

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 35

Logging System Architectures for Infrastructure as
a Service Cloud

Winai Wongthai1,2, Aad van Moorsel1,2
1Department of Computer Science and Information Technology and Research Center for Academic Excellence in Nonlinear

Analysis and Optimization, Naresuan University, Thailand.
2School of Computing Science, Newcastle University, UK.

winaiw@nu.ac.th

Abstract—This paper proposes 93 possible architectures of a
logging system in the cloud. The architectures can enable the
systematic design, implementation and deployment of logging
systems in the cloud. These architectures can be used to guide
the future design and development of such logging systems.
This should decrease the effort and time commitments
required for the deployment of logging systems. This also can
tenable logging systems to work in real world cloud production
systems. To the best of our knowledge, these 93 architectures
are not yet described in the literature.

Index Terms—Cloud Monitoring; Accountability; Logging

System Architecture.

I. INTRODUCTION

The cloud can possibly be a key of IT businesses to enable
software to be more attractive as a service and shape the
design and investment approach of IT hardware [21]. This
paper focuses on the infrastructure as a service or IaaS cloud
such as Amazon Elastic Compute Cloud (Amazon EC2).
IaaS consists of a cloud-based infrastructure offering
customers raw computational resources, such as storage and
networking, with a pay-per-use billing model [7]. This type
of cloud is used by enterprises, government departments,
and in academia [7, 8]. However, [1] argue that in 2015
cloud security is one of the five most significant
cybersecurity market trends which will define the
investment of organizations’ cybersecurity budgets. A report
called Top Threats to Cloud Computing [2] published by
Cloud Security Alliance (CSA) expounds these concerns.

Accountability refers to approaches to mitigate the risks
associated with the threats. Accountability in the cloud
requires cloud behaviors that can be inspected by any party,
as argued by many researchers [3, 4, 5, 6]. Wongthai et al
[7] argue that a logging system is a major mechanism in
accountability solutions to support mitigation of the top
threats. They also define a logging system as being
composed of logging processes and log files.

A logging process focuses on logging-related tasks, and
log files store contents produced by these processes [7].
However, previous logging systems solutions with
accountability components [7, 8, 9, 10, 11, 12, 13, 14, 15]
have been provided without descriptions of all possible
architectures of a logging system in IaaS. The form of these
architectures is based on the critical components of the
logging process and log files. This paper proposes all these
possible architectures. The architectures can guide the
systematic design, implementation, and deployment of
logging systems in the cloud. That this system paradigm

should be considered when developing logging systems is
also supported in [7, 8].

Knowing these architectures should decrease both the
effort and time commitments required for the deployment of
logging systems. Reducing these to the minimum is
essential, especially in the ever changing, dynamically
growing, and continuously evolving behavior of Internet-
based services [22]. The architectures should also assist in
defining and identifying logging system patterns. Stating
these architectures as ‘patterns’ produces a number of
benefits similar to the benefits of design patterns in object-
oriented software design and development area (defined by
Gamma et al. [20]).

The two main contributions of this paper: firstly, in order
to describe all possible system architectures of a logging
system in IaaS, we enhanced our previous work which we
called a generic logging template for Infrastructure as a
Service (IaaS) cloud [7], Section 2. Secondly, in Section 3,
we introduced and discussed 93 possible architectures of a
logging system, which we have divided into three
categories. We then discussed the structure and gave
examples of architectures in each category. This includes
analysis of some existing work in relation to some
architecture, in the end of Section III

II. ENHANCING A GENERIC LOGGING TEMPLATE FOR IAAS

A. IaaS Architecture
The architecture is defined in [7] and based on the Xen

system. There are two sides in this architecture. The
provider side can be an organization that offers virtual
machines (VMs) to the customer side. The customer side
can rent the VMs and remotely access them via the Internet.
Hw is a machine that works as a host of a hypervisor and all
guest operating systems (OSes). A hypervisor is a software
that enables the machine to run more than one guest OS.
Dom0 is a privileged domain guest OS that is launched by
the hypervisor during system boot. It directly accesses the
hw and manages domUs. A domU is an unprivileged
domain guest OS that runs on top of the hypervisor. It is a
VM and can be considered as an example of an IaaS cloud
product that customers can purchase from the providers.

B. A Generic Logging Template for IaaS Cloud
Our previous work [7] provided the template as illustrated

in Figure 2. It facilitates the understanding of the layout of
logging system components in IaaS. The main aim of the
template is to enable systematic analysis of logging systems

Journal of Telecommunication, Electronic and Computer Engineering	

36 e-ISSN: 2289-8131 Vol. 9 No. 2-4

in terms of the systems’ security themselves before
deploying them in the production systems.

Figure 1: The overall view of a generic logging template from [7], its IaaS
components (white boxes) and logging components (shaded colour, logging

process: P1-4, and log files: F1-4).

In terms of logging systems in IaaS, this template clarifies
the layout of critical components such as a provider’s
hosting system; dom0, or a customer’s virtual machine;
domU, and the logging processes, and log files.

In the template (Figure 1), IaaS components include hw0,
hypervisor, dom0, domU, hwU, app0, appU, disk0, diskU,
mem0, and memU. The first four components were already
discussed in Section 2.1. Note that hw0 is the same as hw in
Section 2.1, 0 indicates that it is physically managed and
owned by a provider. AppU and app0 are applications that
run inside domU and dom0 respectively, U indicates that it
is virtually managed and owned by a customer. Disk0 is a
physical disk of the hw0, and diskU is a virtual disk of a
domU. Mem0 is the main memory of the hw0, and memU is
the virtual main memory of domU. P1-P4 are the logging
processes that perform logging-related tasks. F1-F4 are log
files that are used for storing contents produced by the P1-
P4.

C. The Enhancement of the Template
In order to describe all possible system architectures of a

logging system in IaaS, we provided an enchantment the
template. The enhancement is for the discussions of logging
system architectures. It describes the generic logging
components for IaaS cloud, shown in Figure 2. Details of all
these components are discussed in Section 2.1 and 2.2
except for components P3, P4 and P5. In [7], we first
described P3, P4 but they are redefined here, whereas P5 is
newly defined in this paper.

Figure 2: The overall view of generic logging components: logging process
or Px (P1 to P5), and log files or Fy (F1 to F4).

HwU is moved to be inside hw0. P3 is a domU user level
process such as a logging mechanism (in a logging system
of [15]) to record the actual usage of data files that reside in
a disk of a customer VM. We call this disk diskU. P3 could
also be special domU user level libraries for logging
purposes. P4 is a domU kernel level process to, for example,
intercept domU file and network operations, then
temporarily store such intercepted data into diskU. Flogger,
in HP Floggers System is an example [16]. P5 is a process
inside a hypervisor to, for example, record information
about incoming and outgoing network packets of domU. A
logger in [17] is an example of this process.

From Figure 2, all of the generic logging components can
be divided into three sets. The first one is the IaaS set of
components (the white boxes in the figure). This set of
components includes: hypervisor, dom0, domU, hw0, hwU,
app0, appU, disk0, diskU, mem0, and memU. The next set
is the logging process set and the log file set of components
(shaded boxes). The logging process set is composed of the
logging processes (Px, x=1,...,5). The log file set is
composed of Fy (y=1,...,4). Full details of all components of
this set except P3, P4, and P5 are in Section II A and B.
These generic logging components will be used through this
paper.

III. ALL POSSIBLE ARCHITECTURES OF A LOGGING SYSTEM

There are 93 possible architectures, which are formed

based on the critical components Px and Fy in the generic
logging components in Figure 2. These components are in
three domains: dom0, domU, and hypervisor. For Fy, it is
assumed that if a logging system architecture deploys F1 in
diskU or F3 in disk0, it then needs to eventually deploy F2
in memU or F4 in mem0 respectively. Any actual logging
system will be based on one of the 93 possible architectures
discussed in Section 3.1 to 3.3. Based on our review of the
literature, a few of the possible architectures exist. These
few are just a sub-set of possible architectures.

We have extended the sub-set of architectures already
identified in the literature. These as yet undefined
architectures are certainly of interest. For the purposes of
this discussion, we call these as yet undefined architectures
‘non-existing architectures’. For example, an architecture
that deploys all nine Px and Fy, is the most complicated
architecture not yet defined, and will be discussed in Section
3.3. One of the advantages of this architecture is it provides
many abilities to facilitate logging tasks including: recording
the necessary logging data as log files across domU and
dom0. Reducing the size of the trusted computing base
(TCB) of a logging system is an important concern for
logging system development in IaaS, as argued by [7] and
[8]. TCB is a term in computer security to refer to the set of
all hardware, software, and procedural components, which
enforce the security policy [18]. One disadvantage of having
a complicated logging system architecture is having a big
TCB size. This is because Px and Fy are deployed and
distributed across all the three domains (domU, dom0, and
hypervisor).

To simplify the presentation of all the possible
architectures, they are divided into three categories: single
domain, two domains, and three domains. A single domain
category means that all Px of a logging system are deployed
in either dom0, domU, or a hypervisor. The two domains
category means that all Px of a logging system are deployed

Logging System Architectures for Infrastructure as a Service Cloud

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 37

in two domains among dom0, domU, or a hypervisor, and
the three domains category means that Px are deployed in all
three domains, thus at least one Px of a logging system is
deployed in each domain. The 93 possible architectures are
composed of: 21 architectures in the single domain category,
45 architectures in the two domains category, and 27
architectures in the three domains category. The following
subsections will clarify the architecture composition of each
category.

Conditions of all categories are: 1) each logging system
architecture from these three categories has to deploy Px
based on its category’s conditions which will be discussed in
Subsection 3.1-3.3. Eventually, the system has to deploy Fy
by choosing one of these three different approaches of
deploying Fy in disk0, in diskU, or in both disk0 and diskU,
which we call disk0U, 2) when a system is deployed in
dom0, its Px can be in dom0 user level as P1 or dom0 kernel
level as P2, or both of them, 3) when a system is deployed in
domU, its Px can be in domU user level as P3 or domU
kernel level as P4, or both of them, 4) when a system is
deployed in a hypervisor, its Px can be in only this
hypervisor as P5, 5) the notation PaPb such as P1P2 means
that an architecture or a system deploys both Pa and Pb.
Thus, P1P2 means that an architecture or a system deploys
both P1 and P2, 6) PbPa has the same meaning as the
meaning of PaPb, and 7) in forms such as Pa/Pb, Pa/disk0,
PaPb/PcPd, or PaPb/Pc/Pd/diskU, ’/’ is a separator notation
among the elements of the forms. For example, Pa/disk0
indicates that Pa is in a domain and disk0 is deployed by a
system that deploys Pa.

A. The single domain category
We formed the architecture of this category by firstly

considering the deployment of Px of a system in either
dom0, domU, or a hypervisor, as discussed in the conditions
above. Then, to create a final architecture of this system, the
system can choose to deploy Fy in appropriate locations:
diskU, disk0, or both of them. Considering the deployment
of Px, when Px is deployed in a domain, this creates one or
more forms of deployment of Px. For example, when a
system deploys one Px (such as Pa) in a domain, this creates
one form of deployment as: a system, which deploys Pa
called a Pa form.

When a system deploys two Px (such as Pa and Pb) in a
domain, this creates three forms of deployment as: a system
which deploys Pa called a Pa form; a system which deploys
Pb called a Pb form; and a system which deploys both Pa
and Pb (PaPb) called a PaPb form. Then, to create a final
architecture of a system, each form above can choose to
deploy Fy in disk0, diskU, or disk0U. For example, a Pa
form can deploy disk0 to create a final architecture of a
system, which deploys Pa and disk0. We represent this final
architecture as ’Pa/disk0’. Thus, each form can create three
final architectures. For example, a Pa form creates three
final architectures as: Pa/diskU, Pa/disk0, and Pa/disk0U.
Figure 3 presents all 21 possible final architectures of this
category. From the figure, each branch can be a final
architecture of a logging system, for example, observe the
three shaded boxes with the dotted-lines labeled ‘1’. The
lines create the branch of dom0, P1, and disk0. This branch
is a final architecture of a logging system, and this
architecture is represented as dom0/P1/disk0 or for short
P1/disk0. The representation means that a logging system
that follows this architecture deploys P1 in dom0 user level,

F3 in disk0, and F4 in mem0. The architecture is in the
logging system in the spamming case study in [7]. Forming
all the 21 final architectures or branches is discussed in the
first three paragraphs below.

Figure 3: All possible architectures of a single domain category

The nine architectures when a system deploys Px in
dom0: Figure 3 illustrates the three branches originating
from dom0 box which creates three forms as: a system
which deploys P1, a system which deploys P2, and a system
which deploys P1P2. These three forms can deploy the three
deployment approaches of Fy or condition 1) discussed
above. This then creates nine architectures as: P1/disk0 (in
the figure from dom0 box, see P1 box and its first branch),
P1/diskU, P1/disk0U, P2/disk0, P2/diskU, P2/disk0U,
P1P2/disk0, P1P2/ diskU, and P1P2/disk0U.

The nine architectures when a system deploys Px in
domU: Figure 3 also shows the three branches originating
from domU box which creates three forms as: a system
which deploys P3, a system which deploys P4, and a system
which deploys P3P4. These three forms can deploy the three
deployment approaches of Fy. This, then creates another
nine architectures as: P3/disk0 (in the figure from domU
box, see P3 box and its first branch), P3/diskU, P3/disk0U,
P4/disk0, P4/diskU, P4/disk0U, P3P4/disk0, P3P4/diskU,
and P3P4/ disk0U.

The three architectures when a system deploys Px in a
hypervisor: Lastly, see the branch originating from the
hypervisor box in Figure 3. This creates only one form
which is a system which deploys P5. The form can deploy
the three deployment approaches of Fy. This creates three
architectures as: P5/disk0, P5/diskU, and P5/disk0U. Not all
21 architectures of the single domain category already exist.
We have identified three existing architectures. The first
architecture is in the logging system in the spamming case
study in [7]. Secondly, the dotted-lines labeled ‘2’ in Figure
3 create the branch of domU, P3, and diskU. This is the JAR
logging system architecture [15]. The dotted-lines labeled
‘3’ in Figure 3 create the branch of hypervisor, then P5, and
disk0. This architecture is for logging systems in [17] and
[19].

Systems of the other 18 non-existing architectures are
feasible to be built. We did not investigate if all these
systems are useful or not; however, these architectures can
be used as tools for analysis of systems (e.g., in terms of
systems’ robustness) that are built based on these
architectures. For example, from Figure 3, the following
non-existing architectures can be analyzed and compared.

Journal of Telecommunication, Electronic and Computer Engineering	

38 e-ISSN: 2289-8131 Vol. 9 No. 2-4

When following the branch dom0/P2/disk0 in Figure 3, this
is the first architecture or P2/disk0 non-existing architecture.
When following the branch dom0/P1/disk0, the second one
is the existing P1/disk0 architecture.

A system built based on the architecture of P2/disk0
should be more robust compared to the architecture of
P1/disk0. It would therefore be more difficult for attackers
to compromise P2 in the kernel of the first architecture,
compared to compromising P1 in the user level of the
second architecture. However, full analysis of systems built
based on these non-existing architectures is out of the scope
of this paper.

B. The two domains category
The two domains category means that all Px of a logging

system are deployed in two domains among the three
domains (dom0, domU, or a hypervisor). Figure 4 presents
the 45 architectures of this category. The dotted-lines
labeled ‘1’ in the figure show the branch of dom0U, P2, P4,
and disk0U. This branch represents a logging system
architecture as P2/P4/disk0U. This means that the
architecture deploys P2 in dom0 kernel, P4 in domU kernel,
F1 in diskU, F2 in memU, F3 in disk0, and F4 in mem0.
This architecture is represented in Figure 4. A group of
boxes labeled disk0, diskU, or disk0U represent the
architectures. For example, from the first group of boxes at
the end of the {domOUàP1à{P3,P4,P3P4}} branch, the
top box of the stack is disk0 box which can be repetitively
linked back to P3, P1, and dom0U box. This representation
is dom0U/P1/P3/disk0 or P1/P3/disk0 architecture and also
applies to the discussions of the next category.

We formed the architecture of this category by firstly
considering the deployment of Px of a system in the first
domain then in the second domain. Finally, to create a final
architecture of this system, the system can choose to deploy
Fy in disk0, diskU, or disk0U, see condition 1). This section
represents a Pa form as just Pa, Pb form as Pb, and PaPb
form as PaPb. For example, a P1 form, P2 form, and P1P2
form are represented as P1, P2, and P1P2, respectively.
Dom0U is an abbreviation which means that Px are
deployed in both dom0 and domU. Dom0H and domUH are
also abbreviations which mean that Px are deployed in both
dom0 and hypervisor (H) and in both domU and hypervisor,
respectively. The first three paragraphs are discussions of
forming the 45 architectures.

27 architectures when deploying Px in dom0 then in
domU (dom0U): There are three forms of deploying Px in
dom0: P1, P2, and P1P2. Figure 4 shows the three branches
originated from dom0U box. Then, each form can deploy
the other three forms of domU: P3, P4, and P3P4 are the
three branches originating from each of the boxes labeled
P1, P2, or P1P2 after box dom0U. Thus, this generates nine
forms of dom0U: P1/P3, P1/P4, P1/P3P4, P2/P3, P2/P4,
P2/P3P4, P1P2/P3, P1P2/P4, and P1P2/P3P4. Finally, these
nine forms can choose to deploy Fy by the three different
approaches or condition 1). When multiplying these 9 forms
by the 3 different approaches of deploying Fy, this generates
the 27 final architectures. These architectures are shown in
Figure 4, from the first stack of boxes from the right of the
figure see the first 27 boxes from the top of the stack.

9 architectures when deploying Px in dom0 then in
hypervisor (dom0H): There are three forms of deploying Px
in dom0: P1, P2, and P1P2 see the three branches originated
from dom0H box in Figure 4. Then, each form can deploy a

form of hypervisor as P5 see the branch originated from
each of boxes labeled P1, P2, or P1P2 after box dom0H in
the figure. Thus, this generates 3 forms of dom0H: P1/P5,
P2/P5, and P1P2/P5. These three forms can choose to
deploy Fy by the three different approaches. When
multiplying these 3 forms by the 3 different approaches of
deploying Fy, this generates the 9 final architectures. They
are shown in Figure 4, from the first stack of boxes from the
right of the figure see the 10th to 18th boxes from the
bottom of the stack.

9 architectures when deploying Px in domU then in
hypervisor (domUH): Figure 4 illustrates three forms of
deploying Px in domU: P3, P4, and P3P4 being the three
branches originating from domUH box. Then, each form can
deploy a form of hypervisor as P5 in the branches
originating from each of the boxes labeled P3, P4, or P3P4
after box domUH. Thus, this generates three forms of
domUH: P3/P5, P4/P5, and P3P4/P5. These three forms can
choose to deploy Fy from the three different approaches.
These are the 9 final architectures. We have found two
existing architectures of this category. One is the
architecture of a logging system called Flogger [16] which is
the branch of P2/P4/disk0U in Figure 4 and the second is
PASSXen system architecture [11] represented by the
dotted-lines labeled ‘2’ which create the branch of
P1P2/P4/disk0. Systems with the other 43 non-existing
architectures are feasible to be built. We did not, however,
investigate if all these systems are very useful. However,
these architectures can be used as tools for analysis of the
systems (such as in terms of robustness of the systems) that
are built based on them. For example, from Figure 4, the
two following non-existing architectures can be analyzed
and compared.

A system built based on the branch dom0H/P2/P5/disk0
(in Figure 4) should be more robust compared to a system
built based on the branch dom0U/P1/P3/disk0. It will be
more difficult for attackers to compromise P2 in the kernel
and P5 in the hypervisor of the first architecture, than
compromising P1 and P3 in the user levels of the second
architecture. However, full analysis of systems built based
on these non-existing architectures is out of the scope of this
paper.

C. The three domains category
The three domains category means that at least one Px of

a logging system is deployed in each of the three domains.
Figure 5 presents 27 possible architectures of the catalogue.
We formed an architecture of this three domain category by
firstly considering the deployment of Px of a system in the
first, second and third domains. Finally, to create a final
architecture of this system, the system can choose to deploy
Fy with the three different approaches, see condition 1).
Dom0UH (the second box from the left of Figure 5) is an
abbreviation which means that Px are deployed in dom0,
domU, and hypervisor.

To elaborate, the dotted-lines labeled ‘1’ in Figure 5
create the branch of P1/P3/P5/disk0. It is a logging system
architecture which deploys P1 in dom0 user level, P3 in
domU user level, P5 in a hypervisor, F3 in disk0 and F4 in
mem0. The most complicated architecture would follow the
dotted-lines labeled ‘2’ in Figure 5. This is the
P1P2/P3P4/P5/disk0U architecture which deploys all the
nine critical logging components; five Px and four Fy. To
form all the 27 architectures, there are three forms of

Logging System Architectures for Infrastructure as a Service Cloud

 e-ISSN: 2289-8131 Vol. 9 No. 2-4 39

deploying Px in dom0: P1, P2, and P1P2 which are the three
branches originating from dom0UH box in Figure 5. Each
form can then deploy the three forms of domU: P3, P4, and
P3P4 being the three branches originating in each of the
boxes labeled P1, P2, or P1P2 after box dom0UH in Figure
5. Thus, this generates nine forms: P1/P3, P1/P4, P1/P3P4,
P2/P3, P2/P4, P2/P3P4, P1P2/P3, P1P2/P4, and P1P2/P3P4.

Each of the nine forms described can deploy a form of
domH as P5, illustrated by the branch originating from each
of the boxes labeled P3, P4, or P3P4 after the boxes labeled
P1, P2, or P1P2 in Figure 5. Thus, this generates nine forms;
P1/P3/P5, P1/P4/P5, P1/P3P4/P5, P2/P3/P5, P2/P4/P5,
P2/P3P4/P5, P1P2/P3/P5, P1P2/P4/P5, and P1P2/P3P4/P5.
Finally, these nine generated forms can choose to deploy the
three deployment approaches of Fy or condition 1). When
multiplying these 9 forms by the 3 different approaches of
deploying of Fy, this generates the 27 final architectures.
These architectures are all illustrated in Figure 5, as the
stack of boxes at the right extreme of the figure.

We have not found existing architectures of this category
so far; however, systems of these architectures are feasible
to be built. We also did not investigate if all these systems
are in fact useful. However, the architectures in this category
can be used as tools for analyzing the robustness of systems
based on these architectures in the same way as has been
done on the non-existing architectures of the first two
categories.

Figure 4: All possible architectures of a two domains category

Figure 5: All possible architectures of a three domains category

IV. CONCLUSIONS

We investigated and introduced 93 possible architectures

of a logging system, which could exist in complex and
abstract cloud environments. These architectures can be
used to guide the future design and development of logging
systems. This should decrease the effort and time
commitments required for the deployment of logging
systems. To the best of our knowledge, these 93
architectures are not yet described in the literature. We
argue that more research is needed on the topic of
architectures of logging systems in the cloud, and encourage
other researchers to participate in providing solutions to
meet these concerns. The architectures should assist in
systematically defining and identifying logging system
patterns. Such a design pattern approach would provide a
number of benefits similar to that arising from the design
patterns concept in object-oriented software design and
development. This would truly enable logging systems to
work in real world cloud production systems.

ACKNOWLEDGEMENT

Many thanks to Mr. Roy Morien of the Naresuan

University Language Center for his editing assistance and
advice on English expression in this document.

REFERENCES

[1] Leitersdorf Y. and Schreiber O.. 2014 Cybersecurity Hindsight And A

Look Ahead At 2015. TechCrunch.
[2] CSA, 2013. The notorious nine: Cloud computing top threats in 2013,

The Cloud Security Alliance (CSA), Tech. Rep.
[3] Armbrust M., Fox A., Griffith R., Joseph A. D., Katz R., Konwinski

A., Lee G., Patterson D., Rabkin A., Stoica I., and Zaharia M., 2010.
A View Of Cloud Computing, Commun. ACM,

[4] Haeberlen A., A Case For The Accountable Cloud, SIGOPS Oper.
Syst. Rev., 44(2):52–57, 2010

Journal of Telecommunication, Electronic and Computer Engineering	

40 e-ISSN: 2289-8131 Vol. 9 No. 2-4

[5] Santos N., Gummadi K. P., and Rodrigues R., 2009. Towards Trusted
Cloud Computing, in Proceedings of the 2009 conference on Hot
topics in cloud computing

[6] Lyle J. and Martin A., 2010. Trusted Computing And Provenance:
Better Together, in Proceedings of the 2nd conference on Theory and
practice of provenance.

[7] Wongthai W., Rocha F., and van Moorsel A., 2013. A Generic
Logging Template For Infrastructure As A Service Cloud, in
Proceedings of the International Conference on Advanced
Information Networking and Applications Workshops.

[8] Wongthai W., Rocha F., and Moorsel A. v., 2013. Logging Solutions
To Mitigate Risks Associated With Threats In Infrastructure As A
Service Cloud, in Proceedings of the International Conference on
Cloud Computing and Big Data.

[9] Ko R. K., Jagadpramana P., Mowbray M., Pearson S., Kirchberg M.,
Liang Q., and Lee B. S. 2011, Trustcloud: A Framework For
Accountability And Trust In Cloud Computing, IEEE Congress on
Services.

[10] Haeberlen A., Aditya P., Rodrigues R., and Druschel P. 2010.
Accountable virtual machines, in the USENIX conference on
Operating systems design and implementation.

[11] Macko P., Chiarini M., and Seltzer M., 2011.Collecting Provenance
Via The Xen Hypervisor, in 3rd Workshop on the Theory and
Practice of Provenance.

[12] Dolan-Gavitt B., Payne B., and Lee W., 2011. Leveraging Forensic
Tools For Virtual Machine Introspection, Georgia Institute of
Technology, Tech. Rep.

[13] Payne B., de Carbone M., and Lee W., 2007. Secure and Flexible
Monitoring Of Virtual Machines, in Annual Computer Security
Applications Conference.

[14] Payne B., Carbone M., Sharif M., and Lee W., 2008. Lares: An
Architecture For Secure Active Monitoring Using Virtualization, in
IEEE Symposium on Security and Privacy

[15] Sundareswaran S., Squicciarini A. C., and Lin D., 2012. Ensuring
Distributed Accountability For Data Sharing In The Cloud, IEEE
Transactions on Dependable and Secure Computing

[16] Ko R., Jagadpramana P., and Lee B. S., 2011. Flogger: A File-Centric
Logger For Monitoring File Access And Transfers Within Cloud
Computing Environments, in IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications
(TrustCom)

[17] Haeberlen A., Aditya P., Rodrigues R., and Druschel P., 2010.
Accountable Virtual Machines, In Proceedings Of The USENIX
Conference On Operating Systems Design And Implementation, ser.
OSDI’10. Berkeley, CA, USA: USENIX Association

[18] Anderson R. 1996 The Trusted Computing Base.
[19] Beck F. and Festor O., 2009. Syscall Interception in Xen Hypervisor,

Inria, Technical Report, [Online]. Available: http://hal.inria.fr/inria-
00431031

[20] Gamma E., Helm R., Johnson R., and Vlissides J., 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional

[21] Hogan M., Liu F., Sokol A., and Tong J., 2011. NIST Cloud
Computing Standards Roadmap, Tech. Rep.

[22] Parkin S. E. and Morgan G., 2012. Toward reusable sla monitoring
capabilities, Software: Practice and Experience,

[23] Chow R., Golle P., Jakobsson M., Shi E., Staddon J., Masuoka R.,
and Molina J., 2009. Controlling data in the Cloud: Outsourcing
Computation Without Outsourcing Control, in Proceedings of ACM
workshop on Cloud computing security.

