

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 149

A Time-Dependent ATSP With Time Window and

Precedence Constraints in Air Travel

Thanaboon Saradatta, Pisut Pongchairerks
Faculty of Engineering, Thai-Nichi Institute of Technology, Bangkok, Thailand.

pisut@tni.ac.th

Abstract—This paper considers a time-dependent asymmetric

travelling salesman problem with time window and precedence

constraints, based on the real application of air transport. This

problem is much more complicated than the classical

asymmetric travelling salesman problem due to the properties

of the airfare prices, the time window constraints and the

precedence constraints. To solve this problem, this paper

proposes a modified nearest neighbor algorithm and two local

search algorithms.

Index Terms—Travelling Salesman Problem; TSP;

Asymmetric Travelling Salesman Problem; ATSP; Local Search

Algorithm; Air Transportation; Time Window; Time-

Dependent; Precedence Constraint.

I. INTRODUCTION

The classical travelling salesman problem (TSP) is to decide

the roundtrip for a salesman to travel around a number of

given cities with the objective of minimizing total distance.

TSP involves with not only the salesman’s application but

also with other actual economic applications. In the past, TSP

has usually been applied to the ground transport applications.

Nowadays, it is however very usual to transport between

countries by air. This statement makes guidance for this paper

to consider an extension of TSP where the salesman travels

around a number of given countries by air. The conditions of

this extended TSP are summarized as follows:

1. The airfare prices from a country to another country in

the same time period offered by different airlines may

be different.

2. The airfare price to travel from a country to another

country may not be same to the airfare price to travel

in the reverse direction. (This makes the problem

asymmetric.)

3. The airfare price to travel from a country to another

country offered by an airline may change over time.

(This makes the problem time-dependent.)

4. It is possible that there are no flights to travel from a

country to another country.

5. A country may have to be visited within a pre-assigned

time period. (This is a time window constraint.)

6. A country may have to be visited immediately after a

predefined preceding country. (This is a precedence

constraint.)

7. Each country must be visited once and the final

destination is the starting country. (This is same to the

condition of the traditional TSP.)

This extended TSP is more complicated than TSP due to

the conditions (i) through (vi). Since the objective of problem

is to minimize the total cost of the airfare prices, the best

decision on the condition (i) is simply made by selecting the

lowest-airfare-price airline among all airlines available for

the same direct trip from a country to another in the same time

period. With this decision for the condition (i), this problem

becomes the Time-Dependent Asymmetric Travelling

Salesman problem with Time Window and Precedence

Constraints. It is called TD-ATSP-TWPC in this paper.

The published articles that have the contents relating to

TD-ATSP-TWPC are given as follows. The air travel

planning problem discussed in [1] and [2] is a variant of the

shortest-path problem which requires finding the lowest-cost

trip or roundtrip between two specific countries. The articles

[1] and [2] also indicate that the air travel planning problem

is far more complicated than the classical shortest-path

problem due to the properties of airfare prices.

 The article [3] considers the ATSP in the air transport

application. However, its objective is to minimize the total

distance. Thus, the problem in [3] does not face with all

conditions relating to airfare prices. Also, it does not have the

time window and precedence constraints. Thus, the major

difficulty of the problem considered in [3] beyond the

traditional ATSP is due to the condition (iv) only. The

travelling tourist problem (TTP) discussed in [4] may be the

most similar problem of TD-ATSP-TWPC, since TTP is the

ATSP whose costs of routes change with time. However, TTP

does not have the conditions (iv), (v) and (vi). The article [4]

uses evolutionary Markov chain Monte Carlo and simulated

annealing to solve TTP. Other variants of TSP similar to TD-

ATSP-TWPC include ATSP with precedence constraints

(i.e., sequence ordering problem) presented in [5], and the

time-dependent TSP presented in [6].

The reviews of TSP and its variants are given in [7-10]. A

review article about the time-window constrained routing

problems is shown in [11]. In literature, there are a number of

algorithms developed for solving TSP or its variants. These

algorithms can be classified into three types as follows:

1. Simple construction heuristics, such as Nearest

Neighbor algorithm [7, 12].

2. Exact algorithms, such as Branch-and-Cut algorithms

[5 , 13].

3. Meta-heuristic algorithms, such as Local Search

algorithms [14, 15], a Variable Neighborhood Search

algorithm [16].

In this paper, Section 2 presents the statement of TD-

ATSP-TWPC. Section 3 presents the instances for TD-

ATSP-TWPC. Section 4 proposes a modified nearest

neighbor algorithm, while Section 5 proposes the two local

search algorithms for TD-ATSP-TWPC. Section 6 evaluates

the performances of the three proposed algorithms. Finally,

Section 7 provides a conclusion.

Journal of Telecommunication, Electronic and Computer Engineering

150 e-ISSN: 2289-8131 Vol. 9 No. 2-3

II. STATEMENT OF TD-ATSP-TWPC

TD-ATSP-TWPC consists of a salesman and N given

countries. These N countries include country 1, country 2,…,

country N. The salesman has to visit all N countries within N

weeks; in addition, he/she must visit only a single country per

week. The last visited country (i.e., the country visited in the

week N) must be the same to the starting country (i.e., the

country he starts). If there are at least two flights available to

travel from country i to country j in week k, the airline with

the lowest airfare price will be selected for travelling from

country i to country j in week k. Let cijk be the lowest airfare

price over the airfare prices offered by all available airlines to

travel from country i to country j in week k, where i, j and k

= 1, 2,…, N, and i ≠ j. In addition, cijk is possibly unequal to

cjik. It is also possible that there are no available flights to

travel from country i to country j in week k. Moreover, this

problem has time window constraints and the precedence

constraints, which are described below.

• For time window constraints of TD-ATSP-TWPC, let

country wk ∈ {1, … , 𝑁} be the country which must be

visited in week k (where k = 1, 2,…, N – 1). The wN is

not included here, because the week N is pre-assigned

for visiting the starting country. Any week k which

has not been pre-assigned for a specific country will

have wk = null. For example, if w1 = 3, w3 = 4 and other

wk are null, this means country 3 must be visited in

week 1, and country 4 must be visited in week 3.

• For precedence constraints of TD-ATSP-TWPC, let

country aq ∈ {1, … , 𝑁} be the country which must be

visited immediately before country bq ∈ {1, … , 𝑁} for

the same q, where q = 1, 2,…, Q and aq ≠ bq. Let Q be

the number of all pairs of countries aq and their

immediate successive countries bq. For example, If Q

= 2, a1 = 3, b1 = 5, a2 = 4 and b2 = 2, country 3 must be

visited immediately before country 5, and country 4

must be visited immediate before country 2.

In this paper, the a1, a2,…, aQ, b1, b2,…, bQ, w1, w2,…, wN–

1 are not same to one another. The objective of TD-ATSP-

TWPC is to minimize the total cost of travelling around these

N countries. The total cost is the sum of all airfare prices used

to complete the roundtrip.

III. PROPOSED PROBLEM INSTANCES

This paper generates six instances based on actual data. In

these instances, the locations of countries are taken from the

locations of airports in those countries as given below:

1. Suvarnabhumi International Airport in Bangkok,

Thailand.

2. Changi Airport in Singapore.

3. Kuala Lumpur International Airport in Kuala Lumpur,

Malaysia.

4. Narita International Airport in Tokyo, Japan;

5. Incheon International Airport in Seoul, South Korea.

6. Beijing Capital International Airport in Beijing, China.

7. Hong Kong International Airport in Hong Kong;

8. Sydney International Airport in Sydney, Australia;

9. JFK International Airport in New York, United States

of America.

10. London Heathrow Airport in London, United

Kingdom.

11. Charles de Gaulle Airport in Paris, France.

12. Leonardo da Vinci Airport in Rome, Italy.

13. Frankfurt Airport in Frankfurt, Germany.

14. Madrid-Barajas Airport in Madrid, Spain;

15. Auckland Airport in Auckland, New Zealand.

16. Dublin Airport in Dublin, Ireland.

17. Toronto Pearson International Airport in Toronto,

Canada.

18. Athens International Airport in Athens, Greece.

19. Istanbul Ataturk Airport in Istanbul, Turkey.

20. Zurich Airport in Zurich, Switzerland.

The common information used in all six instances is given

as follows:

1. The salesman must start his roundtrip from Thailand.

2. The salesman must visit exactly one country per week.

3. The lowest airfare price to travel from the country i to

the country j in week k (i.e., cijk) and the airline, which

offers this lowest airfare price are given in [17].

The lowest airfare prices in [17] are shown in Baht, where

$1 = 33.7 Baht during the period of collecting data. All flights

in weeks 1 through 20 were taken off on 7 Jun 2015, 14 Jun,

21 Jun, 28 Jun, 5 Jul, 12 Jul, 19 Jul, 26 Jul, 2 Aug, 9 Aug, 16

Aug, 23 Aug, 30 Aug, 6 Sep, 13 Sep, 20 Sep, 27 Sep, 4 Oct,

11 Oct and 18 Oct, respectively. These six instances are

classified into two sets based on the similarities on the

number of all countries, the number of countries whose their

visited week has been pre-assigned, and the number of all

pairs of the countries and their immediate successive

countries. Set 1 includes Instances 1 through 3, and Set 2

includes instances 4 through 6.

Each instance in Set 1 considers only 15 countries (i.e., N

= 15) including (1) Thailand, (2) Singapore, (3) Malaysia,….,

and (15) New Zealand. The salesman thus must visit all 15

countries within 15 weeks; moreover, he must visit each

country per week. Each instance in Set 1 has only one

country, which has a pre-assigned visited week as well as

only one pair of a country and its immediate successive

country. The details of Instances 1 through 3 are given as

follows. In Instance 1, the salesman must visit Singapore in

week 2, and he must visit France immediately after Italy

(equivalent to he must visit Italy immediately before France).

In Instance 2, the salesman must visit South Korea in week 6,

and he must visit Malaysia immediately after Japan. In

Instance 3, the salesman must visit Japan in week 9, and he

must visit China immediately after Germany.

Each instance in Set 2 considers 20 countries (i.e., N = 20)

including all countries listed above. The salesman of each

instance in Set 2 must visit all 20 countries within 20 weeks;

and, he must visit each country per week. Each instance in Set

2 has two countries, which have the pre-assigned visited

weeks and two pairs of countries and their immediate

successive countries. In Instance 4, the salesman must visit

United Kingdom in week 6 and Malaysia in week 9;

moreover, he must visit Japan immediately before Australia

as well as visiting France immediately before Hong Kong. In

Instance 5, the salesman must visit Germany in week 6 and

Australia in week 11; moreover, he must visit China

immediately before USA as well as visiting South Korea

immediately before Malaysia. In Instance 6, the salesman

must visit France in week 8 and South Korea in week 13;

moreover, he must visit Australia immediately before New

Zealand as well as visiting Hong Kong immediately before

United Kingdom.

A Time-Dependent ATSP With Time Window and Precedence Constraints in Air Travel

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 151

IV. MODIFIED ALGORITHM

The nearest neighbor algorithm (NN) [7] is the most well-

known heuristic for TSP and its variants. Thus, it should be

used to compare with the local search algorithms proposed in

the next section. This section hence modifies the original NN

algorithm to be able to solve TD-ATSP-TWPC. This

modified NN is hereafter called MNN. The steps of MNN are

given as follows.
Step 1: Let the cost of a direct trip from a country to another country is the

lowest airfare price among all airfare prices offered by all available

airlines. Assign the starting country, and let the starting country be
the current country (i.e., the country where the salesman locates

now). Let k = 1.

Step 2: Select the country where the salesman must visit next by following
these steps:

 Step 2.1: Check that if there is a country that must be visited in week

k due to a time window constraint. If so, assign this country

as the next country, and then go to Step 3. Otherwise, go to

Step 2.2.

Step 2.2: Check that if there is a country that must be visited
immediately after the current country due to a precedence

constraint. If so, assign this country as the next country,

and then go to Step 3. Otherwise go to Step 2.3.
Step 2.3: Select the next country by following Steps 2.3.1 through

2.3.4:

Step 2.3.1: Let L be a List of all possible countries which can be
visited in week k. Construct L by adding every as-yet-

unvisited country which can be visited by one or more

flights from the current country into the list.
Step 2.3.2: Delete every country having a predefined preceding

country from the list L.

Step 2.3.3: If there is a country which must be visited in week k +
1 due to a time window constraint, delete every country

having no flights departing to this country and also

delete every country having a predefined successive
country from the list L.

Step 2.3.4: Select the country which can be visited from the current

country with the lowest cost among all countries in the
list L as the next country. Then, go to Step 3.

Step 3: Let the salesman move from the current country to the next country

selected in Step 2; then, update the new current country. If k is less
than N, increase k by 1, and then repeat from Step 2. If k equals N,

let the salesman move back to the starting country; and the

construction of the roundtrip is now completed.

V. PROPOSED LOCAL SEARCH ALGORITHMS

The solution representation used in this paper is modified

from the traditional solution representation for TSP widely

used in a number of articles, e.g. [18]. The local search

algorithms proposed here represent their solutions (i.e., TD-

ATSP-TWPC roundtrips) by the permutations. Each

permutation is the sequence of N – 1 integers, including 2,

3,…, N. The interpretation for each permutation is given as

follows: the number i located in the k-th position in the

permutation means that the country i will be visited in week

k, where i = 2, 3,…, N and k = 1, 2,…, N – 1. The number 1

is not included into the permutation, because the country 1 is

always set as the starting country for every instance. It is also

known that the starting country (i.e., the country 1) will be

visited in week N. In this paper, Thailand is the starting

country for every instance. An example of decoding from a

permutation into a solution is given as follows: for a 5-

country instance, the permutation (4, 2, 5, 3) means the

roundtrip that the salesman departs from the country 1 to visit

the country 4 in week 1, then departs from the country 4 to

visit the country 2 in week 2, then departs from the country 2

to visit the country 5 in week 3, then departs from the country

5 to visit the country 3 in week 4, and he finally departs from

the country 3 to visit the country 1 in week 5.

The two local search algorithms proposed in this paper are

given in Sections 5.1 and 5.2 based on the special swap and

insert operators, respectively. These operators select

countries randomly with some conditions while the

traditional operators [19] select countries randomly without

conditions. The additional conditions enable the algorithms

to avoid or reduce generating infeasible neighbor solutions.

In each algorithm, the user must input the values for cijk (i,

j, k = 1, 2,…, N and i ≠ j), wk (k = 1, 2,…, N – 1), aq and bq (q

= 1, 2,…, Q) before using the algorithm. The permutations P0

and P1 represent the roundtrips S0 and S1, respectively. The

coding and decoding procedures used in the algorithm are

already explained in this section. For each algorithm, S0 is the

current best solution; it will then be the final solution after the

algorithm is stopped. In the proposed algorithms, every

lowest airfare price to travel from a country to another

country that violates one or more constraints will be set to a

large amount of money, says 90 million Baht, as a penalty

cost [20].

A. Local Search Algorithm with Swap Operator

The proposed local search algorithm, which uses the swap

operator is hereafter called LS-SWAP. The steps of LS-

SWAP are given as follows.
Step 1: If there are no flights to travel from the country i to the country j in

week k, let cijk = 90 million Baht, for i, j and k = 1, 2,…, N, and i ≠

j.

Step 2: Randomly generate a feasible roundtrip for TD-ATSP-TWPC; let
S0 be this roundtrip. Code S0 into the permutation P0.

Step 3: Let t = 0.

Step 4: Generate a neighbor permutation P1 and a neighbor solution S1 by

the following steps:

Step 4.1: Randomly select a number u ∈ {2, 3,…, N} under these
conditions:

- u cannot equal any of wk for k = 1,…, N – 1.

- u cannot equal any of bq for q = 1,…, Q.

Step 4.2: Randomly select a number v ∈ {2, 3,…, N} under these
conditions:

- v cannot equal any of wk for k = 1,…, N – 1.

- v cannot be any of bq for q = 1,…, Q.

- v cannot equal u.
Step 4.3: Generate P1 based on the following conditions:

- If u and v are both unequal to any of aq for q = 1,…, Q,
generate P1 by switching the positions between the

number u and the number v in P0.

- Otherwise, generate P1 by switching the positions
between u and v in P0 and also switching the positions

between the number located immediately after u and

the number located immediately after v in P0.

Step 4.4: Decode P1 into S1.

Step 5: If the total cost of S1 is less than or equal to the total cost of S0, then
let S0 equal to S1 as well as letting P0 equal to P1, and repeat from

Step 3; otherwise, increase t by 1 and go to Step 6.

Step 6: If t equals to N(N – 1), stop. Otherwise, repeat from Step 4.

B. Local Search Algorithm with Insert Operator

The proposed local search algorithm, which uses the insert

operator is hereafter called LS-INSERT. The steps of LS-

INSERT are given as follows.
Step 1: Let cijk = 90 million Baht (for i, j and k = 1, 2,…, N, and i ≠ j) if one

or more following conditions are met.

- If there are no flights to travel from the country i to the country
j in week k.

- If i = aq and j ≠ bq for the same q, where q = 1,…, Q.

- If i ≠ aq and j = bq, for the same q, where q = 1,…, Q.

Step 2: Randomly generate a feasible roundtrip for TD-ATSP-TWPC; let
S0 be this roundtrip. Code S0 into the permutation P0.

Step 3: Let t = 0.

Step 4: Generate a neighbor permutation P1 and a neighbor solution S1 by
the following steps:

Step 4.1: Randomly select a number u ∈ {2, 3,…, N} under these
conditions:

Journal of Telecommunication, Electronic and Computer Engineering

152 e-ISSN: 2289-8131 Vol. 9 No. 2-3

- u cannot equal any of wk for k = 1,…, N – 1.

- u cannot equal any of bq for q = 1,…, Q.

Step 4.2: Randomly select a number v ∈ {2, 3,…, N} under these

conditions:

- v cannot equal any of aq for q = 1,…, Q.

- v cannot equal u.

- If u = aq, then v cannot equal bq for the same q where q
= 1,…, Q.

Step 4.3: Generate P1 by removing u from its old position in P0, and

then inserting u immediately after v in P0. After the P1 has
been constructed, if any of wk (k = 1,…, N – 1) is not

located in the k-th position in P1, this P1 must be repaired

by removing this wk from the current position and then
inserting it into the k-th position in P1.

Step 4.4: Decode P1 into S1.
Step 5: If the total cost of S1 is less than or equal to the total cost of S0, then

let S0 equal to S1 as well as letting P0 equal to P1, and repeat from

Step 3; otherwise, increase t by 1 and go to Step 6.
Step 6: If t equals to N(N – 1), stop. Otherwise, repeat from Step 4.

In both LS-SWAP and LS-INSERT, the S0 is always a

feasible solution for TD-ATSP-TWPC, since the initial S0 is

feasible. However, S1 can be an infeasible solution for TD-

ATSP-TWPC. In LS-SWAP, S1 can be infeasible only due to

the condition that there are no flights to transport between two

countries. In LS-INSERT, S1 can be infeasible due to the

conditions of no flights and the precedence constraints. Every

infeasible S1 solution generated by LS-SWAP and LS-

INSERT will return the large cost (i.e., 90 million Baht in this

paper); and hence it cannot be selected as the next S0.

VI. NUMERICAL EXPERIMENT

To evaluate the performances of LS-SWAP and LS-

INSERT, each algorithm will be run 10 times. Each run uses

different initial permutation randomly generated. LS-SWAP

and LS-INSERT are coded on C# and run on a personal

computer of Intel(R) Core(TM) i5-2430M CPU @ 2.40 GHz

with a 4 GB RAM.

In this paper, a solution of each algorithm is a roundtrip

generated by the algorithm and a solution value is the total

cost of the roundtrip generated by the algorithm. Table 1, for

each instance, shows the solution value given by MNN, the

best found solution value over 10 runs (Best) given by each

local search algorithm, the percentage of improvement of the

best found solution value over 10 runs given by each local

search algorithm from the solution value given by MNN (%

Improve), the average solution value found over 10 runs

(Avg) given by each local search algorithm, and the average

computational time per run in seconds (Avg Time) of each

local search algorithm. All costs are in Baht (let US$1 = 33.7

Baht). Note that MNN will be run only one time per instance,

since it is a deterministic algorithm.

Table 1 shows that LS-SWAP performs best on Instances

5 and 6, while LS-INSERT performs best on Instances 1

through 4. LS-SWAP and LS-INSERT both perform better

than MNN on all six instances. The average % improvement

of the best found solution value over 10 runs of LS-SWAP

from the solution value of MNN on all six instances is 16.4%,

while the average % improvement of the best found solution

value over 10 runs of LS-INSERT from the solution value of

MNN on all six instances is 15.1%. The average %

improvement of the best found solution value over 10 runs of

LS-SWAP from the average % improvement of the best

found solution value over 10 runs of LS-INSERT is 1.1%.

This paper then tests the population means of %

Improvements by stating the five pairs of H0 versus H1 based

on the results from Table 1. Let % Improve of Algorithm A

from Algorithm B for each instance, where A and B are any

algorithms, refers to the % improvement of the best found

solution value of Algorithm A from the best found solution

value of Algorithm B. For LS-SWAP and LS-INSERT, the

best found solution is the best solution found over 10 runs.

For MNN, the best found solution is the solution over a single

run, since it is a deterministic algorithm. The five pairs of H0

and H1 are given as follows:

1. H0: the population mean of % Improves of LS-SWAP

from MNN for all instances is zero versus H1: this

population mean is greater than zero.

2. H0: the population mean of % Improves of LS-

INSERT from MNN for all instances is zero versus

H1: this population mean is greater than zero.

3. H0: the population mean of % Improves of LS-SWAP

from LS-INSERT for all instances is zero versus H1:

this population mean is greater than zero.

4. H0: the population mean of % Improves of LS-

INSERT from LS-SWAP for the instances using the

conditions of Set 1 is zero versus H1: this population

mean is greater than zero.

5. H0: the population mean of % Improves of LS-SWAP

from LS-INSERT for the instances using the

conditions of Set 2 is zero versus H1: this population

mean is greater than zero.

To test the hypotheses above, the five hypothesis tests are

conducted by using the significance level of 0.20. The results

of these five hypothesis tests are shown in Table 2. The results

of the hypothesis tests for (I) and (II) are that the mean of %

Improves of LS-SWAP from MNN and the mean of %

Improves of LS-INSERT from MNN are both significantly

greater than zero. As the conclusion, on average, LS-SWAP

and LS-INSERT both outperform MNN with the significance

level of 0.20. The hypothesis test for (III) fails to reject H0. It

concludes that there are no enough evidences to support that

LS-SWAP outperforms LS-INSERT on average with the

significance level of 0.20. However, the result from the

hypothesis test for (IV) concludes that, on average, LS-

INSERT outperforms LS-SWAP for the instances using the

conditions of Set 1 with the significance level of 0.20. On the

contrary, the result from the hypothesis test for (V) concludes

that, on average, LS-SWAP outperforms LS-INSERT for the

instances using the conditions of Set 2 with the significance

of 0.20.

The recommendations based on the above results are that

LS-INSERT is proper to use for easy instances while LS-

SWAP is proper to use for hard instances. An easy instance

refers to an instance that has at most one pair of a country and

its immediate successive country as well as having at most

one country whose its visited week is pre-assigned. A hard

instance refers to an instance that has at least two pairs of

countries and their immediate successive countries as well as

at least two countries whose their visited weeks are pre-

assigned. Although the instances in Set 1 and Set 2 are also

different in number of all countries, it is believed that the

number of all countries has no much effect on the instance

difficulty compare to the effects from the number of time

window constraints and the number of precedence

constraints.

 The main reason that LS-SWAP, on average, is better than

LS-INSERT on hard instances is because the insert operator

has a higher possibility than the swap operator to generate an

infeasible solution for S1 for each use of operator. The swap

operator can generate an infeasible solution for S1 only in the

A Time-Dependent ATSP With Time Window and Precedence Constraints in Air Travel

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 153

case that there are no flights to travel from a country to its

next country in the generated roundtrip, while the insert

operator can generate an infeasible solution for S1 in the case

that there are no flights to travel from a country to its next

country as well as the case that the country which has a pre-

assigned successive country cannot be visited immediately

before its successive country.

Table 1

Results taken from MNN, LS-SWAP and LS-INSERT

Instance MNN
LS-SWAP LS-INSERT

Best % Improve Avg Avg Time Best % Improve Avg Avg Time

1 114,616 111,193 3.0 149,509 0.033 102,280 10.8 133,068 0.041
2 121,674 116,309 4.4 145,173 0.039 115,122 5.4 160,814 0.043

3 173,739 141,966 18.3 179,276 0.036 133,329 23.3 164,028 0.039

4 297,508 200,610 32.6 236,436 0.081 196,620 33.9 245,355 0.087
5 224,823 194,682 13.4 225,415 0.072 208,989 7.0 236,990 0.067

6 203,281 149,065 26.7 196,294 0.071 182,081 10.4 223,917 0.088

Table 2
Results of one-sample t-test in performance competitions

Variable Sample Size Mean Std. Dev. t p-value

% Improve of LS-SWAP from MNN 6 16.40 11.87 3.38 0.010
% Improve of LS-INSERT from MNN 6 15.13 11.14 3.33 0.010

% Improve of LS-SWAP from LS-INSERT 6 1.12 9.89 0.28 0.397

% Improve of LS-INSERT from LS-SWAP on Set 1 3 5.03 3.62 2.41 0.069
% Improve of LS-SWAP from LS-INSERT on Set 2 3 7.63 10.08 1.31 0.160

VII. CONCLUSION

This paper considers the time-dependent asymmetric

travelling salesman problem with time window and

precedence constraints or TD-ATSP-TWPC based on the

actual application of air travel. Three algorithms are proposed

in this paper, namely MNN, LS-SWAP and LS-INSERT.

MNN is the modified nearest neighbor algorithm for solving

TD-ATSP-TWPC especially. LS-SWAP and LS-INSERT are

the local search algorithms developed for TD-ATSP-TWPC,

based on the modified swap and insert operators respectively.

The swap and insert operators developed in this paper

randomly select countries with some additional conditions in

order to enable the algorithms to reduce the chance to

generate infeasible neighbor solutions. LS-SWAP and LS-

INSERT both perform very well in terms of solution quality

as well as CPU time. Based on the analysis, LS-INSERT is

more recommended for easy instances, i.e., the instances with

at most one pair of a country and its immediate successive

country as well as at most one country whose the visited week

is pre-assigned. On the other hand, LS-SWAP is more

recommended for hard instances, i.e., the instances with at

least two pairs of countries and their immediate successive

countries as well as at least two countries whose the visited

weeks are pre-assigned.

REFERENCES

[1] Marcken, C. D. 2003. Computational Complexity of Air Travel
Planning. Public Notes on Computational Complexity. Retrieved

October, 22, 2015 from http://www.demarcken.org/carl/papers/

[2] Robinson, S. 2002. Computer Scientists Find Unexpected Depths in
Airfare Search Problem. SIAM NEWS. 35(6). Retrieved November, 14,

2015 from http://www.msri.org/people/members/sara/articles/

airfares.pdf
[3] OpenFlights. 2015. The Air-Traveling Salesman. Retrieved October,

22, 2015 from https://sites.google.com/site/ travellingcudasalesman/

[4] Touyz, J. 2013. The Travelling Tourist Problem: A Mixed Heuristic
Approach. Retrieved October, 22, 2015 from

http://issuu.com/jgetouyz/docs

[5] Ascheuer, N., Jünger, M., and Reinelt, G. 2000. A Branch & Cut
Algorithm for the Asymmetric Traveling Salesman Problem with

Precedence Constraints. Computational Optimization and Application.
17(1): 61–84.

[6] Picard, J.-C. and Queyranne, M. 1978. The Time-Dependent Traveling

Salesman Problem and Its Application to the Tardiness Problem in
One-Machine Scheduling. Operations Research. 26(1): 86–101.

[7] Applegate, D. L., Bixby, R. E., Chvátal, V., and Cook, W. J. 2007. The

Traveling Salesman Problem: A Computational Study. New Jersey:
Princeton University Press.

[8] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D.

B. 1995. The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization. New York: John Wiley & Sones.

[9] Gutin, G. and Punnen, A. P. 2002. The Traveling Salesman Problem

and Its Variations. US: Springer.
[10] Cook, W. J. 2012. In Pursuit of the Traveling Salesman. New Jersey:

Princeton University Press.

[11] Solomon, M. M. and Desrosiers, J. 1988. Time Window Constrained
Routing and Scheduling Problem. Transportation Science. 22(1): 1-13.

[12] Kizilateş, G. and Nuriyeva, F. 2013. On the Nearest Neighbor

Algorithms for the Traveling Salesman Problem. Advances in
Computational Science, Engineering and Information Technology.

225: 111-118.

[13] Hernández-Pérez, H. and Salazar-González, J. J. 2004. A Branch-and-
Cut Algorithm for a Traveling Salesman Problem with Pickup and

Deliver. Discrete Applied Mathematics. 145(1): 126-139.
[14] Voudouris, C. and Tsang, E. 1999. Guided Local Search and Its

Application to the Traveling Salesman Problem. European Journal of

Operational Research. 113(2): 469-499.
[15] Misevičius, A., Ostreika, A., Šimaitis, A., and Žilevičius, V. 2007.

Improving Local Search for the Traveling Salesman Problem.

Information Technology and Control. 36(2): 187-195.
[16] Piriyaniti, I. and Pongchairerks, P. 2013. Variable Neighbourhood

Search Algorithms for Asymmetric Travelling Salesman Problems.

International Journal of Operational Research. 18(2): 157-170.
[17] Saradatta, T. and Pongchairerks, P. 2015. Instances for Time-

Dependent ATSP with Time Window and Precedence Constraints in

Air Travel. Retrieved November, 20, 2015 from
https://drive.google.com/folderview?id=0B2XqS3TSsvP7UFFEa1E0

UlpWbHc&usp=sharing

[18] Ray, S.S. and Bandyopadhyay, S. 2007. Genetic Operators for
Combinatorial Optimization in TSP and Microarray Gene Ordering’,

Applied Intelligence. 26(3): 183-195.

[19] Guo, P. and Wenming, C. 2014. A General Variable Neighborhood
Search for Single-Machine Total Tardiness Scheduling Problem with

Step-Deteriorating Jobs. Journal of Industrial and Management

Optimization. 10(4): 1071-1090.
[20] Smitch, A. E. and Coit, D. W. 1997. Constraint-Handling Techniques -

Penalty Functions. In Baeck, T., Fogel, D. and Michalewicz, Z. (Eds)

Handbook of Evolutionary Computation (C 5.2). Bristol: Oxford
University Pres.

