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Abstract—A novel of β-Divergence for nonnegative matrix 
factorization two-dimensional (NMF2D) with sparseness 
constraints is proposed in this paper. This research focuses on 
biomedical signal separation, which denotes a separation on 
the mixture of heart sound and lung sound. Initially, a mixture 
of heart sound and lung sound has been decomposed into an 
independent signal, which is an estimated heart sound signal 
and estimated lung sound signal. The spectrum of independent 
signal is modelled based on 2 dimensions, which are the 
temporal code and the spectral basis by using β-Divergence 
NMF2D algorithm with sparseness constraints. The algorithm 
has been updated multiplicative and iteratively via 
multiplicative update rules (MU rules). β-Divergence with 
sparseness constraints allows minimization on the vagueness of 
source model to be completed and oneness has been applied to 
it. Then, estimation of each separated audio has been analyzed 
via comparison with the original heart sound and lung sound 
signal in term of Signal-to-Distortion Ratio (SDR). 

 
Index Terms—Nonnegative Matrix Factorization; Sparseness 

Constraints; Β-Divergence; Multiplicative Rules. 
 

I. INTRODUCTION 
 
Nonnegative Matrix Factorization (NMF) [1,2] plays an 
important role in various applications, such as automatic 
music transcription [3], cryptography [4], pattern 
recognition [5], biomedical field [6] and etc. We are more 
concerned on the heart and lung sound separation in 
biomedical field. There are several types of information 
used to analyze the lung condition: One of the non-invasive 
diagnoses is based on the lung sound information, which is a 
valuable indicator of respiratory health and disease [7]. To 
ease in the diagnosis of lung condition, it is better to have a 
clear sound of the lung. However, the lung sound will be 
interfered by the normal heart sound, which leads to the 
difficulty of diagnosis. In order to solve this issue, the β-
Divergence NMF with sparseness constraints is imposed in 
the heart and lung sound separation. 

Recently, advancement of NMF is extended to NMF2D 
model [8] to provide separation that can efficiently capture 
the temporal dependency of the frequency patterns within 
the source. The time-frequency (TF) has been modeled as 
temporal code and spectral basis for each source in NMF2D, 
in which the temporal code and spectral basis is known as 
two-dimension. Furthermore, adding sparseness constraint 
to NMF2D is more effective compared to the normal usage 
of NMF2D. This is due to the constraints of sparseness that 

allow to reduce the vagueness of source model and to 
complete the estimation of decomposition in low distortion 
or noise. One of the advantages of the properties of NMF is 
it usually produces a sparse representation of the data. This 
sparse representation or better known as sparse coding has a 
representation encodes much of the data using few ‘active’ 
components, which eases the construction of the encoding 
[9]. 
 

II. MATHEMATICAL FORMULATION 
 

A. General Framework of β-Divergence 
For NMF, a series of famous cost function has been 

utilized for years such as the Least Square (LS) divergence, 
the Kullback-Leibler (KL) divergence and the Itakura-Saito 
(IS) divergence. All of these selected divergences are 
categorized into a singleness framework, which is β-
Divergence. The framework of β-Divergence is shown in the 
following equation: 
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where 𝑑" 𝑦 𝑥  is the scalar cost function. The LS 
divergence, the KL divergence and the IS divergence 
represent β=2, β=1, β=0 respectively. 

Obviously, LS divergence substituted in the general 
family of β-divergence will be transposed into the equation 
below: 
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In contrast, the equation will be changed when the KL 
divergence has been applied, 
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GH,I
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Meanwhile, it then turned over into equation below when 
IS divergence has been applied, 

 
𝐶LM =

ɅE,F
GH,I

− 𝑙𝑜𝑔
ɅE,F
GH,I

− 1KJ   (5) 

 
The BSS in this paper is classified into single channel 

source separation (SCSS). In time domain, the model of 
SCSS is defined as: 

 
𝑉 𝑡 = ɅK 𝑡 + 𝑒(𝑡)R

KS+   (6) 
 
It then change into time-frequency domain via Short Time 

Fourier Transform (STFT), 
 

𝑉 𝑡 = ɅK.U,V + 𝑒U,V
R
KS+   (7) 

 
where j=1,2,3,…,J denotes the amount of source, e(t) 

denotes the additional interference, f=1,2,3,…,F denotes the 
frequency bin and n=1,2,3,…,N denotes the time frame 
index. 
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The matrix W shows the		𝜏de slice spectral basis and H 

shows the  𝜙de slice of temporal code for each spectral basis 

element. Arrow of 
↓ 𝜙
𝑊K[

 shows the shifting in each element by 

𝜙 row down and arrow of 
→ 𝜏
𝐻K
_ shows the shifting in each 

element by 𝜏 column right [10]. 
 
B. Multiplicative Rules with sparseness constraints 
Sparseness constraints denote a matrix in which most of 

the elements are zero. In other words, the matrix is 
considered dense if most of the elements are nonzero and 
vice versa. In this paper, we deployed multiplicative update 
(MU) [11] rules on the β-divergence using adding 
multiplicative gradient descent method, separating positive 
and negative terms and observing the fixed point of the 
update rules, which is reached when the sparse cost function 
reaches the minimum [12].  

Now, we associated the β-divergence as defined in (1) 
with the sparsity constrained so that it will minimize the cost 
function as follow:  
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𝑛 = 1,… , 𝑁 and parameter 𝜆 is the sparsity constraint. 
Then, the derivatives of (9) are given by: 
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Then, the derivatives of (9) are given by: 
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It is a method to update the parameters iteratively and 

formula for gradient descent method as shown below [13], 
[14]: 
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Therefore, the multiplicative rules become: 
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where β ∈ R {0,1} from framework β-divergence. Figure 

1 shows the procedure of updating the proposed β–
divergence. 
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   Reconstruct V=WH 
      if not meet the stopping criterion 
           return repeat divergence 
      end if 
 end for 
until reconstruct Ʌ 

 
Figure 1: Procedure on updating of β–divergence iteratively 
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III. EXPERIMENTAL RESULTS 
 
A. Experiment Setup 
All simulations and analyses were run via PC with Intel 

Core 2 Duo CPU 6750 at 2.66 GHz and 4GB RAM as well 
as laptop with Intel Core i5 CPU 5200 at 2.2GHz and 4GB 
RAM. MATLAB 2010 was used as the programming 
platform to run the algorithm. The mixed signal which 
mingled with the heart sound and lung sound was sampled 
at 44.1 kHz sample rates. The time-frequency (TF) domain 
was computed by using short-time Fourier transform (STFT) 
[15] via 2048 point Hanning window FFT [16] and the 
frequency domain which was then logarithmically scaled. 
The convolutive components in time and frequency were 
selected to be τ��� = 3 and ϕ��� = 31 for every case after 
conducted Monte-Carlo experiments with 50 independent 
realization of mixture. Performance of results was processed 
through comparison of estimated to original audio signal in 
term of Signal-to-Distortion ratio (SDR) [17]. 

Firstly, by using NMF2D which is the proposed approach, 
we conducted several experiments that NMF2D without the 
sparseness constraints to investigate the result of different β 
value of β-divergence framework. Secondly, we repeated the 
experiments using the same approach, but we included 
sparseness constraints. 

 
B. Original Signal 
As shown in Figure 2 and Figure 3, it can be noted that 

the portion of waveform of lung sound was momentously 
larger than the heart sound when the heart and lung sound 
convolutive were mixed. This is due to the reason that the 
time interval for each period of heartbeat is significantly 
short compared to the period of respiration.  

Therefore, overlapping of heart and lung sound occurred, 
which causes a challenge for BSS. The shade of color in 
spectrogram is changing upon the intensity of the sound or 
audio. The deep black color indicates the highest intensity of 
sound and vice versa, the light grey indicates that the sound 
intensity is fading out. As a result, the deeper the color 
representation, the higher the intensity of sound; hence, the 
signal received by receiver becomes more significant. 
 

  
(a) (b) 

 
(c) 

 
Figure 2: Time domain representation of (a) original heart sound, (b) 

original lung sound, (c) mixed of original heart sound and original lung 
sound 

 

  
(a) (b) 

 
(c) 

 
Figure 3: TF representation of (a) log. frequency of original heart sound, (b) 

log. frequency of original lung sound, (a) log. frequency of mixed of 
original heart sound and original lung sound 

 
C. Initialization of β  
We deployed the algorithm to examine the optimal β 

value by using MU rules. Table 1 shows the graph of β of β-
divergence against SDR value with the step size of 0.1 in 
between β=0 until β=1. It should be embodied the general 
framework of β-divergence, which includes IS divergence, 
Kl divergence and LS divergence. We found that SDR at 
β=0.8 is considered high compared to the other β values as it 
was over 15 dB on its average. Therefore, it is 
recommended to use β=0.8 as the following phase to inspect 
the influence of λ(H) or sparseness constraints of NMF2D to 
algorithm. 

 
Table 1 

The influences of sparseness constraints to the SDR of output with step size 
of 0.1 

 
Sparseness 

constraints (λ) 
Average of SDR of 
output 1 & 2 (dB) 

1 8.4212 
1.5 9.3625 
2 16.4195 

2.5 17.0557 
3 12.1395 

3.5 12.0823 
4 12.0675 

4.5 11.8028 
 

D. Additional of sparseness constraints 
In order to investigate the outcome of sparseness 

constraints against SDR, β=0.8 has been located as a 
constant variable. The step size of the λ equals to 0.1, which 
is used for inspection starts from 1 until 4.9. From Figure 4, 
it reveals the normal distribution graph or named as the bell-
curve graph informally. According to Figure 4 and Table 1, 
the peak point is at λ=2.5 which contains SDR=17.0557dB. 
It started with an increment from λ=1 until λ=2. Then, it 
presents a high SDR with an approximate constant, which 
advanced to λ=2.6 and a tail-off occurred at λ=3.7 with 
12.2421dB. Finally, it is constantly reduced until the end of 
λ. Normally, SDR over than 10dB is considered decent in 
the performance of decomposition, in which the SIR and 
SAR will be over 10dB incidentally as well. For without 
sparseness constraints in NMF2D, the SDR presents 
16.6886dB. In comparison, NMF2D with sparseness 
constraints has high SDR to NMF2D without sparseness 
constraints with the increment of 0.3671dB or 2.2%.  
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Figure 4: SDR (dB) against sparseness constraints 

 
Figure 5 reveals heart sound and lung sound after 

decomposition with and without the aids of sparseness 
constraints. Figure 5(a) and Figure 5(c) are nearly the same, 
indicating that there is not much changes for the intensity 
via observation; hence, it does not need further discussion.  

Figure 5(b) shows a poor result as the intensity of sound is 
shown blurrily (marked as red box) compared to Figure 
5(d), which has strong and hue saturated (marked as blue 
box) of the intensity of sound. This is due to the vagueness 
arises, while there is a drought of sparseness constraints. In 
contrast, aids of sparseness constraints will enable it to  
qualitatively provides exceptional decomposition. 
Therefore, obviously, the sound that has been separated is 
having high intensity through divergence if it is being 
applied by the sparseness constraints. The higher the 
intensity of sound, which means the color in divergence is 
deeper, the better separation performance is produced. From 
the above statements, it can be deduced that the sparseness 
constraints support the ability of NMF2D to produce 
momentous effect on it. 

 

  
(a) (b) 

  

(c) (d) 
 

Figure 5: The estimated W and H without sparseness constraints for heart 
sound (a) and lung sound (b), and with sparseness constraints for heart 

sound (c) and lung sound (d) 
 

IV. CONCLUSIONS 
 
In conclusion, through this experiment, we validated that 

the β=0.8 is the optimal result from the family of β-
divergence in term of SDR, SIR and SAR. In conjugate, the 
sparseness constraints added, which is λ=2.5 when the β-0.8 

is fixed. The λ=2.5 is considered as the peak point among all 
λ values which enable it to eliminate the ambiguity and 
vagueness issue; hence increases the SDR. Therefore, the 
additional of sparseness constraints is certainly performing 
well in blind source separation with high SDR. In the future, 
we believe that these constraints will become helpful in 
various applications, which is addressed by NMF2D beyond 
audio source separation. 
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