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Abstract—This paper proposes 93 possible architectures of a 
logging system in the cloud. The architectures can enable the 
systematic design, implementation and deployment of logging 
systems in the cloud. These architectures can be used to guide 
the future design and development of such logging systems. 
This should decrease the effort and time commitments 
required for the deployment of logging systems. This also can 
tenable logging systems to work in real world cloud production 
systems. To the best of our knowledge, these 93 architectures 
are not yet described in the literature. 

 
Index Terms—Cloud Monitoring; Accountability; Logging 

System Architecture. 
 

I. INTRODUCTION 
 

The cloud can possibly be a key of IT businesses to enable 
software to be more attractive as a service and shape the 
design and investment approach of IT hardware [21]. This 
paper focuses on the infrastructure as a service or IaaS cloud 
such as Amazon Elastic Compute Cloud (Amazon EC2). 
IaaS consists of a cloud-based infrastructure offering 
customers raw computational resources, such as storage and 
networking, with a pay-per-use billing model [7]. This type 
of cloud is used by enterprises, government departments, 
and in academia [7, 8]. However, [1] argue that in 2015 
cloud security is one of the five most significant 
cybersecurity market trends which will define the 
investment of organizations’ cybersecurity budgets. A report 
called Top Threats to Cloud Computing [2] published by 
Cloud Security Alliance (CSA) expounds these concerns.  

Accountability refers to approaches to mitigate the risks 
associated with the threats. Accountability in the cloud 
requires cloud behaviors that can be inspected by any party, 
as argued by many researchers [3, 4, 5, 6]. Wongthai et al 
[7] argue that a logging system is a major mechanism in 
accountability solutions to support mitigation of the top 
threats. They also define a logging system as being 
composed of logging processes and log files.  

A logging process focuses on logging-related tasks, and 
log files store contents produced by these processes [7]. 
However, previous logging systems solutions with 
accountability components [7, 8, 9, 10, 11, 12, 13, 14, 15] 
have been provided without descriptions of all possible 
architectures of a logging system in IaaS. The form of these 
architectures is based on the critical components of the 
logging process and log files. This paper proposes all these 
possible architectures. The architectures can guide the 
systematic design, implementation, and deployment of 
logging systems in the cloud. That this system paradigm 

should be considered when developing logging systems is 
also supported in [7, 8].  

Knowing these architectures should decrease both the 
effort and time commitments required for the deployment of 
logging systems. Reducing these to the minimum is 
essential, especially in the ever changing, dynamically 
growing, and continuously evolving behavior of Internet-
based services [22]. The architectures should also assist in 
defining and identifying logging system patterns. Stating 
these architectures as ‘patterns’ produces a number of 
benefits similar to the benefits of design patterns in object-
oriented software design and development area (defined by 
Gamma et al. [20]). 

The two main contributions of this paper: firstly, in order 
to describe all possible system architectures of a logging 
system in IaaS, we enhanced our previous work which we 
called a generic logging template for Infrastructure as a 
Service (IaaS) cloud [7], Section 2. Secondly, in Section 3, 
we introduced and discussed 93 possible architectures of a 
logging system, which we have divided into three 
categories. We then discussed the structure and gave 
examples of architectures in each category. This includes 
analysis of some existing work in relation to some 
architecture, in the end of Section III 

 
II. ENHANCING A GENERIC LOGGING TEMPLATE FOR IAAS 

 
A. IaaS Architecture 
The architecture is defined in [7] and based on the Xen 

system. There are two sides in this architecture. The 
provider side can be an organization that offers virtual 
machines (VMs) to the customer side. The customer side 
can rent the VMs and remotely access them via the Internet. 
Hw is a machine that works as a host of a hypervisor and all 
guest operating systems (OSes). A hypervisor is a software 
that enables the machine to run more than one guest OS. 
Dom0 is a privileged domain guest OS that is launched by 
the hypervisor during system boot. It directly accesses the 
hw and manages domUs. A domU is an unprivileged 
domain guest OS that runs on top of the hypervisor. It is a 
VM and can be considered as an example of an IaaS cloud 
product that customers can purchase from the providers. 

 
B. A Generic Logging Template for IaaS Cloud  
Our previous work [7] provided the template as illustrated 

in Figure 2. It facilitates the understanding of the layout of 
logging system components in IaaS. The main aim of the 
template is to enable systematic analysis of logging systems 
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in terms of the systems’ security themselves before 
deploying them in the production systems. 
 

 
 

Figure 1: The overall view of a generic logging template from [7], its IaaS 
components (white boxes) and logging components (shaded colour, logging 

process: P1-4, and log files: F1-4). 
 

In terms of logging systems in IaaS, this template clarifies 
the layout of critical components such as a provider’s 
hosting system; dom0, or a customer’s virtual machine; 
domU, and the logging processes, and log files. 

In the template (Figure 1), IaaS components include hw0, 
hypervisor, dom0, domU, hwU, app0, appU, disk0, diskU, 
mem0, and memU. The first four components were already 
discussed in Section 2.1. Note that hw0 is the same as hw in 
Section 2.1, 0 indicates that it is physically managed and 
owned by a provider. AppU and app0 are applications that 
run inside domU and dom0 respectively, U indicates that it 
is virtually managed and owned by a customer. Disk0 is a 
physical disk of the hw0, and diskU is a virtual disk of a 
domU. Mem0 is the main memory of the hw0, and memU is 
the virtual main memory of domU. P1-P4 are the logging 
processes that perform logging-related tasks. F1-F4 are log 
files that are used for storing contents produced by the P1-
P4. 

 
C. The Enhancement of the Template  
In order to describe all possible system architectures of a 

logging system in IaaS, we provided an enchantment the 
template. The enhancement is for the discussions of logging 
system architectures. It describes the generic logging 
components for IaaS cloud, shown in Figure 2. Details of all 
these components are discussed in Section 2.1 and 2.2 
except for components P3, P4 and P5. In [7], we first 
described P3, P4 but they are redefined here, whereas P5 is 
newly defined in this paper. 
 

 
 

Figure 2: The overall view of generic logging components: logging process 
or Px (P1 to P5), and log files or Fy (F1 to F4). 

HwU is moved to be inside hw0. P3 is a domU user level 
process such as a logging mechanism (in a logging system 
of [15]) to record the actual usage of data files that reside in 
a disk of a customer VM. We call this disk diskU. P3 could 
also be special domU user level libraries for logging 
purposes. P4 is a domU kernel level process to, for example, 
intercept domU file and network operations, then 
temporarily store such intercepted data into diskU. Flogger, 
in HP Floggers System is an example [16]. P5 is a process 
inside a hypervisor to, for example, record information 
about incoming and outgoing network packets of domU. A 
logger in [17] is an example of this process. 

From Figure 2, all of the generic logging components can 
be divided into three sets. The first one is the IaaS set of 
components (the white boxes in the figure). This set of 
components includes: hypervisor, dom0, domU, hw0, hwU, 
app0, appU, disk0, diskU, mem0, and memU. The next set 
is the logging process set and the log file set of components 
(shaded boxes). The logging process set is composed of the 
logging processes (Px, x=1,...,5). The log file set is 
composed of Fy (y=1,...,4). Full details of all components of 
this set except P3, P4, and P5 are in Section II A and B. 
These generic logging components will be used through this 
paper. 
 
III. ALL POSSIBLE ARCHITECTURES OF A LOGGING SYSTEM 

 
There are 93 possible architectures, which are formed 

based on the critical components Px and Fy in the generic 
logging components in Figure 2. These components are in 
three domains: dom0, domU, and hypervisor. For Fy, it is 
assumed that if a logging system architecture deploys F1 in 
diskU or F3 in disk0, it then needs to eventually deploy F2 
in memU or F4 in mem0 respectively. Any actual logging 
system will be based on one of the 93 possible architectures 
discussed in Section 3.1 to 3.3. Based on our review of the 
literature, a few of the possible architectures exist. These 
few are just a sub-set of possible architectures.  

We have extended the sub-set of architectures already 
identified in the literature. These as yet undefined 
architectures are certainly of interest. For the purposes of 
this discussion, we call these as yet undefined architectures 
‘non-existing architectures’. For example, an architecture 
that deploys all nine Px and Fy, is the most complicated 
architecture not yet defined, and will be discussed in Section 
3.3. One of the advantages of this architecture is it provides 
many abilities to facilitate logging tasks including: recording 
the necessary logging data as log files across domU and 
dom0.  Reducing the size of the trusted computing base 
(TCB) of a logging system is an important concern for 
logging system development in IaaS, as argued by [7] and 
[8]. TCB is a term in computer security to refer to the set of 
all hardware, software, and procedural components, which 
enforce the security policy [18]. One disadvantage of having 
a complicated logging system architecture is having a big 
TCB size. This is because Px and Fy are deployed and 
distributed across all the three domains (domU, dom0, and 
hypervisor).  

To simplify the presentation of all the possible 
architectures, they are divided into three categories: single 
domain, two domains, and three domains. A single domain 
category means that all Px of a logging system are deployed 
in either dom0, domU, or a hypervisor. The two domains 
category means that all Px of a logging system are deployed 
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in two domains among dom0, domU, or a hypervisor, and 
the three domains category means that Px are deployed in all 
three domains, thus at least one Px of a logging system is 
deployed in each domain. The 93 possible architectures are 
composed of: 21 architectures in the single domain category, 
45 architectures in the two domains category, and 27 
architectures in the three domains category. The following 
subsections will clarify the architecture composition of each 
category.  

Conditions of all categories are: 1) each logging system 
architecture from these three categories has to deploy Px 
based on its category’s conditions which will be discussed in 
Subsection 3.1-3.3. Eventually, the system has to deploy Fy 
by choosing one of these three different approaches of 
deploying Fy in disk0, in diskU, or in both disk0 and diskU, 
which we call disk0U, 2) when a system is deployed in 
dom0, its Px can be in dom0 user level as P1 or dom0 kernel 
level as P2, or both of them, 3) when a system is deployed in 
domU, its Px can be in domU user level as P3 or domU 
kernel level as P4, or both of them, 4) when a system is 
deployed in a hypervisor, its Px can be in only this 
hypervisor as P5, 5) the notation PaPb such as P1P2 means 
that an architecture or a system deploys both Pa and Pb. 
Thus, P1P2 means that an architecture or a system deploys 
both P1 and P2, 6) PbPa has the same meaning as the 
meaning of PaPb, and 7) in forms such as Pa/Pb, Pa/disk0, 
PaPb/PcPd, or PaPb/Pc/Pd/diskU, ’/’ is a separator notation 
among the elements of the forms. For example, Pa/disk0 
indicates that Pa is in a domain and disk0 is deployed by a 
system that deploys Pa. 

 
A. The single domain category 
We formed the architecture of this category by firstly 

considering the deployment of Px of a system in either 
dom0, domU, or a hypervisor, as discussed in the conditions 
above. Then, to create a final architecture of this system, the 
system can choose to deploy Fy in appropriate locations: 
diskU, disk0, or both of them. Considering the deployment 
of Px, when Px is deployed in a domain, this creates one or 
more forms of deployment of Px. For example, when a 
system deploys one Px (such as Pa) in a domain, this creates 
one form of deployment as: a system, which deploys Pa 
called a Pa form. 

When a system deploys two Px (such as Pa and Pb) in a 
domain, this creates three forms of deployment as: a system 
which deploys Pa called a Pa form; a system which deploys 
Pb called a Pb form; and a system which deploys both Pa 
and Pb (PaPb) called a PaPb form. Then, to create a final 
architecture of a system, each form above can choose to 
deploy Fy in disk0, diskU, or disk0U. For example, a Pa 
form can deploy disk0 to create a final architecture of a 
system, which deploys Pa and disk0. We represent this final 
architecture as ’Pa/disk0’. Thus, each form can create three 
final architectures. For example, a Pa form creates three 
final architectures as: Pa/diskU, Pa/disk0, and Pa/disk0U. 
Figure 3 presents all 21 possible final architectures of this 
category. From the figure, each branch can be a final 
architecture of a logging system, for example, observe the 
three shaded boxes with the dotted-lines labeled ‘1’. The 
lines create the branch of dom0, P1, and disk0. This branch 
is a final architecture of a logging system, and this 
architecture is represented as dom0/P1/disk0 or for short 
P1/disk0. The representation means that a logging system 
that follows this architecture deploys P1 in dom0 user level, 

F3 in disk0, and F4 in mem0. The architecture is in the 
logging system in the spamming case study in [7]. Forming 
all the 21 final architectures or branches is discussed in the 
first three paragraphs below. 

 

 
 

Figure 3: All possible architectures of a single domain category 
 

The nine architectures when a system deploys Px in 
dom0: Figure 3 illustrates the three branches originating 
from dom0 box which creates three forms as: a system 
which deploys P1, a system which deploys P2, and a system 
which deploys P1P2. These three forms can deploy the three 
deployment approaches of Fy or condition 1) discussed 
above. This then creates nine architectures as: P1/disk0 (in 
the figure from dom0 box, see P1 box and its first branch), 
P1/diskU, P1/disk0U, P2/disk0, P2/diskU, P2/disk0U, 
P1P2/disk0, P1P2/ diskU, and P1P2/disk0U. 

The nine architectures when a system deploys Px in 
domU: Figure 3 also shows the three branches originating 
from domU box which creates three forms as: a system 
which deploys P3, a system which deploys P4, and a system 
which deploys P3P4. These three forms can deploy the three 
deployment approaches of Fy. This, then creates another 
nine architectures as: P3/disk0 (in the figure from domU 
box, see P3 box and its first branch), P3/diskU, P3/disk0U, 
P4/disk0, P4/diskU, P4/disk0U, P3P4/disk0, P3P4/diskU, 
and P3P4/ disk0U.  

The three architectures when a system deploys Px in a 
hypervisor: Lastly, see the branch originating from the 
hypervisor box in Figure 3. This creates only one form 
which is a system which deploys P5. The form can deploy 
the three deployment approaches of Fy. This creates three 
architectures as: P5/disk0, P5/diskU, and P5/disk0U. Not all 
21 architectures of the single domain category already exist. 
We have identified three existing architectures. The first 
architecture is in the logging system in the spamming case 
study in [7]. Secondly, the dotted-lines labeled ‘2’ in Figure 
3 create the branch of domU, P3, and diskU. This is the JAR 
logging system architecture [15]. The dotted-lines labeled 
‘3’ in Figure 3 create the branch of hypervisor, then P5, and 
disk0. This architecture is for logging systems in [17] and 
[19]. 

Systems of the other 18 non-existing architectures are 
feasible to be built. We did not investigate if all these 
systems are useful or not; however, these architectures can 
be used as tools for analysis of systems (e.g., in terms of 
systems’ robustness) that are built based on these 
architectures. For example, from Figure 3, the following 
non-existing architectures can be analyzed and compared. 
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When following the branch dom0/P2/disk0 in Figure 3, this 
is the first architecture or P2/disk0 non-existing architecture. 
When following the branch dom0/P1/disk0, the second one 
is the existing P1/disk0 architecture.  

A system built based on the architecture of P2/disk0 
should be more robust compared to the architecture of 
P1/disk0. It would therefore be more difficult for attackers 
to compromise P2 in the kernel of the first architecture, 
compared to compromising P1 in the user level of the 
second architecture. However, full analysis of systems built 
based on these non-existing architectures is out of the scope 
of this paper. 

 
B. The two domains category 
The two domains category means that all Px of a logging 

system are deployed in two domains among the three 
domains (dom0, domU, or a hypervisor). Figure 4 presents 
the 45 architectures of this category. The dotted-lines 
labeled ‘1’ in the figure show the branch of dom0U, P2, P4, 
and disk0U. This branch represents a logging system 
architecture as P2/P4/disk0U. This means that the 
architecture deploys P2 in dom0 kernel, P4 in domU kernel, 
F1 in diskU, F2 in memU, F3 in disk0, and F4 in mem0. 
This architecture is represented in Figure 4. A group of 
boxes labeled disk0, diskU, or disk0U represent the 
architectures. For example, from the first group of boxes at 
the end of the {domOUàP1à{P3,P4,P3P4}} branch, the 
top box of the stack is disk0 box which can be repetitively 
linked back to P3, P1, and dom0U box. This representation 
is dom0U/P1/P3/disk0 or P1/P3/disk0 architecture and also 
applies to the discussions of the next category. 

We formed the architecture of this category by firstly 
considering the deployment of Px of a system in the first 
domain then in the second domain. Finally, to create a final 
architecture of this system, the system can choose to deploy 
Fy in disk0, diskU, or disk0U, see condition 1). This section 
represents a Pa form as just Pa, Pb form as Pb, and PaPb 
form as PaPb. For example, a P1 form, P2 form, and P1P2 
form are represented as P1, P2, and P1P2, respectively. 
Dom0U is an abbreviation which means that Px are 
deployed in both dom0 and domU. Dom0H and domUH are 
also abbreviations which mean that Px are deployed in both 
dom0 and hypervisor (H) and in both domU and hypervisor, 
respectively. The first three paragraphs are discussions of 
forming the 45 architectures. 

27 architectures when deploying Px in dom0 then in 
domU (dom0U): There are three forms of deploying Px in 
dom0: P1, P2, and P1P2. Figure 4 shows the three branches 
originated from dom0U box. Then, each form can deploy 
the other three forms of domU: P3, P4, and P3P4 are the 
three branches originating from each of the boxes labeled 
P1, P2, or P1P2 after box dom0U. Thus, this generates nine 
forms of dom0U: P1/P3, P1/P4, P1/P3P4, P2/P3, P2/P4, 
P2/P3P4, P1P2/P3, P1P2/P4, and P1P2/P3P4. Finally, these 
nine forms can choose to deploy Fy by the three different 
approaches or condition 1). When multiplying these 9 forms 
by the 3 different approaches of deploying Fy, this generates 
the 27 final architectures. These architectures are shown in 
Figure 4, from the first stack of boxes from the right of the 
figure see the first 27 boxes from the top of the stack.  

9 architectures when deploying Px in dom0 then in 
hypervisor (dom0H): There are three forms of deploying Px 
in dom0: P1, P2, and P1P2 see the three branches originated 
from dom0H box in Figure 4. Then, each form can deploy a 

form of hypervisor as P5 see the branch originated from 
each of boxes labeled P1, P2, or P1P2 after box dom0H in 
the figure. Thus, this generates 3 forms of dom0H: P1/P5, 
P2/P5, and P1P2/P5. These three forms can choose to 
deploy Fy by the three different approaches. When 
multiplying these 3 forms by the 3 different approaches of 
deploying Fy, this generates the 9 final architectures. They 
are shown in Figure 4, from the first stack of boxes from the 
right of the figure see the 10th to 18th boxes from the 
bottom of the stack.  

9 architectures when deploying Px in domU then in 
hypervisor (domUH): Figure 4 illustrates three forms of 
deploying Px in domU: P3, P4, and P3P4 being the three 
branches originating from domUH box. Then, each form can 
deploy a form of hypervisor as P5 in the branches 
originating from each of the boxes labeled P3, P4, or P3P4 
after box domUH. Thus, this generates three forms of 
domUH: P3/P5, P4/P5, and P3P4/P5. These three forms can 
choose to deploy Fy from the three different approaches. 
These are the 9 final architectures. We have found two 
existing architectures of this category. One is the 
architecture of a logging system called Flogger [16] which is 
the branch of P2/P4/disk0U in Figure 4 and the second is 
PASSXen system architecture [11] represented by the 
dotted-lines labeled ‘2’ which create the branch of 
P1P2/P4/disk0.  Systems with the other 43 non-existing 
architectures are feasible to be built. We did not, however, 
investigate if all these systems are very useful. However, 
these architectures can be used as tools for analysis of the 
systems (such as in terms of robustness of the systems) that 
are built based on them. For example, from Figure 4, the 
two following non-existing architectures can be analyzed 
and compared. 

A system built based on the branch dom0H/P2/P5/disk0 
(in Figure 4) should be more robust compared to a system 
built based on the branch dom0U/P1/P3/disk0. It will be 
more difficult for attackers to compromise P2 in the kernel 
and P5 in the hypervisor of the first architecture, than 
compromising P1 and P3 in the user levels of the second 
architecture. However, full analysis of systems built based 
on these non-existing architectures is out of the scope of this 
paper. 

 
C. The three domains category 
The three domains category means that at least one Px of 

a logging system is deployed in each of the three domains. 
Figure 5 presents 27 possible architectures of the catalogue. 
We formed an architecture of this three domain category by 
firstly considering the deployment of Px of a system in the 
first, second and third domains. Finally, to create a final 
architecture of this system, the system can choose to deploy 
Fy with the three different approaches, see condition 1). 
Dom0UH (the second box from the left of Figure 5) is an 
abbreviation which means that Px are deployed in dom0, 
domU, and hypervisor. 

To elaborate, the dotted-lines labeled ‘1’ in Figure 5 
create the branch of P1/P3/P5/disk0. It is a logging system 
architecture which deploys P1 in dom0 user level, P3 in 
domU user level, P5 in a hypervisor, F3 in disk0 and F4 in 
mem0. The most complicated architecture would follow the 
dotted-lines labeled ‘2’ in Figure 5. This is the 
P1P2/P3P4/P5/disk0U architecture which deploys all the 
nine critical logging components; five Px and four Fy. To 
form all the 27 architectures, there are three forms of 
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deploying Px in dom0: P1, P2, and P1P2 which are the three 
branches originating from dom0UH box in Figure 5. Each 
form can then deploy the three forms of domU: P3, P4, and 
P3P4 being the three branches originating in each of the 
boxes labeled P1, P2, or P1P2 after box dom0UH in Figure 
5. Thus, this generates nine forms: P1/P3, P1/P4, P1/P3P4, 
P2/P3, P2/P4, P2/P3P4, P1P2/P3, P1P2/P4, and P1P2/P3P4. 

Each of the nine forms described can deploy a form of 
domH as P5, illustrated by the branch originating from each 
of the boxes labeled P3, P4, or P3P4 after the boxes labeled 
P1, P2, or P1P2 in Figure 5. Thus, this generates nine forms; 
P1/P3/P5, P1/P4/P5, P1/P3P4/P5, P2/P3/P5, P2/P4/P5, 
P2/P3P4/P5, P1P2/P3/P5, P1P2/P4/P5, and P1P2/P3P4/P5. 
Finally, these nine generated forms can choose to deploy the 
three deployment approaches of Fy or condition 1). When 
multiplying these 9 forms by the 3 different approaches of 
deploying of Fy, this generates the 27 final architectures. 
These architectures are all illustrated in Figure 5, as the 
stack of boxes at the right extreme of the figure.  

We have not found existing architectures of this category 
so far; however, systems of these architectures are feasible 
to be built. We also did not investigate if all these systems 
are in fact useful. However, the architectures in this category 
can be used as tools for analyzing the robustness of systems 
based on these architectures in the same way as has been 
done on the non-existing architectures of the first two 
categories. 

 

 
 

Figure 4: All possible architectures of a two domains category 

 

  
 

Figure 5: All possible architectures of a three domains category 
 

IV. CONCLUSIONS 
 
We investigated and introduced 93 possible architectures 

of a logging system, which could exist in complex and 
abstract cloud environments. These architectures can be 
used to guide the future design and development of logging 
systems. This should decrease the effort and time 
commitments required for the deployment of logging 
systems. To the best of our knowledge, these 93 
architectures are not yet described in the literature. We 
argue that more research is needed on the topic of 
architectures of logging systems in the cloud, and encourage 
other researchers to participate in providing solutions to 
meet these concerns. The architectures should assist in 
systematically defining and identifying logging system 
patterns. Such a design pattern approach would provide a 
number of benefits similar to that arising from the design 
patterns concept in object-oriented software design and 
development. This would truly enable logging systems to 
work in real world cloud production systems. 
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