
 

 e-ISSN: 2289-8131   Vol. 9 No. 2-3 149 

 

A Time-Dependent ATSP With Time Window and 

Precedence Constraints in Air Travel 
 

 

Thanaboon Saradatta, Pisut Pongchairerks 
Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand. 

pisut@tni.ac.th 

 

 

Abstract—This paper considers a time-dependent asymmetric 

travelling salesman problem with time window and precedence 

constraints, based on the real application of air transport. This 

problem is much more complicated than the classical 

asymmetric travelling salesman problem due to the properties 

of the airfare prices, the time window constraints and the 

precedence constraints. To solve this problem, this paper 

proposes a modified nearest neighbor algorithm and two local 

search algorithms. 

 

Index Terms—Travelling Salesman Problem; TSP; 

Asymmetric Travelling Salesman Problem; ATSP; Local Search 

Algorithm; Air Transportation; Time Window; Time-

Dependent; Precedence Constraint. 

 

I. INTRODUCTION 

 

The classical travelling salesman problem (TSP) is to decide 

the roundtrip for a salesman to travel around a number of 

given cities with the objective of minimizing total distance. 

TSP involves with not only the salesman’s application but 

also with other actual economic applications. In the past, TSP 

has usually been applied to the ground transport applications. 

Nowadays, it is however very usual to transport between 

countries by air. This statement makes guidance for this paper 

to consider an extension of TSP where the salesman travels 

around a number of given countries by air. The conditions of 

this extended TSP are summarized as follows:  

1. The airfare prices from a country to another country in 

the same time period offered by different airlines may 

be different.  

2. The airfare price to travel from a country to another 

country may not be same to the airfare price to travel 

in the reverse direction. (This makes the problem 

asymmetric.) 

3. The airfare price to travel from a country to another 

country offered by an airline may change over time. 

(This makes the problem time-dependent.) 

4. It is possible that there are no flights to travel from a 

country to another country. 

5. A country may have to be visited within a pre-assigned 

time period. (This is a time window constraint.) 

6. A country may have to be visited immediately after a 

predefined preceding country. (This is a precedence 

constraint.)  

7. Each country must be visited once and the final 

destination is the starting country. (This is same to the 

condition of the traditional TSP.) 

This extended TSP is more complicated than TSP due to 

the conditions (i) through (vi). Since the objective of problem 

is to minimize the total cost of the airfare prices, the best 

decision on the condition (i) is simply made by selecting the 

lowest-airfare-price airline among all airlines available for 

the same direct trip from a country to another in the same time 

period. With this decision for the condition (i), this problem 

becomes the Time-Dependent Asymmetric Travelling 

Salesman problem with Time Window and Precedence 

Constraints. It is called TD-ATSP-TWPC in this paper. 

The published articles that have the contents relating to 

TD-ATSP-TWPC are given as follows.  The air travel 

planning problem discussed in [1] and [2] is a variant of the 

shortest-path problem which requires finding the lowest-cost 

trip or roundtrip between two specific countries. The articles 

[1] and [2] also indicate that the air travel planning problem 

is far more complicated than the classical shortest-path 

problem due to the properties of airfare prices.   

 The article [3] considers the ATSP in the air transport 

application. However, its objective is to minimize the total 

distance. Thus, the problem in [3] does not face with all 

conditions relating to airfare prices. Also, it does not have the 

time window and precedence constraints. Thus, the major 

difficulty of the problem considered in [3] beyond the 

traditional ATSP is due to the condition (iv) only. The 

travelling tourist problem (TTP) discussed in [4] may be the 

most similar problem of TD-ATSP-TWPC, since TTP is the 

ATSP whose costs of routes change with time. However, TTP 

does not have the conditions (iv), (v) and (vi). The article [4] 

uses evolutionary Markov chain Monte Carlo and simulated 

annealing to solve TTP. Other variants of TSP similar to TD-

ATSP-TWPC include ATSP with precedence constraints 

(i.e., sequence ordering problem) presented in [5], and the 

time-dependent TSP presented in [6].  

The reviews of TSP and its variants are given in [7-10]. A 

review article about the time-window constrained routing 

problems is shown in [11]. In literature, there are a number of 

algorithms developed for solving TSP or its variants. These 

algorithms can be classified into three types as follows: 

1. Simple construction heuristics, such as Nearest 

Neighbor algorithm [7, 12]. 

2. Exact algorithms, such as Branch-and-Cut algorithms 

[5 , 13]. 

3. Meta-heuristic algorithms, such as Local Search 

algorithms [14, 15], a Variable Neighborhood Search 

algorithm [16].   

In this paper, Section 2 presents the statement of TD-

ATSP-TWPC. Section 3 presents the instances for TD-

ATSP-TWPC. Section 4 proposes a modified nearest 

neighbor algorithm, while Section 5 proposes the two local 

search algorithms for TD-ATSP-TWPC. Section 6 evaluates 

the performances of the three proposed algorithms. Finally, 

Section 7 provides a conclusion. 
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II. STATEMENT OF TD-ATSP-TWPC 

 

TD-ATSP-TWPC consists of a salesman and N given 

countries. These N countries include country 1, country 2,…, 

country N. The salesman has to visit all N countries within N 

weeks; in addition, he/she must visit only a single country per 

week. The last visited country (i.e., the country visited in the 

week N) must be the same to the starting country (i.e., the 

country he starts). If there are at least two flights available to 

travel from country i to country j in week k, the airline with 

the lowest airfare price will be selected for travelling from 

country i to country j in week k. Let cijk be the lowest airfare 

price over the airfare prices offered by all available airlines to 

travel from country i to country j in week k, where i, j and k 

= 1, 2,…, N, and i ≠ j. In addition, cijk is possibly unequal to 

cjik. It is also possible that there are no available flights to 

travel from country i to country j in week k. Moreover, this 

problem has time window constraints and the precedence 

constraints, which are described below. 

• For time window constraints of TD-ATSP-TWPC, let 

country wk ∈ {1, … , 𝑁}  be the country which must be 

visited in week k (where k = 1, 2,…, N – 1). The wN is 

not included here, because the week N is pre-assigned 

for visiting the starting country.  Any week k which 

has not been pre-assigned for a specific country will 

have wk = null. For example, if w1 = 3, w3 = 4 and other 

wk are null, this means country 3 must be visited in 

week 1, and country 4 must be visited in week 3.    

• For precedence constraints of TD-ATSP-TWPC, let 

country aq ∈ {1, … , 𝑁} be the country which must be 

visited immediately before country bq ∈ {1, … , 𝑁} for 

the same q, where q = 1, 2,…, Q and aq ≠ bq. Let Q be 

the number of all pairs of countries aq and their 

immediate successive countries bq. For example, If Q 

= 2, a1 = 3, b1 = 5, a2 = 4 and b2 = 2, country 3 must be 

visited immediately before country 5, and country 4 

must be visited immediate before country 2.  

In this paper, the a1, a2,…, aQ, b1, b2,…, bQ, w1, w2,…, wN–

1 are not same to one another. The objective of TD-ATSP-

TWPC is to minimize the total cost of travelling around these 

N countries. The total cost is the sum of all airfare prices used 

to complete the roundtrip. 

 

III. PROPOSED PROBLEM INSTANCES 

 

This paper generates six instances based on actual data. In 

these instances, the locations of countries are taken from the 

locations of airports in those countries as given below: 

1. Suvarnabhumi International Airport in Bangkok, 

Thailand. 

2. Changi Airport in Singapore. 

3. Kuala Lumpur International Airport in Kuala Lumpur, 

Malaysia. 

4. Narita International Airport in Tokyo, Japan; 

5. Incheon International Airport in Seoul, South Korea. 

6. Beijing Capital International Airport in Beijing, China. 

7. Hong Kong International Airport in Hong Kong; 

8. Sydney International Airport in Sydney, Australia;  

9. JFK International Airport in New York, United States 

of America. 

10. London Heathrow Airport in London, United 

Kingdom. 

11. Charles de Gaulle Airport in Paris, France. 

12. Leonardo da Vinci Airport in Rome, Italy. 

13. Frankfurt Airport in Frankfurt, Germany. 

14. Madrid-Barajas Airport in Madrid, Spain;  

15. Auckland Airport in Auckland, New Zealand. 

16. Dublin Airport in Dublin, Ireland. 

17. Toronto Pearson International Airport in Toronto, 

Canada. 

18. Athens International Airport in Athens, Greece. 

19. Istanbul Ataturk Airport in Istanbul, Turkey. 

20. Zurich Airport in Zurich, Switzerland. 

The common information used in all six instances is given 

as follows:  

1. The salesman must start his roundtrip from Thailand.  

2. The salesman must visit exactly one country per week. 

3. The lowest airfare price to travel from the country i to 

the country j in week k (i.e., cijk) and the airline, which 

offers this lowest airfare price are given in [17].  

The lowest airfare prices in [17] are shown in Baht, where 

$1 = 33.7 Baht during the period of collecting data. All flights 

in weeks 1 through 20 were taken off on 7 Jun 2015, 14 Jun, 

21 Jun, 28 Jun, 5 Jul, 12 Jul, 19 Jul, 26 Jul, 2 Aug, 9 Aug, 16 

Aug, 23 Aug, 30 Aug, 6 Sep, 13 Sep, 20 Sep, 27 Sep, 4 Oct, 

11 Oct and 18 Oct, respectively. These six instances are 

classified into two sets based on the similarities on the 

number of all countries, the number of countries whose their 

visited week has been pre-assigned, and the number of all 

pairs of the countries and their immediate successive 

countries. Set 1 includes Instances 1 through 3, and Set 2 

includes instances 4 through 6.  

Each instance in Set 1 considers only 15 countries (i.e., N 

= 15) including (1) Thailand, (2) Singapore, (3) Malaysia,…., 

and (15) New Zealand. The salesman thus must visit all 15 

countries within 15 weeks; moreover, he must visit each 

country per week. Each instance in Set 1 has only one 

country, which has a pre-assigned visited week as well as 

only one pair of a country and its immediate successive 

country. The details of Instances 1 through 3 are given as 

follows. In Instance 1, the salesman must visit Singapore in 

week 2, and he must visit France immediately after Italy 

(equivalent to he must visit Italy immediately before France). 

In Instance 2, the salesman must visit South Korea in week 6, 

and he must visit Malaysia immediately after Japan. In 

Instance 3, the salesman must visit Japan in week 9, and he 

must visit China immediately after Germany.   

Each instance in Set 2 considers 20 countries (i.e., N = 20) 

including all countries listed above. The salesman of each 

instance in Set 2 must visit all 20 countries within 20 weeks; 

and, he must visit each country per week. Each instance in Set 

2 has two countries, which have the pre-assigned visited 

weeks and two pairs of countries and their immediate 

successive countries. In Instance 4, the salesman must visit 

United Kingdom in week 6 and Malaysia in week 9; 

moreover, he must visit Japan immediately before Australia 

as well as visiting France immediately before Hong Kong. In 

Instance 5, the salesman must visit Germany in week 6 and 

Australia in week 11; moreover, he must visit China 

immediately before USA as well as visiting South Korea 

immediately before Malaysia. In Instance 6, the salesman 

must visit France in week 8 and South Korea in week 13; 

moreover, he must visit Australia immediately before New 

Zealand as well as visiting Hong Kong immediately before 

United Kingdom. 
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IV. MODIFIED ALGORITHM 

 

The nearest neighbor algorithm (NN) [7] is the most well-

known heuristic for TSP and its variants. Thus, it should be 

used to compare with the local search algorithms proposed in 

the next section. This section hence modifies the original NN 

algorithm to be able to solve TD-ATSP-TWPC. This 

modified NN is hereafter called MNN. The steps of MNN are 

given as follows.  
Step 1:  Let the cost of a direct trip from a country to another country is the 

lowest airfare price among all airfare prices offered by all available 

airlines. Assign the starting country, and let the starting country be 
the current country (i.e., the country where the salesman locates 

now). Let k = 1. 

Step 2: Select the country where the salesman must visit next by following 
these steps: 

 Step 2.1: Check that if there is a country that must be visited in week 

k due to a time window constraint. If so, assign this country 

as the next country, and then go to Step 3. Otherwise, go to 

Step 2.2. 

Step 2.2: Check that if there is a country that must be visited 
immediately after the current country due to a precedence 

constraint. If so, assign this country as the next country, 

and then go to Step 3. Otherwise go to Step 2.3. 
Step 2.3: Select the next country by following Steps 2.3.1 through 

2.3.4: 

Step 2.3.1: Let L be a List of all possible countries which can be 
visited in week k. Construct L by adding every as-yet-

unvisited country which can be visited by one or more 

flights from the current country into the list. 
Step 2.3.2: Delete every country having a predefined preceding 

country from the list L. 

Step 2.3.3: If there is a country which must be visited in week k + 
1 due to a time window constraint, delete every country 

having no flights departing to this country and also 

delete every country having a predefined successive 
country from the list L. 

Step 2.3.4: Select the country which can be visited from the current 

country with the lowest cost among all countries in the 
list L as the next country. Then, go to Step 3.  

Step 3:  Let the salesman move from the current country to the next country 

selected in Step 2; then, update the new current country. If k is less 
than N, increase k by 1, and then repeat from Step 2. If k equals N, 

let the salesman move back to the starting country; and the 

construction of the roundtrip is now completed. 

 

V. PROPOSED LOCAL SEARCH ALGORITHMS 

 

The solution representation used in this paper is modified 

from the traditional solution representation for TSP widely 

used in a number of articles, e.g. [18]. The local search 

algorithms proposed here represent their solutions (i.e., TD-

ATSP-TWPC roundtrips) by the permutations. Each 

permutation is the sequence of N – 1 integers, including 2, 

3,…, N. The interpretation for each permutation is given as 

follows: the number i located in the k-th position in the 

permutation means that the country i will be visited in week 

k, where i = 2, 3,…, N and k = 1, 2,…, N – 1. The number 1 

is not included into the permutation, because the country 1 is 

always set as the starting country for every instance. It is also 

known that the starting country (i.e., the country 1) will be 

visited in week N. In this paper, Thailand is the starting 

country for every instance. An example of decoding from a 

permutation into a solution is given as follows: for a 5-

country instance, the permutation (4, 2, 5, 3) means the 

roundtrip that the salesman departs from the country 1 to visit 

the country 4 in week 1, then departs from the country 4 to 

visit the country 2 in week 2, then departs from the country 2 

to visit the country 5 in week 3, then departs from the country 

5 to visit the country 3 in week 4, and he finally departs from 

the country 3 to visit the country 1 in week 5. 

The two local search algorithms proposed in this paper are 

given in Sections 5.1 and 5.2 based on the special swap and 

insert operators, respectively. These operators select 

countries randomly with some conditions while the 

traditional operators [19] select countries randomly without 

conditions. The additional conditions enable the algorithms 

to avoid or reduce generating infeasible neighbor solutions.  

In each algorithm, the user must input the values for cijk (i, 

j, k = 1, 2,…, N and i ≠ j), wk (k = 1, 2,…, N – 1), aq and bq (q 

= 1, 2,…, Q) before using the algorithm. The permutations P0 

and P1 represent the roundtrips S0 and S1, respectively. The 

coding and decoding procedures used in the algorithm are 

already explained in this section. For each algorithm, S0 is the 

current best solution; it will then be the final solution after the 

algorithm is stopped. In the proposed algorithms, every 

lowest airfare price to travel from a country to another 

country that violates one or more constraints will be set to a 

large amount of money, says 90 million Baht, as a penalty 

cost [20]. 

 

A. Local Search Algorithm with Swap Operator 

The proposed local search algorithm, which uses the swap 

operator is hereafter called LS-SWAP. The steps of LS-

SWAP are given as follows. 
Step 1:  If there are no flights to travel from the country i to the country j in 

week k, let cijk = 90 million Baht, for i, j and k = 1, 2,…, N, and i ≠ 

j.   

Step 2: Randomly generate a feasible roundtrip for TD-ATSP-TWPC; let 
S0 be this roundtrip. Code S0 into the permutation P0. 

Step 3:  Let t = 0. 

Step 4: Generate a neighbor permutation P1 and a neighbor solution S1 by 

the following steps: 

Step 4.1: Randomly select a number u ∈ {2, 3,…, N} under these 
conditions:  

- u cannot equal any of wk for k = 1,…, N – 1. 

- u cannot equal any of bq for q = 1,…, Q. 

Step 4.2: Randomly select a number v ∈ {2, 3,…, N} under these 
conditions:  

- v cannot equal any of wk  for k = 1,…, N – 1. 

- v cannot be any of bq for q = 1,…, Q. 

- v cannot equal u.  
Step 4.3: Generate P1 based on the following conditions:  

- If u and v are both unequal to any of aq for q = 1,…, Q, 
generate P1 by switching the positions between the 

number u and the number v in P0.  

- Otherwise, generate P1 by switching the positions 
between u and v in P0 and also switching the positions 

between the number located immediately after u and 

the number located immediately after v in P0. 

Step 4.4: Decode P1 into S1. 

Step 5:  If the total cost of S1 is less than or equal to the total cost of S0, then 
let S0 equal to S1 as well as letting P0 equal to P1, and repeat from 

Step 3; otherwise, increase t by 1 and go to Step 6. 

Step 6: If t equals to N(N – 1), stop. Otherwise, repeat from Step 4. 

 

B. Local Search Algorithm with Insert Operator 

The proposed local search algorithm, which uses the insert 

operator is hereafter called LS-INSERT. The steps of LS-

INSERT are given as follows. 
Step 1:  Let cijk = 90 million Baht (for i, j and k = 1, 2,…, N, and i ≠ j) if one 

or more following conditions are met. 

- If there are no flights to travel from the country i to the country 
j in week k. 

- If i = aq and j ≠ bq for the same q, where q = 1,…, Q. 

- If i ≠ aq and j = bq, for the same q, where q = 1,…, Q. 

Step 2: Randomly generate a feasible roundtrip for TD-ATSP-TWPC; let 
S0 be this roundtrip. Code S0 into the permutation P0.  

Step 3:  Let t = 0. 

Step 4: Generate a neighbor permutation P1 and a neighbor solution S1 by 
the following steps: 

Step 4.1: Randomly select a number u ∈ {2, 3,…, N} under these 
conditions: 
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- u cannot equal any of wk for k = 1,…, N – 1. 

- u cannot equal any of bq for q = 1,…, Q. 

Step 4.2: Randomly select a number v ∈ {2, 3,…, N} under these 

conditions: 

- v cannot equal any of aq for q = 1,…, Q. 

- v cannot equal u.  

- If u = aq, then v cannot equal bq for the same q where q 
= 1,…, Q. 

Step 4.3: Generate P1 by removing u from its old position in P0, and 

then inserting u immediately after v in P0. After the P1 has 
been constructed, if any of wk (k = 1,…, N – 1) is not 

located in the k-th position in P1, this P1 must be repaired 

by removing this wk from the current position and then 
inserting it into the k-th position in P1.  

Step 4.4: Decode P1 into S1. 
Step 5:  If the total cost of S1 is less than or equal to the total cost of S0, then 

let S0 equal to S1 as well as letting P0 equal to P1, and repeat from 

Step 3; otherwise, increase t by 1 and go to Step 6. 
Step 6: If t equals to N(N – 1), stop. Otherwise, repeat from Step 4. 

In both LS-SWAP and LS-INSERT, the S0 is always a 

feasible solution for TD-ATSP-TWPC, since the initial S0 is 

feasible. However, S1 can be an infeasible solution for TD-

ATSP-TWPC. In LS-SWAP, S1 can be infeasible only due to 

the condition that there are no flights to transport between two 

countries. In LS-INSERT, S1 can be infeasible due to the 

conditions of no flights and the precedence constraints. Every 

infeasible S1 solution generated by LS-SWAP and LS-

INSERT will return the large cost (i.e., 90 million Baht in this 

paper); and hence it cannot be selected as the next S0. 

 

VI. NUMERICAL EXPERIMENT 

 

To evaluate the performances of LS-SWAP and LS-

INSERT, each algorithm will be run 10 times. Each run uses 

different initial permutation randomly generated. LS-SWAP 

and LS-INSERT are coded on C# and run on a personal 

computer of Intel(R) Core(TM) i5-2430M CPU @ 2.40 GHz 

with a 4 GB RAM. 

In this paper, a solution of each algorithm is a roundtrip 

generated by the algorithm and a solution value is the total 

cost of the roundtrip generated by the algorithm. Table 1, for 

each instance, shows the solution value given by MNN, the 

best found solution value over 10 runs (Best) given by each 

local search algorithm, the percentage of improvement of the 

best found solution value over 10 runs given by each local 

search algorithm from the solution value given by MNN (% 

Improve), the average solution value found over 10 runs 

(Avg) given by each local search algorithm, and the average 

computational time per run in seconds (Avg Time) of each 

local search algorithm. All costs are in Baht (let US$1 = 33.7 

Baht). Note that MNN will be run only one time per instance, 

since it is a deterministic algorithm. 

Table 1 shows that LS-SWAP performs best on Instances 

5 and 6, while LS-INSERT performs best on Instances 1 

through 4. LS-SWAP and LS-INSERT both perform better 

than MNN on all six instances. The average % improvement 

of the best found solution value over 10 runs of LS-SWAP 

from the solution value of MNN on all six instances is 16.4%, 

while the average % improvement of the best found solution 

value over 10 runs of LS-INSERT from the solution value of 

MNN on all six instances is 15.1%. The average % 

improvement of the best found solution value over 10 runs of 

LS-SWAP from the average % improvement of the best 

found solution value over 10 runs of LS-INSERT is 1.1%. 

This paper then tests the population means of % 

Improvements by stating the five pairs of H0 versus H1 based 

on the results from Table 1. Let % Improve of Algorithm A 

from Algorithm B for each instance, where A and B are any 

algorithms, refers to the % improvement of the best found 

solution value of Algorithm A from the best found solution 

value of Algorithm B. For LS-SWAP and LS-INSERT, the 

best found solution is the best solution found over 10 runs. 

For MNN, the best found solution is the solution over a single 

run, since it is a deterministic algorithm. The five pairs of H0 

and H1 are given as follows: 

1. H0: the population mean of % Improves of LS-SWAP 

from MNN for all instances is zero versus H1: this 

population mean is greater than zero. 

2. H0: the population mean of % Improves of LS-

INSERT from MNN for all instances is zero versus 

H1: this population mean is greater than zero. 

3. H0: the population mean of % Improves of LS-SWAP 

from LS-INSERT for all instances is zero versus H1: 

this population mean is greater than zero. 

4. H0: the population mean of % Improves of LS-

INSERT from LS-SWAP for the instances using the 

conditions of Set 1 is zero versus H1: this population 

mean is greater than zero. 

5. H0: the population mean of % Improves of LS-SWAP 

from LS-INSERT for the instances using the 

conditions of Set 2 is zero versus H1: this population 

mean is greater than zero. 

To test the hypotheses above, the five hypothesis tests are 

conducted by using the significance level of 0.20. The results 

of these five hypothesis tests are shown in Table 2. The results 

of the hypothesis tests for (I) and (II) are that the mean of % 

Improves of LS-SWAP from MNN and the mean of % 

Improves of LS-INSERT from MNN are both significantly 

greater than zero. As the conclusion, on average, LS-SWAP 

and LS-INSERT both outperform MNN with the significance 

level of 0.20. The hypothesis test for (III) fails to reject H0. It 

concludes that there are no enough evidences to support that 

LS-SWAP outperforms LS-INSERT on average with the 

significance level of 0.20. However, the result from the 

hypothesis test for (IV) concludes that, on average, LS-

INSERT outperforms LS-SWAP for the instances using the 

conditions of Set 1 with the significance level of 0.20. On the 

contrary, the result from the hypothesis test for (V) concludes 

that, on average, LS-SWAP outperforms LS-INSERT for the 

instances using the conditions of Set 2 with the significance 

of 0.20.   

The recommendations based on the above results are that 

LS-INSERT is proper to use for easy instances while LS-

SWAP is proper to use for hard instances. An easy instance 

refers to an instance that has at most one pair of a country and 

its immediate successive country as well as having at most 

one country whose its visited week is pre-assigned. A hard 

instance refers to an instance that has at least two pairs of 

countries and their immediate successive countries as well as 

at least two countries whose their visited weeks are pre-

assigned. Although the instances in Set 1 and Set 2 are also 

different in number of all countries, it is believed that the 

number of all countries has no much effect on the instance 

difficulty compare to the effects from the number of time 

window constraints and the number of precedence 

constraints. 

 The main reason that LS-SWAP, on average, is better than 

LS-INSERT on hard instances is because the insert operator 

has a higher possibility than the swap operator to generate an 

infeasible solution for S1 for each use of operator. The swap 

operator can generate an infeasible solution for S1 only in the 



A Time-Dependent ATSP With Time Window and Precedence Constraints in Air Travel 

 e-ISSN: 2289-8131   Vol. 9 No. 2-3 153 

case that there are no flights to travel from a country to its 

next country in the generated roundtrip, while the insert 

operator can generate an infeasible solution for S1 in the case 

that there are no flights to travel from a country to its next 

country as well as the case that the country which has a pre-

assigned successive country cannot be visited immediately 

before its successive country. 

 

Table 1  

Results taken from MNN, LS-SWAP and LS-INSERT 
 

Instance MNN 
LS-SWAP LS-INSERT 

Best % Improve Avg Avg Time Best % Improve Avg Avg Time 

1 114,616 111,193 3.0 149,509 0.033 102,280 10.8 133,068 0.041 
2 121,674 116,309 4.4 145,173 0.039 115,122 5.4 160,814 0.043 

3 173,739 141,966 18.3 179,276 0.036 133,329 23.3 164,028 0.039 

4 297,508 200,610 32.6 236,436 0.081 196,620 33.9 245,355 0.087 
5 224,823 194,682 13.4 225,415 0.072 208,989 7.0 236,990 0.067 

6 203,281 149,065 26.7 196,294 0.071 182,081 10.4 223,917 0.088 

 

Table 2   
Results of one-sample t-test in performance competitions 

 

Variable Sample Size Mean Std. Dev. t p-value 

% Improve of LS-SWAP from MNN 6 16.40 11.87 3.38 0.010 
% Improve of LS-INSERT from MNN 6 15.13 11.14 3.33 0.010 

% Improve of LS-SWAP from LS-INSERT 6 1.12 9.89 0.28 0.397 

% Improve of LS-INSERT from LS-SWAP on Set 1 3 5.03 3.62 2.41 0.069 
% Improve of LS-SWAP from LS-INSERT on Set 2 3 7.63 10.08 1.31 0.160 

 

VII. CONCLUSION 

 

This paper considers the time-dependent asymmetric 

travelling salesman problem with time window and 

precedence constraints or TD-ATSP-TWPC based on the 

actual application of air travel. Three algorithms are proposed 

in this paper, namely MNN, LS-SWAP and LS-INSERT. 

MNN is the modified nearest neighbor algorithm for solving 

TD-ATSP-TWPC especially. LS-SWAP and LS-INSERT are 

the local search algorithms developed for TD-ATSP-TWPC, 

based on the modified swap and insert operators respectively. 

The swap and insert operators developed in this paper 

randomly select countries with some additional conditions in 

order to enable the algorithms to reduce the chance to 

generate infeasible neighbor solutions. LS-SWAP and LS-

INSERT both perform very well in terms of solution quality 

as well as CPU time. Based on the analysis, LS-INSERT is 

more recommended for easy instances, i.e., the instances with 

at most one pair of a country and its immediate successive 

country as well as at most one country whose the visited week 

is pre-assigned. On the other hand, LS-SWAP is more 

recommended for hard instances, i.e., the instances with at 

least two pairs of countries and their immediate successive 

countries as well as at least two countries whose the visited 

weeks are pre-assigned. 
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