 2   , (14) 

 

 )(sin1))sgn(cos()cos( 2   . (15) 

 

where sgn is a sign function, which provides 1 for positive 

argument, -1 for negative argument, and 0 for zero argument. 

Only a correctly modified formula (11) can generate the 

class of models of memristive systems with unified and 

correct behavior under the above conditions. 

d) According to (3), we replace the function sin(t) in the 

correctly modified formula (11) with a normalized 

voltage, v/Vmax, and the function cos(t) with the state 

variable x. After the corresponding arrangement, the 

memductance (11) will be in the form (1). 

 

The state variable x is governed by the differential equation 

 

 v
Vdt

dx

max


 , [ 1,1]x  ,  (16) 

 

where , Vmax are parameters (therefore constants) of the 

driving signal that generates the hysteresis loop. A correct 

solution to this equation, i.e. the signal cos(t), is obtained 

under the initial condition x0 = 1. 

Equation (16) together with the equation for the 

memductance, which is dependent on the state variable and 

the voltage, represents a complete mathematical model (1), 

(2) of the designed memristive system. In most cases, this 

model must be eventually optimized in order to be as simple 

as possible. The basic possibilities consist in the 

transformation of the state equation (16) (transfer to another 

state variable that simplifies the model), modification of the 

memductance formula (11), or an additional modification of 

the Fourier series of the current that would result in the 

simplification of the memductance formula (11). 

 

IV. EXAMPLE OF THE SYNTHESIS 

 

The procedure will be explained on the example of a 

memristive system that would be able, under the excitation 

(3), to generate a type-II pinched hysteresis loop with third-

order touching. Then Equation (6) for the current spectral 

components are in the form: 

 

 0...97531  ccccc IIIII , 

 

 0...108642 108642  sssss IIIII , 

 

 0...8149259 97531  ccccc IIIII ,  (17) 

 

 0...1000512216648 108642  sssss IIIII , 

 

 0...6561204162581 97531  ccccc IIIII . (18) 

 

Without the inequality (18), Equations (17) represent a set 

of four equations with an infinite number of unknowns. In 

fact, it can be divided into two individual sets, i.e. two 

equations for the cosine terms and two equations for the sine 

terms of the current: 

 

 0...97531  ccccc IIIII , 

 

 0...8149259 97531  ccccc IIIII , (19) 

 

 

 0...5432 108642  sssss IIIII , 

 

 0...12564278 108642  sssss IIIII . (20) 

 

Each non-trivial solution of the set (19) is represented by 

at least three non-zero cosine terms of the current. Let us 

select this triad as the harmonic components of orders 1, 3, 

and 5, assuming that all the higher-order cosine components 

are negligible. Then (19) provides the solution 

 

 cc II 1
, 

3 1.5c cI I  , 
5 0.5c cI I ,  (21) 

 

where Ic is a free parameter. This solution concurrently 

conforms to the inequality (18). 

For a maximum simplification of the synthesis in its 

starting phase, consider a trivial solution of the set (20), i.e. 

all the sine components of the current will be zero. Let us also 

null all the remaining spectral components that cannot affect 

the condition (21). 

Substituting (21) in (8) yields for the memductance 

 

  
max

cos( ) 1.5cos(3 ) 0.5cos(5 )
sin( )

cI
g t t t

V t
  


   . (22) 

 

Utilizing (11) and rearranging lead to 
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There are several ways how to assign the state variable and 

the driving voltage to the sine and cosine functions in (23). 

One of them is as follows: 
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An analysis of (24) reveals that the memductance can be 

positive and also negative, and the corresponding pinched 

hysteresis loops would be drawn also outside the first and 

third quadrants of the v-i space. To design a passive 

memristive system, the numerator in (8) should be completed 

by a proper term which concurrently does not violate the 

conditions (17) and (18) of 3rd-order touching. For example, 

we can add the first sine-type harmonic component, and 

Equation (23) will be modified to 
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The selection 
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assures the passivity of the designed system. From the point 

of view of the model (24), the last term in (25) represents a 

positive fixed conductance which shifts the working region 

of the memductance to the space of positive numbers. 

Analogously, it is possible to start the synthesis from the 

sine, not the cosine terms (Equation 20), and to get another 

set of memristive systems with equivalent behavior under the 

given conditions. 

The designed memristive system (25) has been analyzed in 

SPICE. The results are summarized in the following Section. 

 

V. SIMULATION 

 

The SPICE model of the system (25) was used for the 

simulation, with the following parameters: 

 

Vmax = 1V, f = /(2)=1 Hz, Ic=2 mA, sI1
=7 mA. 

 

The schematic for SPICE modeling is shown in Figure 1. 

The variable part of the memductance (25) is modeled by the 

controlled current source Gmem and the fixed part by the 

resistor R0. 

 

 
 

Figure 1: Schematic for SPICE model of memristive system described by 

Equation (16) and (25) 

The bottom part of Figure 1 models the differential 

equation (16). The state variable x is represented by the 

voltage of node x. The controlled source Ea models the 

operational amplifier in inverting circuitry, which forms, 

together with the capacitor Cint, the converter of the source 

Gint current to a voltage which is equal to the time-domain 

integral of current. The amplifier limits its output voltage 

within the interval [-1, 1] V according to the limitation of the 

state variable in Equation (16). 

The simulation results are shown in Figure 2. The 

hysteresis loop clearly shows its tangential type about the v – 

i origin. The Fourier analysis confirms the spectrum of 

current as input data of the synthesis. Note that the 

memductance exhibits two times higher repeating frequency 

than the frequency of the driving signal. 

 

VI. CONCLUSIONS 

 

The paper analyzes connections between the spectral 

components of the current flowing through a memristive 

system driven by a sinusoidal voltage, and the model of the 

system, i.e. its state equation and the dependence of 

memductance on state and terminal voltage. Although all the 

conclusions hold for voltage-controlled memristive systems, 

they can be also applied to the dual current-controlled 

systems driven by current sources. 

The proposed procedure of the synthesis is based on 

several simplifications. As a consequence, not all the 

memristive systems that conform to the requirements can be 

found. The designed systems generate a current response to a 

sinusoidal voltage within the limited frequency band, which 

follows from the purpose of the synthesis, and the state 

variable is chosen such that it corresponds to the state variable 

of the ideal generic memristor [16]. Since the proposed 

method starts from general connections between the 

characteristics of memristive systems and the spectral terms 

of their terminal signals, it has a potential for overcoming the 

above limitations. 
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(c) 

 
(d) 

 

 
(e) 

 
Figure 2: SPICE simulation of the model from Figure 1: (a) voltage and 

current waveforms, (b) memductance vs time, (c) type-II pinched hysteresis 

loop with 3rd-order touching at v – i origin, (d), (e) cosine and sine spectral 

terms of current 
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