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Abstract—In this paper, an algorithm to compute the contact 
configuration between the rotating side chains from two amino 
acids in a protein molecule is proposed. The main chain and 
side chain parts in one amino acid are considered as two rigid-
body parts combined with a revolute joint. While the atom 
positions in the main chain parts of two amino acids are fixed, 
the side chains possibly rotate, which can cause the collision 
between amino acids. On the plane of rotation angle 
parameters, we find the region for two side chains colliding 
each other. Then, by extracting the boundary of the region, the 
contact curve of the amino acids is found, where by using it, the 
amino acids with rotating side chains can be simulated. 

 
Index Terms—Protein Molecule; Side Chain Flexibility; 

Collision Detection 
 

I. INTRODUCTION 
 
The protein molecule has flexibility both in the main and 
side chains of each amino acid [1,2,3] For visualizing the 
molecule or computing its geometric properties, the 
flexibility of the protein molecule is often simplified as side 
chain rotations only. For the case of computing the 
configuration of two rotating side chains from two different 
amino acids, it is essential for finding the atom positions not 
to have collisions, since two atoms with no bond do not 
exist within the van der Waals radius [4,5] in a natural state. 
When two amino acids are represented as two sets of van 
der Waals spheres, the spheres from each amino acid do not 
intersect each other. In this paper, a method to detect the 
collision and the contact configuration of rotating side 
chains in two amino acids based on the sphere 
representation of atoms is proposed. Then, the method to 
simulate the rotating side chains is given. 

The remaining of this paper is organized as follows. In 
Section II, the geometric features of the side chain flexibility 
in the protein amino acids are explained. In Section III, we 
show the method for computing the contact curve between 
two rotating side chains. The experimental results are shown 
in Section IV, and this paper is concluded in Section V. 
 

II. SIDE CHAIN FLEXIBILITY 
 
A protein molecule is composed of a sequence of amino 

acids, where the amino acid is composed of atoms. In 
geometric approaches that deal with protein molecules, an 
atom is frequently represented as a sphere with van der 
Waals radius. When two atoms have a covalent bond, they 
are represented as two intersecting spheres. If there is no 
covalent bond, two spheres do not intersect each other.  

Each amino acid in the protein molecule has two groups 
of atoms in a main chain and a side chain. For every amino 
acid, the main chain part is composed of four atoms: N, Ca, 
C, O. Each amino acid has a unique side chain, where an 
amino acid is classified by its side chain. The atom Ca in 
the main chain and the atom Cb in the side chain have a 
covalent bond with each other, where there is no other 
covalent bond between the main chain atoms and the side 
chain atoms. When we draw a line L passes through the 
center of Ca and Cb, it becomes a rotation axis of the side 
chain. Usually, there is no covalent bond between two atoms 
from different side chains. 

Figure 1 shows an example of an amino acid with a 
rotating side chain. 

 

 
 

Figure 1: An example of the rotating side chain in an amino acid 
 

III. COMPUTATION OF CONTACT CURVE FOR TWO 
ROTATING SIDE CHAINS 

 
The side chain of an amino acid is represented as a set of 

spheres corresponding to the atoms. The relative position of 
atoms in a side chain is fixed and the side chain itself rotates 
as a rigid body. By analyzing and accumulating the contact 
information between the spheres from different side chains, 
the rotation of two side chains without collision can be 
simulated. 

Kim et al. [6] presented equations for computing the 
contact between two rotating or translating simple surfaces. 
In this paper, rather than using the equation for computing 
the contact, we sample the parameter space, and then we 
check if two spheres collide, contact, or apart from each 
other. 

Given two rotating spheres A and B, the sphere A is with 
the center position c0=(x0, y0, z0), radius r0, and rotation axis 
(0, 0, 1). Then, the center trajectory of A is as follows: 
 

A.c(s)	=	(R0	cos	(s	+	s0),	R0	sin	(s	+	s0),	z0)	 (1) 
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where s0 = atan (x0, y0) and R0 is the distance between c0 and 
the z-axis. 

The sphere B is with the center position c1 = (x1, y1, z1), 
radius r1, and rotation axis p - p¢, where p = (px, py, pz) and 
p¢ = (px¢, py¢, pz¢). We define a plane P with a reference point 
p and normal vector b3, where b3 = (p¢ - p)/|| p¢ - p||. For 
two orthogonal basis vectors of P, b1 and b2, the followings 
are given: 

b1 = (b1x, b1y, b1z), 
b2 = (b2x, b2y, b2z), 
b3 = b1 ´ b2 = (b3x, b3y, b3z), 

and ||b1|| = ||b2|| = ||b3|| = 1. The sphere B is with the center 
position c1=(x1, y1, z1), radius r1, and rotation axis is a line 
p-p¢. Let c1¢ be the projection of c1 to the plane P. Then, the 
center trajectory of B is as follows: 
 
B.c(t)	=	p	+	R1	cos	(t	+	t0)	b1	+	R1	sin	(t	+	t0)	b2	

+		||c1	–	c1¢||		b3,	
(2) 

 
 
where t0 = atan(kx, ky) and kx, ky, and R1 are the distances 
from c1¢ to lines p + ab1, p + bb2, and p + gb3, respectively. 

 

  
 

Figure 2: Two rotating spheres 
 

For s*Î s and t*Î t, in st-plane, the status of two spheres 
A.c(s*) and B.c(t*) are determined by the following 
conditions: 

1. Two spheres at (s*, t*) tangentially contact with each 
other ||A.c(s*) – B.c(t*) ||2 = (r0 + r1)2 

2. Two spheres at (s*, t*) have an intersection with each 
other 
||A.c(s*) – B.c(t*) ||2 < (r0 + r1)2 

3. Two spheres at (s*, t*) are apart from each other 
||A.c(s*) – B.c(t*) ||2 > (r0 + r1)2 

Figure 3 shows an example for the collision area between 
two rotating spheres, where the point (s*,t*) is colored in 
black if two spheres at (s*, t*) have an intersection. We 
choose two spheres which correspond to NE1 and CD2 from 
two amino acids (Figure 3a), and then computed the 
collision area in st-plane, where their rotation angles are s 
and t, respectively (Figure 3b). 

For two side chains A(s) and B(t), let us denote each atom 
in them as Ai(s) and Bj(t), respectively. Then, the center 
position and the radius of each atom in A(s) are represented 
as Ai.c(s+si) and Ai.r, respectively. Those in B(t) are 
represented as Bj.c(t+tj) and Bj.r, respectively. 

In st-plane, if a point (s*, t*) is given, we can decide if 
Ai(s) and Bj(t) collide or apart based on the following 
conditions: 

1. If there exists any atom pair that satisfies the equation 
||Ai.c(s*+si) – Bj.c(t*+tj) ||2 < (Ai.r + Bj.r)2

, then two 
side chains collide with each other. 

2. If every atom pair satisfies the equation     
||Ai.c(s*+si) – Bj.c(t*+tj) ||2 > (Ai.r + Bj.r)2

, then two 
side chains are apart from each other. 

If two side chains are not either collide or apart, then we 
can decide it as tangential contact status. Algorithm 1 shows 
the process to construct the contact area for two side chains 
in the st-plane. 

 

 
 

Figure 3: The collision area for two rotating atoms 
 

Algorithm 1 
Collision Area Computation 

 
Input: d // the step size 
     Ai(s), 0£ i < NA // Atoms in side chain A 
    Bj(t), 0£ j < NB  // Atoms in side chain B 
1      BEGIN 
2        for ( s = 0 ; s < 2p ; s += d ) BEGIN 
3              for ( t = 0 ; t < 2p ; t += d ) BEGIN 
4                 M[s][t] = FALSE; 
5                  for ( i = 0 ; i < NA ; i ++) BEGIN 
6                     for ( j = 0 ; j < NB ; j++ ) 
7                          if (Ai(s) Ç Bj(t) ¹ Æ) BEGIN 
8                              Set TRUE to M[s][t]; 
9                     Break; 
10                         END 
11                END 
12            END 
13        END 
14    END 
 

When M[s*][t*] is TRUE, the point (s*, t*) represents that 
two side chains have collisions when their configuration is 
at A(s*) and B(t*). If M[s*][t*] is FALSE, two side chains 
A(s*) and B(t*) do not have collisions.  

For the two side chains given in Figure 3a, Figure 4a 
represents the st-plane by representing the point at (s, t) as 
black in color when M[s][t] is TRUE, and as white in color 
when M[s][t] is FALSE. Generated matrix corresponds to a 
binary image, where the boundary of the black region 
corresponds to the curve that represents the tangential 
contact configuration between the two side chains. Figure 4b 
shows the contact curve.  

In Figure 5, we represent the cases of two side chains 
without collisions (Figure 5a), with contact (Figure 5b), and 
with collisions (Figure 5c), where red dots on the left 
column shows the corresponding angles. 

When we force amino acid A(s) to rotate around the axis, 
the other amino acid B(t) will rotate with respect to the 
movement of A(s). We simulate this situation, by following 
the contact curve with increasing s values. 
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IV. EXPERIMENTAL RESULTS 
 
We simulated the side chain rotation for several pair of 

amino acids. In Figure 6, we show one of the examples, 
where the simulation results are generated based on the (s,t) 
pairs in Figure 5. When two amino acids PHE and TRP are 
given as a PDB file format (http://www.pdb.org) such as in 
Table 1, the collision status in the (s,t)-plane is computed. 
Then, given a fixed value t=t*, we find a s* where (s*, t*) is 
on the contact curve. We increment the value of parameter s 
from s*. Each time the value of s is incremented, we 
compute the collision status of Ai(s) and Bj(t*). While Ai(s) 
and Bj(t*) are free, only the value of s is changed. If Ai(s) 
and Bj(t*) collide or contact with each other, then we find 
the closest t* which is an apart status. 

 
Table 1 

Input PHE and TRP information 
 
 

ATOM    1  N   PHE A  1      21.320  22.197  64.569  1.00 10.94   
ATOM    2  CA  PHE A  1      19.900  22.372  64.205  1.00 11.49     
ATOM    3  C   PHE A  1      19.058  22.732  65.374  1.00 12.09           
ATOM    4  O   PHE A  1      17.939  23.205  65.206  1.00 12.13           
ATOM    5  CB  PHE A  1      19.317  21.042  63.629  1.00 12.11           
ATOM    6  CG  PHE A  1      20.330  20.438  62.718  1.00  8.33           
ATOM    7  CD1 PHE A  1      20.663  21.045  61.540  1.00  8.88           
ATOM    8  CD2 PHE A  1      21.011  19.291  63.124  1.00  7.80           
ATOM    9  CE1 PHE A  1      21.691  20.538  60.771  1.00 10.46           
ATOM    10  CE2 PHE A  1      22.046  18.812  62.377  1.00  9.63           
ATOM    11  CZ  PHE A  1      22.389  19.443  61.204  1.00  8.54           
ATOM    12   N   TRP A  2      19.533  22.544  66.617  1.00 10.96           
ATOM    13   CA  TRP A  2      18.829  22.870  67.838  1.00 10.24           
ATOM    14   C   TRP A  2      19.950  23.033  68.928  1.00 11.45           
ATOM    15   O   TRP A  2      20.112  22.121  69.741  1.00 11.40           
ATOM    16   CB  TRP A  2      17.870  21.716  68.159  1.00  9.36           
ATOM    17   CG  TRP A  2      16.866  22.129  69.200  1.00  8.64           
ATOM    18   CD1 TRP A  2      16.781  21.770  70.478  1.00  9.52           
ATOM    19   CD2 TRP A  2      15.749  23.012  68.983  1.00 13.34           
ATOM    20   NE1 TRP A  2      15.725  22.368  71.102  1.00 11.57           
ATOM    21   CE2 TRP A  2      15.072  23.163  70.204  1.00 14.95           
ATOM    22   CE3 TRP A  2      15.299  23.744  67.862  1.00 19.41           
ATOM    23   CZ2 TRP A  2      13.925  23.970  70.310  1.00 16.89           
ATOM    24   CZ3 TRP A  2      14.170  24.536  67.988  1.00 18.89           
ATOM    25   CH2 TRP A  2      13.524  24.639  69.209  1.00 15.29								 

 

(a) (b) 
 

Figure 4: The collision configuration for two rotating side chains. 
 

  

(a) 
 

  
(b) 

 

  
(c) 

 
Figure 5: The contact curve and a pair of specific angles (s*, t*) in st-plane 

and the configuration of two amino acids with respect to (s*, t*). 
 

  

  

  

  

  
 

Figure  6: Simulation of the rotating side chains from two amino acids 
contacting each other using their contact curve. 
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V. CONCLUSION 
 
In this paper, an algorithm for analyzing the contact 

between two rotating side chains in a protein amino acids 
was presented. Based on the curves representing the contact, 
the movement of two side chains was simulated. As a future 
work, we would like to extend our simulation to a set of side 
chains. 
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