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Abstract—This paper presents an application of a stable 

implementation of the latency insertion method for simulations 

of power distribution networks (PDN). Traditionally, 

simulations of PDNs poses a considerable challenge due to their 

large circuit sizes. While the latency insertion method can be 

applied to simulate these networks, the existence of low latency 

elements results in a more stringent stability criterion which 

reduces the efficiency of the method. Using the improved 

formulation, a latency insertion method that is free from the 

stability criteria is obtained, which results in no limitation on the 

size of the time step. 

 

Index Terms—Latency Insertion Method (LIM); On-Chip, 

Power Distribution Network. 

 

I. INTRODUCTION 

 

Early design planning is crucial in any integrated circuit 

design as the noise margin becomes smaller and the operating 

frequency increases. It is important to perform power 

integrity simulation in the early design stages in order to 

prevent chip failures. With the trend towards deep submicron 

technology, state of the art interconnection feature size has 

also been reduced in tandem. The smaller wire spacing, 

together with longer wire length, higher operating speed, and 

smaller power supply voltage, have led to significant noise 

problems in on-chip power distribution networks (PDN). In 

particular, the power supply noise (PSN) which is caused by 

the parasitic inductances and capacitances, which 

traditionally only occurred on the packaging level, can no 

longer be ignored even at the chip level [1]. Thus it is 

important to be able to quickly and accurately simulate power 

distribution networks in order to design a PDN with a 

guaranteed PSN level within a specified margin. 

The PDN of an integrated circuit is a distributed system 

that can be approximately modelled as a big RLGC mesh. 

Conventional simulation method such as the modified nodal 

analysis (MNA) based SPICE simulator, struggles to simulate 

the on-chip power grid consisting of a large number of 

elements as it requires a matrix inversion with huge memory 

requirements and excessive computation time, even by 

utilizing sparse matrix techniques. On the other hand, the 

latency insertion method (LIM), first presented in [2], is 

capable of solving the circuit equations in a leapfrog manner, 

resulting in a reduction in memory and computation time 

requirement. Because of its computational efficiency, LIM 

has been applied to solve a number of problems including 

power distribution networks [3-4]. However, due to its 

explicit formulation, LIM suffers from a conditional stability 

limitation [5]. This results in an inefficient simulation, 

especially when applied to on-chip simulations, with very 

small inductances and capacitances. In this paper, we present 

an application of a stable formulation of the latency insertion 

method for the simulations of power distribution networks. 

The stabilized formulation alleviates the stability limitation 

of LIM and is able to produce stable and accurate results even 

when the original LIM becomes unstable. 

 

II. REVIEW OF BASIC LIM FORMULATION 

 

The formulation of the basic LIM is presented in this 

section. LIM can be applied to any arbitrary network whereby 

through the use of Thevenin and Norton transformations, the 

branches and nodes of the circuit are described by a general 

topology. Each node is denoted by a parallel combination of 

a current source, a conductance, and a capacitor to ground. A 

branch is formed by the connection between two different 

nodes where it is represented by a series combination of a 

voltage source, a resistor and an inductor. A node i with k 

branches connected to it is shown in Figure 1, while a branch 

connecting nodes i and j is shown in Figure 2. Vi represents 

the voltage at node i while Iij represents the current flowing 

from node i to j. LIM discretizes the time variable whereby 

the voltages and currents are collated in half time steps. Then, 

the voltages are solved at half time steps whereas the currents 

are solved at full time steps. The algorithm starts from the 

Kirchhoff’s current law (KCL) at node i: 
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where the superscript n is the index of the current time step, 

Δt is the time step and Mi is the number of branches connected 

to node i. Solving for the unknown voltage yields: 

 

1/2 1/2 1/2

1

iM
n n n n n

i i ik i i i

ki

t
V V I GV H

C

  



 
     

 
  (2) 

 

for i = 1, 2, …, Nn, where Nn is the number of nodes in the 

circuit. 

Then, writing Kirchhoff's voltage law (KVL) at branch ij 

yields: 
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and solving for the unknown current yields: 
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Figure 1: LIM node equivalent circuit 

 
 

Figure 2: LIM branch equivalent circuit 

 

As time progresses, the calculation of the node voltages and 

the branch currents are alternated in a leapfrog manner. LIM 

is similar to Yee's algorithm for the solution of Maxwell's 

equations in the finite-difference time-domain (FDTD) 

method in this context [6]. It is well known that the LIM 

algorithm depends on the latencies in the network in order to 

perform the leapfrog time stepping formulation. Hence, a 

capacitor to ground has to be present at every node. If not, a 

small fictitious capacitor is inserted to enable the method. 

Likewise, small fictitious inductors are introduced into 

branches without latencies. Similar to the traditional FDTD 

method, LIM is only conditionally stable which means that 

there is an upper bound on the time step that will result in a 

numerically stable solution to equations (2) and (4). To be 

precise, the maximum time step size of LIM, Δtmax, has the 

following upper bound [5]: 
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where Li,p denotes the value of the pth inductor connected to 

node i. Further analysis on the stability of LIM can be found 

in [7], [8]. 

 

III. STABLE LIM FORMULATION 

 

In order to circumvent the limitation of the stability 

condition in LIM, a stable reformulation of LIM is used [9]. 

In the basic LIM formulation, each node and branch was 

updated purely based on its previous time step value. The 

(n+1)th voltage will be first calculated using the (n)th step 

element and the (n+1)th current will then be calculated using 

the just calculated (n+1)th voltage. In this method, 

calculating the (n+1)th step for a “voltage-current” set will 

be considered as a complete cycle and the same process will 

be repeated for the next cycle. This is illustrated in Figure 3 

for the case of a single line of elements. 

 

 
Figure 3: Leapfrog concept for LIM 

 

In order to overcome the stability limitation, an implicit 

formulation is first considered. However, updating both the 

(n+1)th step voltages and currents using (n+1)th step 

elements involve heavy substitutions within the algorithm 

loop, and the complexity increases non-linearly with the size 

of the circuit.  

Hence, a reformulated LIM has been proposed using a 

mixture of explicit and implicit formulation. First a choice is 

made to either solve all the currents first by substituting in the 

voltages, or to solve all the voltages first by substituting in the 

currents. Calculating the current first simplifies the process to 

some extent as each branch is always formed by the 

connection of two nodes, but each node could have a varying 

number of branches connected to it. 

Consider the implicit formulation of the voltages and 

currents in Figures 1 and 2 given below: 
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Substituting all the voltages Vi
n+1 and Vj

n+1 from equation 

(6) into equation (7) then gives: 
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The substituted equation (8) merges all the node and branch 

calculation into a single formulation. Next, the Iij
n+1 that is 

exactly the same with the calculated Iij
n+1 that exists in both 

the Vi
n+1 and Vj

n+1 substitutions, are pulled out from the 

summation: 
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All the Iij
n+1 are then grouped together on the left hand side 

and solved to create the final formula for the current: 
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In this case, the next time step must actually be calculated 

simultaneously for all the currents in the circuit. In order to 

avoid the complexity of an implicit solution, a combination 

of explicit and implicit substitution is presented here. 
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Figure 4: Node updating process in sequence (a) fully explicit updating (b) 
explicit and implicit updating and (c) fully implicit updating. 

 

Consider Figure 4, where each circle indicates a node and 

the arrows on the left represent the currents entering the node 

while the arrows on the right represent the currents exiting the 

node. Figure 4(a) shows an explicit integration because I23n+1 

is calculated using I12n. However, within the same cycle of 

the branch updating process, once I23n+1 has been obtained, it 

can actually be directly used for the next calculation. Figure 

4(b) shows that I34n+1 is taking I23n+1 and I12n as input values 

for its calculation, combining explicit and implicit 

integration. Lastly, Figure 4(c) shows a fully implicit 

integration since I45n+1 is entirely dependent on (n+1)th input 

values. 

Similar to other FDTD or heat transfer algorithms, one 

needs to start the calculation from a predefined starting point. 

All the calculated points will then either be updated from left 

to right, top to bottom, inner to outer or vice versa. In our 

method, the branch calculation starts with a purely explicit 

integration at the first branch as in Figure 4(a) and slowly 

progresses to a mixed explicit and implicit integration as in 

Figure 4(b) in subsequent branches. Finally, the end branches 

will involve only implicit integrations as in Figure 4(c). 

Once the branch currents have been calculated, the node 

voltages can then be updated by using the newly solved 

values, Iij
n+1 through equation (6). This completes the 

solution. 

The mixed implicit-explicit solution for equations (10) and 

(6) is summarized in the pseudo-code below. 

 

Pseudo-code for the mixed implicit-explicit solution of LIM: 
 
Begin transient solution: 

For time = n+1 

Update branch ij according to (10) 

if (all other branches connected to ij have 

values at t=n+1) 

solve (10) using values at n+1; 

 

else if (some branches connected to ij have 

values at t=n+1) 

solve (10) using a mixture of values at n 

and n+1; 

 

else (no branch connected to ij have values at 

t=n+1) 

solve (10) using values at n; 

 

end if 

Next branch; 

Update node i according to (6); 

Next node; 

Next time; 

end transient solution; 

IV. NUMERICAL RESULTS 

 

In this section, two numerical examples are presented by 

applying the basic LIM and stable LIM formulations for the 

simulation of PDNs. 

 

A. Basic PDN Block 

In this case, a simple PDN block circuit is simulated. The 

circuit consists of three nodes on the top layer and three nodes 

on the bottom layer which are connected by a single coupling 

branch as shown in Figure 5. This circuit represents a building 

block that can be used to construct larger PDN models. Nodes 

1 to 3 represent a power line while nodes 4 to 6 represent a 

ground line. Rm and Lm are fictitious elements while Cm is the 

coupling capacitance that exists between the two lines. We 

note that this circuit contains a branch capacitor which can be 

handled using the companion model similar to that in [10]. 

We note also that the values of the elements across branch 2-

5 are much smaller than the rest of the circuit which would 

cause a limitation on the time step size used in LIM. A 

simulation using the basic formulation of LIM with a time 

step size smaller than the stability limit will serve as a 

benchmarking result in this comparison. 
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Figure 5: Basic PDN block where R=2Ω, L=0.2nH, C=0.2pF, G=2mΩ-1, 

Rm=0.2mΩ, Lm=0.2pH and Cm=0.2fF 

 

The total simulation time is 1 ns while VCC carries a 

voltage of 1 V and VSS carries a voltage of 0 V. Voltage 

waveforms at node 6 will be used for comparison. Figure 6 

shows the output from both methods as the voltage at node 

1is switched from 0V to 1V. We see that both methods are 

able to predict the switching noise induced in this circuit. 

However, in order to obtain a stable simulation, LIM required 

a time step of 0.01 ps, and a total of 100,000 simulation 

points. 

Next, the simulation is repeated with a time step size of 

0.1ps, which is 10x larger compared to the previous value. 

Figure 7 shows the result from both methods. We see that the 

basic LIM is no longer stable while the reformulated LIM is 

still able to retain a stable and accurate solution as compared 

to the results in Figure 6. We remark that results tested using 

larger time steps indicate that the reformulated LIM is 

unconditionally stable, where stable result is obtained 

regardless of the choice of the time step. 
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Figure 6: Waveform comparison at node 6 using a time step size of 0.01ps 

 

 
 

Figure 7: Waveform comparison at node 6 using a time step size of 0.1ps 

B. PDN Model Circuit 

In this case, a larger PDN circuit model as shown in Figure 

8 is simulated. All the nodes in the circuit are connected to 

form a distributed circuit with uniform RLGC parameters 

where R = 20 Ω, L = 0.2 nH, G = 0.02 Ω-1, and C = 0.2 pF. 

The top layer will serve as the power source layer with one 

side supply voltage, VCC while the bottom layer is supplied 

by the VSS voltage source. The red colored lines denote VCC 

branches while the blue colored lines denote VSS branches. 

The yellow box denotes the related elements for the coupling 

between the two layers, where R = 20 Ω, L = 0.02 nH, and C 

= 0.02 pF. The current sources represent the switching 

elements which are connected to the PDN and are modelled 

by a triangular current waveform with a maximum value of 1 

mA and a minimum constant value of 0.1 mA to model the 

leakage current through the device. The VCC sources are 1 V 

while the VSS sources are 0 V. The simulations will include 

an initial switching-on of the power supplies from 0 V to their 

VCC and VSS values at 0 ns, and also a switching current at 

0.2 ns.
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Figure 8: PDN model circuit 
 

 

Figure 9: Waveform result of PDN model circuit with Δt = 0.1 ps. 

(Solid line is Basic LIM; dotted line is Stable LIM.) 

 

 

Figure 9 shows the simulation result for the voltages at a 

few selected nodes. The solid lines indicate the results from 

the basic LIM method while the dotted lines indicate the 

results from the reformulated stable LIM. The time step used 

in this case is 0.1 ps which is within the stability limit of LIM. 

We see that both methods produce similar results. Next the 

simulation is repeated with a time step size of 1 ps. This is 

shown in Figure 10. In this case, the time step size is larger 

than the stability limit of LIM and the basic LIM becomes 

unstable and is unable to produce any result. On the other 

hand, the reformulated LIM remains stable and the result can 

be seen in the figure. Some discrepancy are observed in this 

case due to the accuracy degradation of the finite difference 

formulation when the step size is too large. The solution of 

this will be a focus of future work by using a higher order 

integration method.  
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Figure 10: Waveform result of PDN model circuit with Δt = 1 ps.  

(Solid line is Basic LIM; dotted line is Stable LIM.) 

 

V. CONCLUSION 

 

In this work, an improved stable formulation of LIM has 

been applied to the simulation of PDNs. This method is able 

to overcome the stability limitation, in which the time step 

size is normally determined by the smallest capacitor and 

inductor in the circuit, thus allowing the use of larger time 

steps compared to the normal LIM.  By using larger time 

steps, the overall computational time can be reduced. Future 

work will focus on improving the accuracy of the method by 

using a higher order integration method. 
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