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Abstract— This paper describes an integrated positioning 

algorithm utilizing Wi-Fi fingerprint technique for indoor 

positioning.  The main contribution of this work is the 

improvement of positioning accuracy for indoor localization even 

in extreme RSSI fluctuation which leads to variation of 

positioning error. Several layers of Wi-Fi positioning is proposed, 

which are based on deterministic techniques, iterative Bayesian 

estimation, and also Kalman filter to enhance accuracy due to 

noise presence. Here, accumulated accuracy is introduced where 

the distribution of location error is determined by estimation at 

each test point on path movement. The results show that the 

integrated algorithm enhances the estimation accuracy in several 

scenarios which are different Wi-Fi chipsets and movement 

directions. The error distribution shows an achievement of up to 

65% for error less than 5m compared to the basic deterministic 

technique of only 45%. 

  
Index Terms– Indoor Positioning; Wi-Fi Fingerprint; 

Localization.  

 

I. INTRODUCTION 

 

The growing interest in indoor location-based services 

(ILBS), due to demands for its application in personal 

navigation, billing and information enquiries, has expedited 

the development of research in innovative positioning 

techniques. The widely used global positioning system (GPS) 

is a proven technology for outdoor positioning and  

navigation, but it performs poorly indoor [1][2]. This is due to 

the fact that the GPS signal cannot penetrate in indoor 

environment. Other wireless positioning system (WPS) such 

as wireless broadband communication based on long term 

evolution (LTE) system only can give best accuracy ranging 

from 10-15 meters in rural and suburban area [3]. This 

accuracy cannot be accepted for indoor positioning as 5 meters 

location error will lead to another section or room in building. 

Hence, researchers seek alternative solutions, including the 

concept of signal of opportunity (SoOP) for indoor positioning 

[4]. The SoOP includes the Wi-Fi, Bluetooth, RFID, magnetic 

field and FM radio. We concentrate on cheap solutions in 

mind by utilizing available communication system 

infrastructure without the need to deploy new transmitters or 

beacons for positioning purposes. Therefore, the widespread 

availability of Wi-Fi access points (APs) in building makes it 

our choice to utilize it as the main indoor positioning. 

The main challenge for an indoor positioning system is the 

non-line of sight (NLOS) condition.  The layout and geometry 

of a building are factors that can put a signal into reflection 

mode whereby multipath fading could occur and decrease 

positioning accuracy.  Therefore, conventional outdoor 

localization based on trilateration and triangulation [5], [6] do 

not work well for indoors with many geometry shape, 

obstacles and room partitions. In high WLAN coverage, Wi-

Fi fingerprint gives promising technique that has better 

positioning accuracy [7]. 

In unplanned building conditions where the available 

number of APs is limited and the locations of APs are 

predesignated, certain positioning algorithms do not perform 

well consistently. In addition, there are several other factors 

that influence positioning accuracy, such as different Wi-Fi 

chipset manufacturers and different path movements of users. 

One of the main problems is fluctuation of received signal 

strength reading from access point to the user [8]. This is more 

severe to the 2.4GHz operating frequency than 5GHz. Lui et 

al. [9] have highlighted several problems with different Wi-Fi 

chipset receivers. The sensitivity of the receiver’s chipset built 

into different devices varies in cost and it is expected that 

different receiver’s chipset at the same location will provide 

different accuracy of received signal strength indicator 

(RSSI), hence leading to different accuracy in positioning. 

Some of the challenges of different Wi-Fi chipsets are that 

some of them have “dropout of data” in which the RSSI level 

scanned suddenly falls and recovers. Another phenomenon is 

the signal strength “catching”. This can be described as the 

RSSI of signal level observed to be stable for a large period of 

time before it responses to change in reading. 

To overcome these challenges, many techniques have been 

proposed, such as collaborative positioning techniques [10], 

data fusion of radio-based positioning and mobile-based 

positioning that uses sensors to sense the physical movement 

activity of users [11]. Wi-Fi fingerprint acts as the main 

positioning technique replacing the GPS for indoor 

environment before fusing with other sensor based 

localization techniques. If the Wi-Fi fingerprint technique 

gives a lower accuracy, this will influence the final location 

estimation. Hence, this is why researchers are still looking for 

improvement of Wi-Fi fingerprint localization. The first 

fingerprint technique is based on deterministic technique [12] 

which is less complex and has low accuracy due to fluctuation 

of RSSI from APs. The probabilistic method gives more 

accurate but increases algorithm complexity. One of the 

techniques to overcome the RSSI level from different devices 

or device adaptations is on signal strength difference [13] and 

signal strength ratio [14]. However, manual data collection on 

each device makes it labor cost intensive and the achievement 

still suffers from signal noise fluctuation. 
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In this paper combination layer of localization algorithm is 

introduced for indoor positioning utilizing Wi-Fi fingerprint 

technique. The algorithm is based on deterministic technique 

which is enhanced weighted K-NN (EWKNN) combined with 

iterative Bayesian estimation for more accurate location 

estimation. The last layer is filtering layer where Kalman filter 

is implemented to give final user location estimation. 

Comparison of the proposed algorithm is made to 

conventional fingerprint technique in several scenarios like 

different Wi-Fi chipsets, different path movements and 

different RSSI samples. 
The rest of the paper is structured as follows: Wi-Fi 

integrated fingerprint technique is outlined in section II; 

simulation results are highlighted in section III; and 

conclusion and future work in section IV. 

 
II. WI-FI INTEGRATED FINGERPRINT TECHNIQUE 

 

The main idea of the algorithm is combination of several 

layers of process before the final location can be estimated. 

Figure 1 shows the concept of the proposed indoor 

localization algorithm. The widespread of WLAN in the 

building makes it the favorite choice for indoor positioning. 

The main input parameter will receive the signal strength 

indicator (RSSI) from Wi-Fi module. The chosen method in 

this research is Wi-Fi fingerprint technique which involves 

collection of signals to create the radio map. Later the closest 

pattern match between the sample vector signal and the radio 

map will determine the early location of that particular signal. 

At the early estimation stage, Bayesian estimation was 

implemented and the accuracy depends on number of RSSI 

vector sample. Finally, Kalman filter was implemented in 

filtering layer to improve the location accuracy.  

 

 
Figure 1: Indoor positioning concept 

 

A. Fingerprint technique 

Wi-Fi fingerprint is usually conducted in two phases. The 

first phase is an offline phase where the vector of RSSI from 

different access points (APs) at particular reference points 

(RPs) location are collected. All RSSI vectors and 

information are stored in a database. The second phase is 

online phase where the samples of RSSI vector at test point 

(TP) location are compared to the database. The closest match 

RSSI vector between online and offline will return the closest 

estimate location. 

Our site survey took place on the B floor Infolab21, School 

of Computing and Communication, Lancaster University.  

Figure 2 shows the layout of the building and the site, which 

consists of a big space in the middle surrounded by lecturers’ 

and researchers’ room, and a narrow hallway towards the end 

of the site.  These two different kinds of area zones were 

purposely selected to study the effectiveness of a single 

algorithm in various building shapes.  Unlike outdoor 

localisation, 5 m accuracy will have a significant impact in 

indoor localisation as it can direct the user to an incorrect path 

or room.  This is why improving accuracy is a huge challenge 

for indoor localisation.  The yellow shade on the building 

layout shows the site survey coverage area while the blue 

triangle shapes are the available APs location. 
 

 
Figure 2: Layout of B floor, Infolab21 

 

There are numerous techniques for position estimation 

based on collected observations.  One common method is K-

Nearest Neighbor (K-NN) [15]. K-NN works by “comparing” 

observation values during an on-line phase and observation 

of mean values during an off-line phase.  To facilitate simple 

and fast algorithm calculation, a deterministic method was 

chosen.  We decided to implement the Enhanced Weighted-

KNN (EWKNN) which has a dynamic selection of K distance 

[8]. Unlike conventional K-NN which is fixed in terms of 

distance neighbor point selection, the various space and 

geometry of the building may reduce the accuracy if constant 

number of neighbor distance is selected. So, for various 

geometrical shapes of building, the EWKNN is a more 

suitable deterministic algorithm. However, the instability of 

RSSIs (obviously on 2.4GHz) during the on-line phase 

compared to each mean RSSI’s value in the database will 

return a scattered pattern of estimated positions.  If a simple 

average of estimated positions is taken, the final estimated 

location will also fluctuate according to the number of RSSI.  

To overcome this problem, iterative Bayesian estimation was 

implemented in the algorithm.  This technique needs less 

sampling of RSSI numbers and returns stable position 

estimations.  Each new RSSI value in the on-line phase is 

compared to the database through the EWK-NN algorithm 

and an early estimated position will be retained.  In this 

algorithm, 10 RSSIs or more is sufficient to get stable results. 

 

B. Estimation 

Unlike other researchers, we implemented dynamic 

localization region instead of clustering techniques.  

Clustering technique is a method for grouping a set of objects 

with the same group characteristics to reduce the 

computational cost by reducing RP searching. In dynamic 

localization region, the user location history profiling is 

considered which utilizes Bayesian technique. Dynamic 

localization region act like mini cluster region however it is 

in dynamic shape which changes depend on prior location.  

The Bayes rule can be written as [16]:  

 

𝑝(𝑠|𝑥) =
𝑝(𝑥|𝑠)∙𝑝(𝑠)

𝑝(𝑥)
                                  (1) 

 

WLAN Fingerprint

Estimation Filtering

Indoor Positioning

Point S 

Point R 
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where s is state location, x is observation which in this case is 

RSSI data, 𝑝(𝑠|𝑥) is a posterior estimate of state, and 𝑝(𝑥|𝑠) 

is the likelihood of an observation’s given state condition. 

 

𝑝(𝑥|𝑠) =
1

𝜎√2𝜋
𝑒(−(𝑥−𝑠)2/(2𝜎2))

                (2) 

 

Here, x is the observation vector of RSSI and s is the RPs 

location in localization region. For a higher dimensional 

condition, we use multivariate Gaussian distribution as the 

location in this situation is in two dimensions and consists of 

planes X and Y.  Then, the density function of multivariate 

Gaussian distribution is given by: 

 

𝑝(𝑥1, … , 𝑥𝑘|𝑠) =
𝑒

(−
1
2

(𝑥−𝑠)𝑇Σ−1(𝑥−𝑠))

√(2𝜋)𝑘|Σ|
          (3) 

 

where x is a k-dimensional column vector, ∑ is a covariance 

matrix, and |Σ| is the determinant of the covariance matrix. 

In the implementation of Bayes rules, information about 

prior position is as important as the object movement history.  

From a prior position, the next possible user location is 

estimated within certain area coverage.  This coverage area 

comprises several adjacent RPs’ locations surrounding the 

prior location, which might be a possible actual location 

during localization.  We call this coverage area the 

localization region, where the next possible actual location 

will be in this area.  In this case, assumption has been made 

that the user movement is less than the size of the adjacent 

RPs which is 1.5m over 1s. Based on prior location, we can 

determine all adjacent RP locations which are listed in a 

lookup table.  Different prior locations will give different lists 

and total numbers of adjacent RP locations due to the 

different geometries of buildings.  Figure 3 depicts the 

localization region where a localization process will 

determine an estimated location in this region.  In this figure, 

a user is shown to be walking from left to right in sight of the 

building through a hallway and an open square space.  The 

localization region can be dynamic in shape depending on 

prior location and building geometry.  In addition, the 

localization region will be updated in each cycle of the 

localisation process. 

 

 
 

 
Figure 3: Dynamic localization region 

 

The likelihood function needs to be calculated for each 

early position from EWK-NN to give each possible RP 

location in the localization region.  The return value of the 

likelihood function is retained and used in the next iterative 

cycle process until there are enough RSSI values for each 

location.  After completing the iterative process, the position 

is estimated from the highest return probability value based 

on the possible RP location points.  The new position 

estimated will become the new prior position for the next 

iterative process and the lookup table for RPs adjacent to the 

current position will be updated.  This cycle will be repeated 

in the next localization process.   

 

C. Kalman Filter 

To smoothen the presence of noise, Kalman filter was 

implemented in the last layer [17]. The Kalman filter has been 

extensively used in estimating the state condition of a process 

[18][19]. The state of a moving object is represented as X in 

the process, where vector X consists of a moving object’s x 

and y coordinates and its velocity.  The system that is 

considered is as follows: 

 

State model:  𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝑊                                         (4)                                           

Measurement model: 𝑍𝑘 = 𝐻𝑋𝑘 + 𝑉                                 (5)                                          

 

�̂�𝑘 = [

𝑥𝑘
𝑦𝑘
𝑣𝑥𝑘

𝑣𝑦𝑘

],  𝐴 = [

1 0
0 1
0
0

0
0

 

 ∆𝑡

0

0
∆𝑡

1
0

0
1

], 

𝐻 = [
1 0 
0 1

 0 0
  0 0

] , 𝑍𝑘 = [
𝑥𝑘

𝑦𝑘
] 

 

Then the remaining steps of Kalman filter repeats evaluating 

expressions 6-9 including the prediction of state and error 

covariance, Kalman gain, estimation process, and updates the 

error covariance. 

 

𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄                            (6) 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1                   (7) 

 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘

−)                     (8) 

 

 𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝐻𝑃𝑘

−                            (9) 

 

The processes start with initializing the �̂�𝑘 and 𝑃0 from 

expression 4 and 5. On the Kalman filter estimation process, 

the input will be from measurements which come from early 

location estimation process and the output will be the final 

location estimation. Q and R are the process noise covariance 

matrix and measurement noise covariance matrix.  These two 

parameters will affect the measurement and prediction of the 

Kalman filter process.  Between these parameters, process 

noise covariance is hard to determine.  These are determined 

by experience or experiment.  Yim et al. in [17], [20] have 

highlighted based on his experiment the ratio between Q and 

R that really affects the performance of the Kalman filter. By 

following the same step, based on our measurement data, it 

was found that Q equal to 0.00001 gives optimum results.  

The initial condition setup is as follows: 

 

𝑄 = [

0.00001 0 0              0
0 0.00001 0              0
0
0

0
0

0.00001
0

0
0.00001

]  

 

𝑅 = [
1 0
0 1

] 

 

Reference points (RPs)  Dynamic localization region 
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𝑃0 = [

5 0
0 5

0 0
0 0

0 0
0 0

5 0
0 5

] 

 

�̂�𝑘 = [

32.75
2.75

0
0

] 

 

III. SIMULATION RESULTS AND ANALYSIS 

 

To  evaluate the accuracy of user location, we calculated 

the term “accumulated accuracy” to get early assumption 

from distribution error of location graph. Accumulated 

accuracy is given by: 

 

                 𝐴 = ∫ √(𝑓(𝑛) − 𝑓𝑜(𝑛))
2𝑛

0
𝑑𝑛                        (10) 

 

where 𝑓(𝑛)  is the relative positioning graph under                     

                     TPs 

            𝑓𝑜(𝑛) is the base line of zero error 

 

We analyzed our hypotheses based on several factors that 

influence the positioning accuracy.  These factors are: 

 Movement direction: The direction of path 

movement chosen is from point S to point R and vice 

versa.   

 Different Wi-Fi chipset: Two different devices were 

used during the online phase.  The first mobile 

device uses a Qualcomm Atheros chipset which is 

the same Wi-Fi chipset used during the site survey, 

while the second device used is a Broadcom Wi-Fi 

chipset.  The results from the two different chipsets 

used were then compared. 

 Number of RSSIs samples before estimation: As 

mentioned in previous section, at least 10 RSSI 

samples are needed to get accurate and stable 

localization. Here, different numbers of RSSI 

samples were included in our algorithm.  The 

samples start with 25 RSSI and then doubled to 50 

RSSI signal samples.  

 

A. Movement Direction from Point R to Point S 

In this scenario, the performances of several algorithms on 

different movement directions and different Wi-Fi chipsets 

were investigated.  The layout site was on B floor, Infolab21, 

School of Computing and Communication, as shown in 

Figure 2.  Based on the layout, there are two paths with 

different directions.  In the first condition, the user moves 

from point R to point S, while in the second condition the user 

moves from point S to point R. The last factor mentioned is 

different Wi-Fi chipsets.  In this scenario, two types of well-

known chipsets were used, i.e. the Quantum Atheros and 

Broadcom chipsets. 

Our simulation started with movement direction from 

point R to point S.  During the on-line phase, RSSIs were 

sampled at each dedicated TP location for each direction.  The 

error distribution for each TP location is presented with 

different types of algorithms included in our proposed 

algorithm.  Figure 4 shows the distribution of errors for our 

proposed algorithm (EWKNN+Bayes+Kalman filter) 

compared to other positioning algorithms for movement 

direction R to point S, for a Qualcomm Atheros Wi-Fi chipset 

with 25 sample RSSIs.  All the error location is mapped to the 

TPs location itself. One of the reasons is to identify the region 

of higher location error due to non-line of sight condition of 

building geometry. This information is needed in next chapter 

in this research. Based on the graph, it is clear that only the 

proposed algorithm gives constant error distribution of below 

5 meters, which are EWKNN with Bayesian estimation and a 

Kalman filter. With the deterministic algorithm K-NN and 

WKNN, location error rises suddenly at more than 20 meters 

from TP points 6 to 10.  It is clear that a combination of 

uncertain RSSI values from APs causes the location error 

distribution to fluctuate.  Our algorithm, which works based 

on a localization region, performed well to contain errors in 

this kind of situation but with a short period of huge 

localization errors from point 6 to point 10.   

 
Figure 4: Error distribution for a Qualcomm Atheros Wi-Fi chipset with 

25 RSSI samples. 

 

In addition, error distributions were plotted using the same 

algorithm based on 25 RSSI samples using a Broadcom Wi-

Fi chipset.  The results in Figure 5 show different error 

distribution pattern compared to that of Figure 4.  This clearly 

shows that different Wi-Fi chipsets have different readings of 

RSSI value due to different levels of sensitivity hence 

returning different levels of positioning accuracy. Based on 

the graph, a conventional K-NN and WKNN algorithm shows 

that positioning errors start to hit 5 meters from TP points 21 

to 29.  In this scenario, the gradually increasing errors are the 

main reason that the proposed algorithm - 

EWKNN+Bayes+Kalman filter algorithms follows the same 

pattern.  This is because in a conventional deterministic 

algorithm, there is increasing location error from TP point 21 

onwards, where the localization region calculated keeps the 

process in the wrong region.  Therefore, positioning error also 

increases gradually like the conventional deterministic 

algorithm. 
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Figure 5: Error distribution for a Broadcom Wi-Fi chipset with 25 RSSI 

samples. 

 

B. Movement Direction from Point S to Point R 

The error distribution patterns at the same TP locations 

were then simulated but with movement in the opposite 

direction.  From Figure 6 below, it can be seen that the 

patterns of error distribution are obviously different, even 

when using the same Wi-Fi chipset (Qualcomm Atheros) and 

number of RSSI samples.  This is because when movement 

direction is in the opposite direction, the blockage and 

reflected signals do not follow the same path as before.  The 

user’s body and antenna radiation pattern could give readings 

of signal strength at different levels, thus giving different 

positioning accuracy, even at the same location.  In this 

scenario, our proposed algorithm performed well below 5 

meters, until it reached TP point 18.  However, from this point 

onwards, the overall distribution is still slightly better than the 

basic deterministic techniques. 

 

 
Figure 6: Error distribution for Qualcomm Atheros Wi-Fi chipset with 

25 RSSI samples. 

 

In the same direction, the RSSI data collection then changed 

to Broadcom Wi-Fi chipset. The proposed algorithm 

performs very well along the path from point S to point R, as 

depicted in Figure 7.  The location error is consistently below 

5 meters for all TP locations compared to the basic 

deterministic techniques showing heavy fluctuation in 

positioning. 

 

 
Figure 7:  Error distribution for Broadcom Wi-Fi chipset with 25 RSSI 

samples. 

 

Then, the overall simulation was repeated with doubled 

number of RSSI samples. The results show that the pattern of 

error distribution is almost similar as shown in Figure 4 to 

Figure 7. The accumulated accuracy then is recorded in Table 

1 displayed in the next section. 

 

C. Overall Results 

The accumulated accuracy of eight combinations with 

different kinds of parameters, such as Wi-Fi chipsets, 

movement direction and the number of RSSI samples are 

presented in Table 1.  As can been seen, the effects of the 

number of RSSI samples for all the scenarios are almost 

insignificant.  The accumulated accuracy in Table 1 shows 

that across all algorithms for both 25 and 50 RSSI samples, 

the numbers are not very different.  This shows that even 

increasing the number of RSSI samples does not significantly 

improve positioning accuracy.  In some cases, positioning 

accuracy results are better with fewer RSSI samples.  In three 

out of four different scenarios, the accumulated accuracy 

shows that the proposed algorithm is better than the basic 

deterministic technique (K-NN and WK-NN) and 

deterministic with Kalman filter.   

 
Table 1 

Accumulated accuracy based of different algorithms. 
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Based on all scenarios in Table 1, the results were plotted in 

terms of cumulative distribution function (CDF) vs location 

error (m) as depicted in Figure 8. The basic K-NN and 

WKNN algorithm both give 45% of error less than 5 meters. 

Improvement of current algorithm with Kalman filter did 

improve another 4% to ~49% of confident location error of 

less than 5 meters. However, our proposed algorithm 

(EWKNN+Bayesian estimation+Kalman filter) improves by 

20% compared to basic deterministic algorithm.  The CDF 

graph shows up to ~65% for location error of less than 5 

meters, and almost 100% confident in error of less than 10 

meters. 

 
Figure 8: CDF of location errors 

 

IV. CONCLUSION AND FUTURE WORK 

 

In this paper, we have described the combination of several 

layers of localization algorithm to enhance indoor positioning 

accuracy. Several combination scenarios including different 

kinds of Wi-Fi chipset, different movement paths and 

different samples of RSSI have been investigated. The results 

show that increasing number of RSSI samples by double does 

not significantly improve the location accuracy. The 

proposed algorithm shows that the estimation error are in 

better control for both different Wi-Fi chipset and path 

movement compared to the conventional deterministic 

techniques.  The CDF of the proposed algorithm gives 65% 

accuracy for error less than 5 meters while both conventional 

K-NN and WK-NN just 45%. These show the accuracy 

improvement of 20%.  To further enhance the overall 

accumulated accuracy along the path movement, the 

proposed algorithm can be suitable to get the calibration point 

in order to prevent accumulated error from occurring. In the 

future, further investigation needs to be done on position of 

suitable calibration point with the proposed indoor location 

algorithm. The distribution location error graphs in this 

research are the key to calibration point in the next research. 
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