

 e-ISSN: 2289-8131 Vol. 9 No. 2-5 123

The Utilization of Automated Tools in the

Automated Continuous Integration Practice

Case Study: Medical Record Application

Eka Trisno Samosir1, Hernawati Samosir1, Inggriani Liem2, Yudistira Dwi2

1Del Institute of Technology, Sitoluama, Laguboti, Toba Samosir, North Sumatera – Indonesia. 22381.
2Bandung Institute of Technology, Jl. Ganesha 10, Bandung, West Java – Indonesia. 40132.

eka.samosir@del.ac.id

Abstract—Continuous integration (CI) is a software

development practice that is carried out in a team by dividing

modules among the team members and integrate team’s work

regularly. Developers who are using CI practice manually will

require more effort for the whole work integration compared to

those who work in a team and integrate their work regularly.

The application of toolset in CI practice will enable the

developer to work easily. The CI practice that uses toolset is

known as automated CI. The automated CI practice consists of

version management using version control system tools, code

program testing using testing tools, build execution using build

tools and module integration practices using CI tools. From all

of the automated CI practices, the focus of this research is the

execution of build and the integration of modules manually and

using automated tools. The significant differences from using

automated tools in automated CI practice are the decrease of

unnecessary effort spent by developers on the execution of the

build using the build tools and the elimination of the integrator

role by using CI tools that finally results in a more efficient

performance of the developers.

Index Terms—Build Tools; Build; Automated CI Tools;

Continues Integration.

I. INTRODUCTION

Software engineering is a strategy in developing software

which includes processes, methods, and tools [1]. The life

cycle of software development consists of requirements,

design, code, testing [12,13], deployment, and maintenance

[2]. In the large scale of software development, a new feature

will be added incrementally. This process will travel through

the life cycle of software development for several times until

the product with a certain version is released. According to

the survey of software development in some companies,

maintenance costs are greater than other processes [3].

During software development process, software

specification tends to change according to the users’

requirements and they urgently need it. Basically, a software

is built with attention to two main focuses [2]; cost and

development time in which those are related to each other.

The duration of software development itself is effected by

various aspects including the failure in the integration

process. The bigger the problem is the longer it takes to fix it,

especially if it is done manually.

Automation is the key to do the same and repeating process.

By implementing automation, the time to build, deploy and

test the software can be minimized and shortens. In term of

integration, the automation process can be used to integrate

the software regularly which can also reduce the risk of

software failure and improve the quality of the software [4].

This integration process is done using the implementation of

Continuous Integration (CI).

CI is a software development practical that integrates the

developer’s works regularly to find the problem in the

integration process immediately [5]. CI implementation using

toolset is known as automated CI. The automated CI will

ensure the software to run in every modification [9].

If the problem is encountered during the integration

process, the appointed team can fix it immediately. For

instance, the team that uses automated CI can effectively

detect bugs faster, produce software with fewer bugs, and

reduce the cost and time to amend the software compare to

other team with no implementation of automated CI [4].

The implementation of automated CI comprises version

control system tools, testing tools, and automated tools. In

this research, the author focuses more on the implementation

of automated CI, particularly about the automated tools. The

use of automated tools will be implemented in a medical

record application called Medrecapp built using Java

programming language.

II. ANALYSIS AND METHOD

A. General CI Concept

CI is a software development method where the task is

divided into modules and done by a team. Each module will

be distributed to each member of the team and integrated after

finished [8]. In manual CI, there is no toolset is used to

support the integration process which will make the

development process vulnerable to a particular problem.

Some activities that are done in manual CI including version

controlling, code testing, build execution, and module

integration.

Figure 1: General CI Implementation

CI
Implementation

Version
Controlling

Program Code
Testing

Build
Execution

Integration
Module

Discussed in general

Focus of the research

Legend:

Journal of Telecommunication, Electronic and Computer Engineering

124 e-ISSN: 2289-8131 Vol. 9 No. 2-5

a. General CI Concept of Manual Build Execution

In the general concept of manual build execution,

integration is required to trigger the application archiving and

deployment process. The application archiving process

consists of files that are ready to be used. Generally, the

trigger of build execution is done by an integrator in the

integration machine.

Before triggering the process of creating the application, an

integrator needs to integrate and test all the correct module

versions from developers. The build process includes the

trigger execution of all testing drivers, the trigger execution

of all GUIs, the trigger execution of generating application

package, the trigger execution of application package, and

trigger deployment of the application package to the customer

environment. Those trigger processes are done solely by a

integrator every time a member integrate it manually and

repetitively.

Figure 2: Manual build execution

b. General CI Concept of Integration Module

As mentioned in the previous paragraph, the integration

process requires an integrator to integrate all the modules

from developers and ensure the application has zero

problems. The integration is started by triggering the testing

drivers, GUI modules, generate application package, and

application package execution. The aim of these trigger

processes is to verify whether the functional requirement of

the software has fulfilled. If the integrator encountered any

problem, all developers should be notified immediately.

Successfully integrated modules will be generated into an

application package and ready to be deployed to the customer

environment. Afterward, an archive process will be done to

acquire the histories from the application packages. The

archive will be used as the milestone of the software

development progress.

B. General CI Concept Using Toolset

The idea of using toolset in CI is to automate the integration

process as mentioned in the previous description instead of

using an integrator to make the process more efficient. In this

toolset, the focus will be the build execution using build tools

and module integration using CI tools.

a. General Concept of Build Execution and Build Tools

By using build tools, the code testing [11] and archiving

process stored in local can be automated. In order to do the

automation process, developer team needs a build script. A

build script consists of some targets and tasks that will be

executed by the build tools. Basically, a build script is created

to synchronize the workflow of each team member in local

machine and automate the build process that will be done by

an integrator in the integration machine. The addition of

target testing on every level of automated build covers private

build, integration build, release build into build script is not a

mandatory but it can minimize the problem.

The build script is executed by build tools on the local

machine of each team member called private build. To

synchronize all the workflows of the team member, a team

needs to define the target and task of build tools. A target may

consist of several tasks and may depend on another target.

Generally, several targets in the private build includes code

execution testing and module versioning storage which has

modified into the local repository.

Figure 3: General implementation of automated CI

Figure 4: Private build execution

To automate all activities that will be done by the integrator

in the integration machine, a team needs to define the target

and task in the build script that will be executed by build

tools. Build script which is executed by build tools in

integration machine to generate the application package

called integration build. Basically, target in integration build

includes code testing execution and generate application

package.

Figure 5: Integration build execution

Application package from integration build can be tested

and deployed to customer environment automatically. To

Developer X

Developer Y

Developer Z

Integrator
(Developer Y)

Code Program
Testing

Integration machine

at

 A module
version, correct

and tested

 B module
version, correct

and tested

 C module
version, correct

and tested

Integrated
 by

Execute all
testing drivers

Execute all
interface
modules

Execute
application

generator package

Execute
application

package

Deploy application
package to

customer env.

Build process

triggering

CI
Automated

VCS tools Testing tools
Build
tools

CI tools

Discussed in general

Focus of the research

Legend:

Integrator
(Developer Y)

 Build tools

 Build script

Test suite
Unit testing

tools
VCS tools Local

repository

automation

execution

Archiving version
module

Code program
testing

Archiving
modified

version module

Target

Code program compilation

Code testing compilation

Unit testing

Testing integration

Archiving version module

Task

Consists of

Integrator
(Developer Y)

Build tools

Integration machine

at

using
Build scripts

Unit testing
tools

Package
application
generatorTest suite

automation
execution

Code program
testing based on

Code program
testing

Archiving
modified version

module

Target

Code program compilation

Code testing compilation

Unit testing

Testing integration

Archiving version module

Task

Consists of

Named Data Object Organization in Distributed Name Resolution System for Information Centric Network Environment

 e-ISSN: 2289-8131 Vol. 9 No. 2-5 125

automate that process, a team needs to define the target and

task in the build script that will be executed by build tools.

Build script that is executed by build tools in integration

machine to deploy the application package called release

build. Target in release build includes application package

testing and application package deployment to customer

environment.

Figure 6: Release build execution

b. General Concept of Integration Module Using CI

Tools

The integration process using CI tools in integration

machine will not require an integrator to use the build tools

because the build tools can be automated and scheduled. CI

tools also can retrieve the latest module version from main

repository automatically based on the schedule. That testing

will be done on the integration machine based on the testing

code saved in each team member in the main repository. By

using CI tools, an integrator in the integration machine will

not necessary anymore. If any problem occurred, the system

will notify all the team members directly.

The archiving process will also be done automatically in

the integration machine when the execution is succeed. CI

tools will also notify the progress of the software

development to each team member automatically.

III. IMPLEMENTATION

Medrecapp is a desktop application which is built using

Java programming language. It consists of nine modules such

as Specialize, Insurance, Patient, Staff, Nurse, Doctor,

Action, Medical Record, and Service Action. Each module of

Medrecapp includes DAO class (Data Access Object), entity

classes, GUI classes, interface classes, services classes, and

model table classes. The modules dependency is explained by

this picture.

Manual implementation of Medrecapp without using CI

tools has explained in the method sections. So in this section,

the focus of explanation will be the implementation of

automatic CI.

A. Implementation of Medrecapp Using Toolset

The development of Medrecapp application with CI using

toolset includes control versioning using VCS tools [10],

code testing using testing tools, build execution using build

tools, and integration module using automated CI tools.

However, the focus will on the last two parts; build execution

using build tools (Ant) and integration module using CI tools

(Jenkins) [7]. The rest of the toolsets have already done by

Yuanita [5] and Fachrul [6].

Figure 7: Dependency diagram among modules in Medrecapp

a. Implementation of Build Execution Using Build Tools

Build process in CI uses Ant as the build tools. The process

of code testing, as well as module versioning storage in the

local repository, can be automated using a build script that is

built by the developer team to ensure the workflows of all

team member synchronized in the local machine. A build

script consists of some targets and tasks that will be executed

by Ant. The team should automate the build process that will

be implemented by the integrator in the integration machine.

The executed build script on the local machine of team

member by Ant is called private build. As stated before,

targets and tasks should be defined by the team where each

target consists of several tasks and depends on another target.

An example of the target in the private build is the code

testing execution.

As seen in Figure 8, Hernawati uses build tools (Ant) to

execute build scripts with code testing target which consists

of 11 tasks.

Figure 8: Private build execution

b. Implementation of Integration module Using CI Tools

According to Figure 9, CI tools (Jenkins) in the integration

module will replace an integrator in the manual system to

execute the build script. Jenkins will use Ant to execute the

build script on the integration machine. A team will only

require scheduling the build execution and then Jenkins will

execute the build script accordingly.

Build tools

Integration machine

at

using

Functional
testing tools

Structural
testing tools

Application
package

deployment

Build script

Application
package

Customer environment

totesting

automation

executing

Application
package
testing

Application
package

deployment

Target

Functional testing

Structural testing

Application package copy

Task

Consists of

Medrecapp
Application

Treatment
service module

Medical record
module

Insurance
module

Patient
module

Staff
module

Nurse
module

Docter
module

Action
module

Specialize
module

Legend

Required by

Machine local

Hernawati

Ant

Build script

at

execute

uses

Application
package
testing

Target

Directory path initiation of
code program

Directory path initiation of
code testing

Delete directory

Task

Consists of

Directory path initiation of
library

Create directory

Compile code program

Compile code testing

Create database

Run unit testing

Run integration testing

Drop database

Journal of Telecommunication, Electronic and Computer Engineering

126 e-ISSN: 2289-8131 Vol. 9 No. 2-5

Figure 9: Build script execution scheduling in the integration machine

In every integration build execution, integration machine

will test the code and application package automatically and

notify the occurred problem to each team member which are

all done by Jenkins. Jenkins execute the build script by using

Ant.

CI tools can also automate the archiving process of the

application package. Jenkins uses Ant to execute build script

and store the archives in the integration machine as shown in

Figure 11.

Figure 10: Automated notification system

Figure 11: Automated archiving process

Following the previous process, Jenkins will create the

progress report of software development in the integration

machine and send it to the team members.

Figure 12: Automated progress report of software development

IV. CONCLUSIONS

The conclusion from the implementation of build execution

and module integration manually as well as automatically

using automated tools in Medrecapp application is:

1. The difference between manual build execution and

build tools in Medrecapp application is on manual

build execution, the developer needs to run several

triggers, such as trigger in the testing driver, GUI in all

modules, and generate the application. Whereas in

build tools, the implementation of build execution will

use Ant. Ant will execute the all the triggers

automatically in integration machine.

2. In term of the integration process, the manual build

execution requires an integrator to notify developers if

a problem occurred. While using build tools, the

integrator will be replaced by CI tools, called Jenkins.

Jenkins will automate the build execution in

integration machine as scheduled, notify the problems

to developers, build the archive for the Medrecapp

application in integration machine, and create a

progress report of the Medrecapp application’s

development.

3. The framework to implement automated CI consists of

two parts:

i. Preparation

• Divide the development modules into several

parts

• Create commitment before building the

software where developers must store the

codes accordingly and fix the occurred

problem immediately after testing

• Prepare the integration machine

• Install toolset to support the automated CI

which includes VCS tools, automated testing

tools, automated build tools, and automated

CI tools.

ii. Process

• Create the build script

• Define dependency between targets and build

script

• Define the main target on build script

• Set the schedule to invoke the build script by

using CI tools

ACKNOWLEDGEMENTS

The author would like to thank you the Del Institute of

Technology (Institut Teknologi Del) of North Sumatera for

the full support in publishing this research.

REFERENCES

[1] Glenford J. Myers, 2004, The Art of Software Testing Second Edition,

Hoboken, John Wiley & Sons.
[2] Pilone Dan dan Russ Miles, 2007, Head First Software Development,

USA.

[3] Kaner, Falk, Nguyen, 1999, Testing Computer Software, Second
Edition (Wiley Series), USA.

[4] Humble, Jez dan David Farley, 2010, Continuous Delivery: Reliable

Software Releases through Build, Test and Deployment Automation
(Addison-Wesley Signature Series), USA.

[5] Hijriyah, Yuanita Annisatul, 2014, Penggunaan VCS tools dalam

praktik automated Continuous Integration pada studi kasus aplikasi
rekam medis, Program Alih Jenjang D3 ke D4 Teknologi Informasi

Github
Jenkins Ant

Integration machine

at

Build script
Scheduling

executing

uses

Downloading
the latest
module

Developer X

Developer Y

Developer Z

Notify
error

Build tools

Integration machine

at

2 1

CI tools

using

Build script

Build result:
failed

execute

Ant

Archiving the
application

package

21

Integration machine

Consists of
Application Package #1
Application Package #2
Application Package #3
Application Package #4
Application Package #5

Application
package archive

Jenkins

Build script

executing

using

Build result:
Successful

Developer X

Developer Y

Developer Z

Accessing
report

Integration machine

saved
Jenkins

Progress report of
PL development

process

create

Named Data Object Organization in Distributed Name Resolution System for Information Centric Network Environment

 e-ISSN: 2289-8131 Vol. 9 No. 2-5 127

Kesehatan, Institut Teknologi Bandung, Bandung.

[6] Muhamad, Fachrul Pralienka Bani, 2014, Penggunaan testing tools
dalam praktik automated Continuous Integration pada studi kasus

aplikasi rekam medis, Program Alih Jenjang D3 ke D4 Teknologi

Informasi Kesehatan, Institut Teknologi Bandung, Bandung.
[7] Meet Jenkins. (Online). URL: https://wiki.jenkins-

ci.org/display/JENKINS/Meet+Jenkins. Accessed in 10 October

2013.
[8] Fowler Martin, 2006, Continuous Integration. (Online). URL:

http://martinfowler.com/articles/continuousIntegration.html.

Accessed in 10 October 2013.
[9] Duvall, Paul M., Steve Matyas and Andrew Glover, 2007, Continuous

Integration: Improving software quality and reducing risk (Addison-

Wesley Signature Series), USA.
[10] Somasundaram. Ravishankar, 2013, Git: Version Control for

Everyone, Birmingham B3 2PB, Packt Publishing Ltd.

[11] Glenford J. Myers, Tom Badgett, Corey Sandler, 2012, The Art of
Software Testing 3rd Edition, Hoboken, JohnWiley & Sons.

[12] Pressman. Roger S, 2001, Software Engineering: A Practitioner’s

Approach Fifth Edition, New York, The McGraw Hill.
[13] Peter A. Vogel, An Integrated General Purpose Automated Test

Environment, ftp://192.67.63.1/pub/cite/vogel-cite.pdf. Accessed 3

May 2014.

