

 e-ISSN: 2289-8131 Vol. 9 No. 2-6 69

Empirical Study on Effects of Compression
Algorithms in Web Environment

Lukáš Čegan

University of Pardubice, Faculty of Electrical Engineering and Informatics,
Department of Information Technology, Pardubice, Czech Republic.

Lukas.cegan@upce.cz

Abstract—Web resource compression is one of the most
useful tools, which is utilized to accelerate website
performance. Compressed resources take less time to transfer
from server to client. This leads to faster rendering of web page
content resulting in a positive impact on the user experience.
However, content compression is time consuming and brings
extra demands on system resources. For these reasons, it is
necessary to know how to choose a suitable algorithm for a
particular web content. In this paper, we present an empirical
study on the effects of the compression algorithms, which are
used in web environment. This study covers Gzip, Zopfi and
Brotli compression algorithms and provides their performance
comparison.

Index Terms—Compression; Website; Gzip; Zopfi; Brotli.

I. INTRODUCTION

Today’s web users are not very patient. They expected the
content from web servers is delivered in a flash to their
devices. Therefore, web developers, UX designers, software
architects, network experts and many others are concerned
about many optimization technics and the appropriate
solutions that help them to deliver the whole web content to
the client as fast as possible. One of these optimization
techniques is the appropriate usage of compression
algorithms to compress web page resources. Compressing
resources is a very effective way of reducing their size,
which helps significantly in reducing time needed to transfer
these resources between the server and user’s web browser.
Unfortunately, every optimization solution has its pros and
cons. The cons of compression consist in the resource
consumption, like the CPU and memory used during data
processing. There are a number of different algorithms in
the web environment, and many of them are very effective
at quickly processing and compressing files. However, not
all of them are suitable for the various data formats that are
in the WWW world.

Some of them are ideal for the frequently changing files,
which are encoded on-the-fly because these algorithms are
very fast. However, these algorithms do have not such a big
compression ratio as the others, which are useful for static
files, such as images, CSSs, JavaScripts. There are other
algorithms that have a big compression ratio, but they are
slow. It may not be a hindrance for static content because it
can be easily preprocessed and deployed to the web server.
However, this practice is definitely inapplicable for dynamic
generated content because it is created on-the-fly, on the
server side. For this reason, it is necessary to have an
indepth knowledge of the performance data of the different
algorithms in different kinds of deployment. In this paper,

an empirical study on the effects of different compression
algorithms is performed. This study also includes the
performance results for mutual comparison.
 The paper is organized as follows. After introducing the
objective of this paper, the compression algorithms are
presented in Section II. Section III describes the practical
experiments and benchmark settings. The results of the
experimental analysis are discussed in Section IV. Finally,
the last section provides the conclusions and future research
opportunities, followed by references at the end.

II. BACKGROUND OF THE COMPRESSION ALGORITHMS

Compression algorithms are used in the digital world
everywhere. Music is compressed by MP3, video by
MPEG4, images by GIF, etc. In general, compression
algorithms can be divided into two different groups. The
first group is the lossless algorithms, which can reconstruct
the exact original data from the compressed data. These
algorithms are mainly used to compress text information.
The second group is the lossy algorithms, which can only
reconstruct an approximation of the original data. These
algorithms are useful, for example, to compress audio, video
and image data. The modern web browser can work with
both groups of algorithm. For efficient communication
between the server and the client, it is especially important
to compress the text files, such as the source code of
websites (HTML, CSS, JavaScripts, etc.). The web server
mainly uses compression formats, such as Gzip, DEFLATE,
Zlib, and the newly ones are Zopfi or Brotli.

A. Gzip, DEFLATE, Zlib
Gzip (GNU zip) file format is based on the DEFLATE

algorithm that is a combination of the LZ77 (Lempel–Ziv,
1977) dictionary-based algorithm and Huffman coding.
DEFLATE provides a good compression on a wide variety
of data with a minimal use of system resources. It was
created as a free software replacement for LZW and other
patent-encumbered data compression algorithms. The first
version of algorithm was released in 1993. Zlib is a
software library used for lossless data compressing, and it is
an abstraction of the DEFLATE compression algorithm [1].
Zlib was developed by Jean-loup Gailly (compression) and
Mark Adler (decompression) and the initial version of Zlib
was released in 1995 as a free software under the Zlib
license.

Journal of Telecommunication, Electronic and Computer Engineering	

70 e-ISSN: 2289-8131 Vol. 9 No. 2-6

4bits
CM

4bits
CINFO

8bits
FLG

32bits
DICT compressed	data 32bits

ADLER

1bit
(final)

2bits
(type)

block	of	compressed	data
(stored	block,	fixed	Huffman,	dynamic	Huffman)

couple	of	blocks

Figure 1: Zlib data structure

B. Zopfli
The Zopfli is a compression algorithm that is compatible

with the DEFLATE algorithm used in Zlib. The algorithm
was developed by the Google corporation, and it received its
name from a Swiss bread recipe. The initial release of the
algorithm was introduced in February 2013. The reference
implementation of the Zopfli compression algorithm from
Google is programmed in C language. It is an open source
and it is distributed under the Apache License, Version 2.0
[2]. The performance of this algorithm is very good. It
reduces files to sizes 3.7–8.3 percent smaller than other
similar algorithms, but it is slow in data processing and
consumes two to three times the CPU power of its
competitors [3]. For this reason, this algorithm is best suited
for applications where data is compressed once, and then
used many times, like static content for the web.

C. Brotli
Brotli compressed data format is a lossless compressed

data format that compresses data using a combination of
LZ77 algorithm and Huffman coding. The development of
this algorithm was initiated in Google labs and now it is
distributed as an open-sourced code under MIT License.
Brotli specification is published in RFC7932 [4]. One of the
main advantages of this algorithm is that it performs a much
faster decompression than the common LZMA [5]
implementations. Brotli offers approximately the same
speed of compression, but the results of compression are
denser. Brotli is currently used by several web browsers
such as WOFF2 font compression [6]. The results of WOFF
2.0 Compression on Google Fonts, from a study, shows a
significant reduction of the data size. The maximum
improvement with WOFF 2.0 reaches up to 61%. The
average improvement reaches to 26% [7]. Brotli is currently
supported in a few web browsers only – Chrome, Opera,
Firefox, Android browser, Chrome for Android [8].

III. EXPERIMENT DESIGN

Most modern browsers support web content

decompression. They inform web servers about supporting
algorithms by header “Accept-Encoding” in the HTTP
request. Currently, most modern web browsers support
GZIP and DEFLATE decompression. Other compression
algorithms have only partial support in a small group of web
browsers and very often they are supported for experimental
purpose only. A web server informs a browser about the
type of compressed algorithm, which was used for
compression content of a HTTP response via the header
“Content-Encoding”. The possible values are:
• gzip - a format using the Lempel-Ziv coding with a

32-bit CRC,
• compress - a format using the Lempel-Ziv-Welch

algorithm,
• deflate - using the zlib structure with the deflate

compression algorithm,

• identity - indicates the identity function (no
compression),

• br - a format using the Brotli algorithm.
Compression is a CPU and memory consumed process,

with higher compression levels resulting in smaller files at
the expense of CPU and memory. For this reason, it is
always necessary to choose the best ratio among many
parameters like compression density, the time needed for
processing and consumption of system resources.
Furthermore, the right processing method must be selected:
pro-compression or compression on-the-fly. The
performance impact of these parameters on the overall user
experience is considerable; therefore, we provided an
empirical evaluation of the degree of impact. The evaluation
was performed on Apache web servers.

A. Testbed platform
A testbed platform consists of the physical machine Dell

Latitude E6440, Intel(R) Core(TM) i5-4310M, 2.70 GHz,
8GB RAM, Windows 10 64 bit. and virtualization platform
VMware Workstation 12. The virtual machine host server
provides computing resources, such as processing power,
memory, disk and network I/O, and so on. The guest is a
completely separate and independent instance of the
operating system. The virtual machine host represents the
desktop client with web browser Chrome 53. The guest
represents the server side with operation system Debian 8.6
and the web server Apache 2.4.10. The Apache server was
configured with module: mod_deflate and apache-mod-
brotli (see source code below).

1 # BROTLI
2 <IfModule mod_brotli.c>
3 LoadModule brotli_module modules/mod_brotli.so
4 BrotliCompressionLevel 11
5 BrotliWindowSize 22
6 BrotliFilterNote Input brotli_in
7 BrotliFilterNote Output brotli_out
8 BrotliFilterNote Ratio brotli_ratio
9 LogFormat ‘”%r” %{Brotli_out}n/%{Brotli_in}n

(%{Brotli_ratio}n)’ brotli
10 AddOutputFilterByType BROTLI text/htm text/html text/plain

text/xml text/css image/gif image/png image/jpeg application/x-
javascript application/javascript

11 </IfModule>
12
13 # DEFLATE
14 <IfModule mod_deflate.c>
15 DeflateCompressionLevel 9
16 AddOutputFilterByType DEFLATE text/htm text/html text/plain

text/xml text/css image/gif image/png image/jpeg application/x-
javascript application/javascript

17 </IfModule>

B. Experiment methodology
The impact of each compression algorithm was conducted

on a commonly used JavaScript library jQuery 3.1.0, the
very popular CSS framework Boostrap 3.3.7 and Foundation
6.2.3. Each of these libraries has been compressed with
Gzip, Zopfli and Brotli with different levels of compression
quality. In each measurement the following were monitored:
• Compress ratio – the ratio between the uncompressed

and compressed data
• Time – the time required for data compression,

measured by Linux utility Time
• CPU usage – CPU needed to compress data,

measured by Valgrind tool.

Empirical Study on Effects of Compression Algorithms in Web Environment

 e-ISSN: 2289-8131 Vol. 9 No. 2-6 71

The second part of the experiment was aimed at
evaluating the impact of compression from the user's
perspective. The impact of each compression algorithm was
conducted on a widely used CMS WordPress 4.6.1 and
Joomla 3.6.2. Each algorithm was tested with several
different parameters (if allowed). Individual measurements
were made in three different simulated network
environments: (A) Fiber – unlimited Mbit/s bandwidth and
50ms latency, (B) LTE – 10 Mbit/s and 50ms latency and
(C) 3G – 1 Mbit/s bandwidth and 300ms latency. To create
a simulation environment, Linux tool Netem (Network
Emulator) was used which provides functionality for
variable delay, loss, duplication and re-ordering with
combination of traffic shaper tool TBF (Token Bucket
Filter), which allows the slowing down of transmitted
traffic, to the specified rate. For the impact of each
compression algorithm, tests were performed repeatedly
under HTTP/1.1 + SSL. In each scenario, we measured:
• Compress ratio – the ratio between the uncompressed

and compressed data
• PLT – page load time, measured by our own

JavaScript application based on Navigation Timing
API [13] which obtain performance data (DNS
lookup, TCP connection, DOM loading, etc.) of every
request in the browser.

All tests were performed with a cleaned cache.

IV. EXPERIMENTAL RESULT AND DISCUSSION

Table 1 shows a compression density of the jQuery

library, which is just one file in minification version.
Further, the table shows the compression density of the
framework Booststrap, which covers: bootstrap.min.css,
bootstrap-theme.min.css, boot-strap.min.js, glyphicons-
halflings-regular.svg files, and framework Foundation,
which covers: foundation.min.css, app.js, foundation.min.js
files.

Table 1

Compression density

 jQuery Bootstrap Foundation
Uncompressed 86351 290392 185299

Gzip1 35010 73716 47349
Gzip5 30148 60291 37923
Gzip9 29885 58620 37257

Zopfli1 29040 55431 35792
Zopfli50 29013 55103 35642

Zopfli1000 29013 55076 35604
Brotli1 35982 70311 47331
Brotli5 29474 55470 35370
Brotli9 29147 54058 34560

A comparison of the compression density is shown in the
following chart. The compression density is expressed as the
total_size_of_all_files_after_compression/total_size_of_all_
files_before_compression*100%. As the graph shows, the
best result was achieved by a Brotli with the compression
level 9 (see Figure 2).

Figure 2: Compression density [%]

Table 2 shows the compression rate. The speed value is

specified in bytes per millisecond. The results also show that
Zopfli is really slow.

Table 2
Compression speed [ms]

 jQuery Bootstrap Foundation

Gzip1 0.003 0.006 0.004
Gzip5 0.005 0.010 0.006
Gzip9 0.006 0.023 0.010

Zopfli1 0.103 0.609 0.405
Zopfli50 1.038 4.660 3.284

Zopfli1000 14.139 83.227 59.112
Brotli1 0.003 0.007 0.005
Brotli5 0.017 0.017 0.011
Brotli9 0.458 0.073 0.396

The next measured parameter was the CPU usage. Table 3

shows the amount of CPU time spent in user-mode code
(outside the kernel) and sys-mode (inside the kernel) within
the process. Time is given in milliseconds. The worst result
was achieved by Zopfli.

The second part of the empirical study focused on the
evaluation of the compression algorithms from the user
experience perspective, which is also very important. The
effectiveness of the compression algorithms has been
investigated in three network scenarios: FIBER, LTE, 3G,
and each scenario was tested on two websites based on
Wordpress and Joomla CSM.

Table 3

CPU usage [ms]

 jQuery Bootstrap Foundation
Gzip1 0.000 0.004 0.004
Gzip5 0.004 0.008 0.004
Gzip9 0.004 0.020 0.008

Zopfli1 0.092 0.596 0.392
Zopfli50 0.888 4,636 3.264

Zopfli1000 14.084 82.964 56.914
Brotli1 0.000 0.004 0.000
Brotli5 0.004 0.008 0.012
Brotli9 0.132 0.052 0.072

The total size of each website is shown in Table 4. The

uncompressed size of tested web pages is from 2.7 to 3.4,
which is, according to the available statistics, a common size
of web pages today.

-10 10 30 50

Gzip1

Gzip9

Zopfli50

Brotli1

Brotli9

Foundation Bootstrap jQuery

Journal of Telecommunication, Electronic and Computer Engineering	

72 e-ISSN: 2289-8131 Vol. 9 No. 2-6

Table 4
Size of website [Mb]

 WordPress Joomla

Uncompressed 3.4 2.7
Gzip1 2.9 2.1
Gzip9 2.9 2.1
Brotli1 2.9 2.1

Brotli11 2.8 2.0

Table 5
Page load time [s]

 WordPress Joomla

LTE

Uncompressed 1.422 1.357
Gzip1 1.262 1.230
Gzip9 1.221 1.259
Brotli1 1.282 1.311
Brotli9 1.189 1.282

3G

Uncompressed 32.243 26.376
Gzip1 27.125 22.052
Gzip9 28.012 21.297
Brotli1 27.237 21.998
Brotli9 28.068 22.138

FIBER

Uncompressed 3.674 3.478
Gzip1 3.543 3.286
Gzip9 3.571 3.287
Brotli1 3.552 3.129
Brotli9 3.491 2.933

Table 5 shows the page load time for each scenario and

each website, which expresses the time required to fully
display the content of a specific page.

V. CONCLUSION

This paper presents an empirical study on the effects of

compression algorithms in the web environment.
Assessment of the algorithms were divided into two
branches: static and dynamic web content. The
demonstrated results in the static web branch show that the
commonly used Gzip is very fast and has a small CPU
footprint. Zopfi is better than Gzip in compressing, but it is
much slower. However, for a static web, it is not a
disadvantage because all web resources are pre-compressed
and stored in the web server for usage. From this
perspective, Zopfi is the most appropriate tool for the static
web. In the dynamic web branch, the situation is different.
Zopfi is very slow, therefore it is totally inappropriate for a

dynamically generated content. The results demonstrate that
Brotli offers a significantly better compression ratio, while
keeping decompressing speed relatively close to Gzip. From
the user perspective, even this small improvement can mean
a significantly faster rendering of a web page with large
files, which leads to the achievement of a better user
experience. Brotli has the potential to become the most
commonly used compression algorithm in WWW for on-
the-fly compression. Unfortunately, the disadvantage of
Brotli is incompatibility with the current most widely used
format DEFLATE, which can lead to a slower expansion of
support in major browsers.

ACKNOWLEDGMENTS

This work is published thanks to the financial support

Faculty of Electrical Engineering and Informatics,
University of Pardubice under grant TG02010058 “Podpora
aktivit proof-of-concept na Univerzitě Pardubice”.

REFERENCES

[1] P. DEUTSCH and J-L. GAILLY, ZLIB Compressed Data Format

Specification version 3.3, In: Internet Engineering Task Force (IETF)
[cit. 2016-09-17]. Received: https://tools.ietf.org/html/ rfc1950

[2] Zopfli Compression Algorithm [online]. [cit. 2016-09-17]. Received:
https://github.com/google/zopfli

[3] JYRKI ALAKUIJALA a LODE VANDEVENNE. Data compression
using Zopfli. [online]. [cit. 2016-09-17]. Received:
https://ru.scribd.com/document/319797551/Data-compression-using-
Zopfli-pdf.

[4] Z. SZABADKA a J. ALAKUIJALA. Brotli Compressed Data
Format [online]. In: Internet Engineering Task Force (IETF) [cit.
2016-09-17]. Received: https://www.ietf.org/rfc/rfc7932.txt.

[5] LI, Bing, Lin ZHANG, Zhuangzhuang SHANG a Qian DONG.
Implementation of LZMA compression algorithm on FPGA.
Electronics Letters. 2014, 50(21), 1522-1524. DOI:
10.1049/el.2014.1734. ISSN 0013-5194. Received: http://digital-
library.theiet.org/content/journals/10.1049/el.2014.1734.

[6] WOFF File Format 2.0: W3C Candidate Recommendation 15 March
2016 [online]. [cit. 2016-09-17]. Received: https://www.w3.org/TR/
WOFF2/# table_format.

[7] KUETTEL, David. WOFF 2.0 Compression w/ Google Fonts
[online]. In: Google [cit. 2016-09-17]. Received:
https://docs.google.com/spreadsheets/d/1DxoOZLA1QywIzwmWr0
Pc0GAp15YDnB-4JbJiKWQNgo8/edit#gid=0

[8] Can I Use, Brotli, Received: http://caniuse.com/#search=brotli.

	

