
 e-ISSN: 2289-8131   Vol. 9 No. 2-5 33 

 

A Fault Detection Algorithm using Multiple 

Residual Generation Filters 
 

 

Pyung Soo Kim 
System Software Solution Lab.,  

Dept. of Electronic Engineering, Korea Polytechnic University, 

237 Sangidaehak-ro, Siheung-si, Gyeonggi-do, 429-793, Korea. 

pskim@kpu.ac.kr 

 

 
Abstract—This paper proposes a fault detection algorithm 

based on multiple residual generation filters for discrete-time 

systems. Residuals are generated from estimation errors 

between the reference filter and multiple residual generation 

filters. These filters utilize only finite observation on the most 

recent window. The reference filter gives optimal state estimates 

based on all sensors. One the other hand, one of multiple 

residual generation filters can give the sub-optimal state 

estimates which can be independent of faulty sensor. Then, the 

fault detection rule is developed to indicate presence of fault by 

checking the agreement of multiple residuals. Multiple test 

variables for the detection rule are defined using the chi-squared 

distribution with one degree of freedom. Via numerical 

simulations for the aircraft engine system, the proposed 

algorithm is verified. 

 

Index Terms—Fault Detection; Residual Generation; 

Estimation Filter; Kalman Filter. 

 

I. INTRODUCTION 

 

A fault detection is an important and challenging problem in 

many disciplines such as chemical engineering, nuclear 

engineering, aerospace engineering, and automotive systems 

[1-3]. The essential step for the fault detection is to generate 

a set of variables known as residuals by using one or more 

residual generation filters. These residuals should ideally be 

zero (or zero mean) under no-fault conditions. In practical 

applications, the residuals are corrupted by the presence of 

noise, unknown disturbances, and uncertainties in the system 

model. Hence, in order to be useful in practical applications, 

they should be insensitive to noise, disturbances, and model 

uncertainties while maximally sensitive to faults. 

As the residual generation filter, the Kalman filter has 

been adopted in the stochastic case where noises have to be 

considered [4-9]. Due to the compact representation and the 

efficient manner, the Kalman filter has been applied 

successfully for various areas including a fault detection. 

However, the Kalman filter has an infinite memory structure 

that utilizes all observations accomplished by equaling 

weighting and has a recursive formulation. Thus, the Kalman 

filter tends to accumulate the filtering error as time goes and 

can show even divergence phenomenon for temporary 

modeling uncertainties and round-off errors [10-15]. In 

addition, actually, long past measurements are not useful for 

detection of faults with unknown times of occurrence. 

Moreover, it is also known that the increase of the number of 

measurements for a detection decision will increase detection 

latency in a system for detecting a signal with unknown time 

of occurrence. 

Therefore, this paper proposes a new fault detection 

algorithm using multiple residual generation filters for 

discrete-time systems with multiple sensors. The proposed 

fault detection algorithm is an alternative simple form of the 

early developed algorithm [16] with the iterative form. 

Residuals are generated from estimation errors between the 

reference filter and multiple residual generation filters. These 

filters utilize only finite observation on the most recent 

window. The reference filter gives optimal state estimates 

based on all sensors. One the other hand, one of multiple 

residual generation filters can give the sub-optimal state 

estimates which can be independent of faulty sensor. Then, 

the fault detection rule is developed to indicate presence of 

fault by testing the consistency of multiple residuals. Multiple 

test variables for the detection rule are defined using the chi-

squared distribution with one degree of freedom. The 

proposed algorithm is verified via numerical simulations. 

 

II. A FAULT DETECTION ALGORITHM 

 

A discrete time system with sensor faults can be modeled 

by state-space model as follows: 

 

),()()()(

),()()()1(

ivtFftCxiz

iGwiBuiAxix




 (1) 

 

where 
mRiz )(  is the sensor observation vector with m  

sensors, 
mRif )(  is the unknown fault vector, and thus the 

observation matrix C  has m  rows as follows: 
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and 
nRix )( is the state vector, 

lRiu )(  is the input 

vector. The system noise 
pRiw )( and the observation 

noise 
qRiv )(  are zero-mean white Gaussian with 

covariance  Q  and R , respectively. 

 

A. Reference and Residual Generation Filters 

Firstly, a reference filter and multiple residual generation 

filters are developed for residual generation in the proposed 
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fault detection algorithm. They adopts the well-known finite 

memory structure estimation filter with a matrix form11. If 

there is no fault, 0)( if , the finite memory structure 

estimation filter provides the state estimate )(ˆ ix  of the 

system state )(ix   using only the most recent finite sensor 

observations on the window ],[ iMi  . M is called the 

window length. That is, past sensor observations outside the 

window are discarded. When the system of (1) is completely 

observable, the finite memory structure estimation filter is 

represented by following simple matrix form [11]. 

 

 )()()(ˆ iUiZHix   (3) 
 

with the filter gain matrix H , 

 

  .111   TTH  (4) 

 

Matrices  ,  ,  ,   in (3) and (4) are as follows: 

 

,

000

0

1

121

121





























BCA

BCABCABCA

BCABCABCABCA
MM

MM









 

,

1

1





























CA

CA

CA
M

M


 

,       



























































  


  


M

T

M

RRRdiag

QQQdiag

 

,

000

0

1

121

121





























GCA

GCAGCAGCA

GCAGCAGCAGCA
MM

MM









 

 

The most recent finite sensor observations and inputs on 

the window ],[ iMi   are represented by: 
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From the deadbeat property [11], the finite memory 

structure estimation filter can show the fast convergence and 

thus provide the fast tracking performance.  

For the linear discrete time-invariant system (1) with 

multiple sensors )(iz  and sensor fault )(if , two kinds of 

finite memory structure filter are defined using only the most 

recent finite sensor observations on the window ],[ iMi  . 

The first one is the reference filter which utilizes observations 

of all sensor. The second one is the residual generation filter 

which reflects observations of a part of sensors. The 

estimation difference between the reference filter and the 

residual generation filter is used for generating residual.  

The reference filter )(ˆ ix  is given by (3) and processes 

the most recent finite observations )(iz  for all sensors. That 

is, the reference filter )(ˆ ix  must be affected by the fault 

)(if  of (2). On the other hand, the residual generation filter 

)(ˆ ix p  is obtained from: 
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when .1 mp    pH  and )(iZ p  can be obtained from  H  

and )(iz  for the thp  residual generation filter. In )(iZ p , the

thp  observation part for the thp sensor is excluded from 

)(iz  as follows: 
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pH  is the filter gain for the thp  residual generation filter 

as follows: 
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where p  and p  are obtained from   and   using the 

matrix C  of (2) without the thp row. Thus, if a fault occurs 

in one of sensors, the specific residual generation filter is not 

affected by a sensor fault )(if  of (2). 

 

B. Residual Generation 

The reference filter )(ˆ ix  and thp  residual generation filter 

)(ˆ ix p  give their estimation errors )(~ ix , )(~ ix p  and error 

covariances )(i , )(ip as follows: 
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A residual for the fault detection is defined by the following 

estimation disagreement: 
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Since reference and residual generation filters are linear, 

two kinds of estimates are unbiased for the fault-free system. 

Hence, residual )(ip  becomes: 
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The covariance )(ip  of residual )(ip  is represented by: 
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where: 
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So, the residual )(ip  is in the zero-mean Gaussian 

distribution for the fault-free because the residual is the linear 

combination of )(~ ix  and )(~ ix p . 

)(ip  in (7) requires the cross-covariance of two residuals 

because they are correlated for the system noise ).(iw  

Actually, the system noise is a common input to )(~ ix  and 

)(~ ix p . These cross-covariances can be shown to be same as 

the estimation error covariance of the reference filter filter. 

Because the finite memory structure filter is satisfying the 

orthogonality: 
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Thus,   T

p ixixE )(~)(~  in (7) satisfies the orthogonality 

because:  
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As mentioned before, both the reference filter and residual 

generation filter utilize the most recent finite sensor 

observations, thus   .)(ˆ)(ˆ)(~ T

p ixixixE   in (8) is zero with 

applying (10) to all time.   .)(~)(~ T

p ixixE  in (9) is also same 

result, so the following is satisfied: 
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And then, )(ip  can be represented by estimation error 

covariances (5) of the reference filter and residual generation 

filter as follows:  
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Hence, the covariance )(ip  of residual )(ip  can be 

obtained from the off-line computation because )(M  and  

)(Mp  in (5) require computation only on the interval 

],0[ M  once and are time-invariant for all windows. 

 

C. Test Variables and Detection Rule 

A test variable is formulated based on the residual )(ip  

of (6) and its covariance. Each component of )(ip is 

considered to enhance performance of a fault detection. The 

thq  component of residual )(ip  is defined by )(iq
p , 

where mq 1 . Using this residual component, the test 

variable )(it p  for the thp  sensor can be defined as follows: 
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where p  is the covariance of  0)()( ifiq
p as: 
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where  qM )( and  
qp M )( are the thq diagonal 

component )(M and )(Mp  of (5), respectively.  

If there is a fault in the sensor, the corresponding test 

variable )(it p  might be highly affected and declare a fault 

first. To compare with the test variable, a threshold value is 

required. The threshold value is set   relatively to the 

sensitivity of residuals to the sensor fault. That is, too low 

threshold value causes excessive false alarm rate, on the other 

hand, too high one brings about insensitive fault detection. 

Because the test variable (11) forms a chi-squared 

distribution, a threshold value can be obtained from the chi-

squared distribution function under the consideration of 

rational probability false alarm (PFA). The relationship 

between the threshold value and the PFA is represented as 

one degree of freedom chi-squared distribution function. The  

pth sensor fault can be detected for the chosen threshold value 

using the following detection rule: faulty if 
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valuethresholdit p  )(   and non-faulty if 

. )( valuethresholdit p   

 

D. Numerical Simulations 

The promptness of a fault detection must be considered as 

one of the important performance criteria. Therefore, 

numerical simulations are performed for the aircraft engine 

system in [7,16] in order to show the adjustment of detection 

latency. In the aircraft engine system, it is important to be able 

to detect and locate the faulty sensor because the sensor fault 

can cause rapid instability and loss of control. The aircraft 

engine system in [7,16] is modeled by the following 3rd order 

discrete-time system: 
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In numerical simulations, an unknown sensor fault is 

assumed to be ramp-up from 100i  to 250i , and then 

step, and ramp-down from 450i  to .600i Noise 

covariances are set by IQ 201.0  and IR 202.0 , 

respectively. The threshold value is set by 7.88 to analyze 

results for high threshold. Table 1 shows detection latency for 

each simulation run according to diverse window lengths. 

The simulation result with 10M  is superior to other cases, 

which means that the proposed algorithm can have smaller 

detection latency as M  decreases and thus improve the fast 

detection performance. However, the estimation performance 

in this case can be unsatisfactory. Thus, if both fast detection 

ability and noise-suppressing estimation ability are 

considered simultaneously, the windows length 30M  or 

50M  can be better. It is shown from numerical simulation 

results that detection latency can be adjusted via the window 

length. 

 
Table 1 

Simulation results 

 

Window length 
Mean of test 

variable 

Detection latency 

(Samples) 

M = 10 11.4386 170 

M = 30 8.2703 180 

M = 50 5.7246 200 

M = 70 4.1571 230 

 

 

III. CONCLUSION 

 

A fault detection algorithm has been proposed using 

multiple residual generation filters for discrete-time systems 

with multiple sensors. Residual are generated from the 

estimation error between the reference filter and multiple 

residual generation filters. These filters utilize only the most 

recent finite sensor observation. The reference filter gives 

optimal state estimates based on all sensors. One the other 

hand, one of multiple residual generation filters can give the 

sub-optimal state estimates which can be independent of 

faulty sensor. Then, the fault detection rule has been 

developed to indicate presence of fault by checking the 

agreement of multiple residuals. Multiple test variables for 

the detection rule have been defined using the chi-squared 

distribution with one degree of freedom. The proposed 

algorithm has been verified through extensive numerical 

simulations for the aircraft engine system. 
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