

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 93

Obfuscated Malicious Script Response Technique

Deployed at Host Level

Sang-Hwan Oh, Jong-Hun Jung, Hwan-Kuk Kim
Korea Internet & Security Agency, Seoul, Korea.

seif@sharif.edu

Abstract—JavaScript functions have been remarkably

enhanced thanks to the emergence of the next generation web

standard HTML5 presented by W3C. HTML5 provides

powerful functions that could replace non-standard technologies

such as Active X by providing functions such as media play, 3-D

graphic processing and Web socket communications using

JavaScript only without the installation of separate plugins.

Along with these trends in the ICT environment, many studies

have been done related to threats exploiting JavaScript, which

comprises a core of HTML5 functions. There are, however,

many limitations in detecting obfuscated malicious scripts since

most detection techniques use signature-based pattern

matching. This paper will propose a method capable of detecting

obfuscated malicious scripts at the host level and preventing the

scripts’ execution.

Index Terms—Script-based CyberAttack; Web Security;

Obfuscated Malicious Script.

I. INTRODUCTION

The type of services provided through the web has been

gradually diversified due to the development of web

applications. Provision of such services in the past had

required use of non-standard plugins such as Active X,

entailing a security threat. As such issues have emerged, the

HTML 5 standard that can replace Active X by using a

JavaScript only has been presented in the recent W3C.

HTML5 has powerful measures that can substitute for Active

X’s functions such as media play, graphic processing and web

socket communications utilizing the new JavaScript API

using a new tag and JavaScript while maintaining

compatibility with the existing HTML. The role of JavaScript

has grown, so the security threat has also [1]. Moreover, the

concept of obfuscation has emerged to protect the developers’

ideas or algorithms since JavaScript is typically used as a

client-side language [2]. Apart from its primary purpose, this

is often used to bypass security products by hiding malicious

codes by hackers.

Most of the ways for web attack by hackers causes a

malicious behavior by making a user install and execute a

malicious code in the form of drive by download by

exploiting the vulnerabilities of web applications. However,

the attacks incurring a malicious behavior only by accessing

the web site using a JavaScript have recently been found. It is

difficult to detect and respond against to the attacks using a

JavaScript because the attacks are executed and terminated

through a web browser without a separate execution file, and

such attacks do not leave any traceable footprints after the

browser is closed. Also, most of the JavaScripts are

obfuscated for the performance and security, it is possible to

bypass detection techniques using signature-based static

pattern matching. Therefore, in this paper we describe the

danger of the obfuscated JavaScript attacks and the

countermeasure for detecting such attacks and responding

against to those.

In Section 2, we explain the method for obfuscating

JavaScripts. Section 3 describes the technology for

responding to obfuscated malicious scripts. In section 4, we

explain the conclusions and further works.

II. RELEVANT RESEARCH

A. JavaScript Obfuscation Technique

Recent web attacks have made signature-based detection

difficult through obfuscation. Two most simple ways of the

web attacks are: a string split technique which splits a

malicious script code into a number of script codes and then,

recombines and outputs; and a string replacement technique

which replaces a set of strings into an ASCII type string using

an encoding function such as escape and unescape. In

addition to the two techniques, there are a variety of attacks

such as a technique using a known obfuscation technique as

shown in Figure 1, a bypass technique using Base64

encoding, a technique using XOR encoding, etc. which

simply bypass a signature-based IDS/IPS complexly using

various obfuscation methods [3].

Figure 1: An example of JavaScript obfuscation

B. Malicious Web Attack Detection Technique

Methods for detecting web attacks can be roughly

classified into a method which detects attacks at network

level and a method which detects attacks at the host level. In

this paper, countermeasures at network level are not

considered.

Many studies for detecting malicious web attacks at the

host level have been performed. One simple, immediate

method to address attacks is to examine an accessed URL

Journal of Telecommunication, Electronic and Computer Engineering

94 e-ISSN: 2289-8131 Vol. 9 No. 2-3

address. One representative technology is McAfee’s

SiteAdvisor [4]. This is a method for detecting malicious

attacks by checking whether the URL address, which a web

browser is accessing, has a history of malicious attacks. This

technology is capable of immediate response since it only

checks the ULR being accessed however, it is difficult to

address when the attacker attempts attacks by frequently

changing URLs. In order to address the problem, methods for

analyzing downloaded web contents and responding against

the attacks has been devised. Long Lu has proposed one

solution, called BLADE [5], which is a web browser-based

incident detection system. BLADE is a detection system

which detects an execution file being downloaded through

web browser by isolating the execution file into a safe area,

executing the file and detects malicious attacks based on

behaviors incurred due to the execution. However, it has

many difficulties in detecting the incurred malicious

behaviors using a script without execution file.

To solve such limitation, a WMDS technique has been

prepared [6]. WMDS proposes a malicious behavior

detection module, called Observer, to monitor the web

browser which is a base for web attack.

Figure 2: Configuration of Observer

The configuration of Observer consists of File Monitor,

Registry Monitor, Service Monitor, Network Monitor and

Process & Thread Monitor as shown in Figure 2. It detects

malicious behaviours by detecting events occurring at each

process through API hooking by attaching Observer to the

each of the corresponding processes such as File, Registry,

Service, etc. and by analysing the events detected by

Observers. This technique is capable of detecting malicious

behaviours regardless of the existence of execution file since

it monitors a browser which is a base for web attack, however,

it results in a high load on the system as Observers are used

for the all the processes.

Therefore, we present a technique which can detect

malicious behaviours resulting solely from a obfuscated

script at the host level through the web with a relatively lower

load, compared to the existing ones.

Figure 3: Observers attached to the each of the processes

III. OBFUSCATED MALICIOUS SCRIPT RESPONSE

TECHNOLOGY

A basic configuration of the technology is shown in Figure

4. It collects target analysis contents from a web browser

through Browser Helper Object (BHO) and extension-type

script security program for Internet Explorer and Chrome,

respectively, and transmits the collected contents to an agent

which is in charge of analysis. The analysis agent determines

whether the contents is malicious or not by analyzing the

corresponding contents and transmit the result to the script

security program. The script security program that receives

the result redirects to a safe page or stops the JavaScript on

the corresponding page if a malicious behavior is detected

and terminates the analysis of the corresponding web page if

the result is found normal without further processing.

Figure 4: Software configuration for malicious script detection

A. Script Security Program

A script security program has been realized in the form of

browser plugin (BHO) in order to detect a specific event of

the web browser, and the method detects, collects and

transmits the specific event of the web browser through the

script security program to the analysis agent.

This technology uses a predetermined interface, called

IObjectWithSite provided by IE-BHO to detect events

occurring on a web browser. It detects an event [7] which

occurs at the time of Object Download shown in Figure 5

using the interface and extracts the downloaded object by

stopping rendering. The script information among the

information of the object is transmitted to the analysis agent.

Figure 5: The time of web browser event occurrence

Furthermore, it receives the analysis result from the

analysis agent and performs post-process according to the

result. If the analyzed result is normal, the rendering of the

web browser is resumed. But, if a malicious code is found,

two different post-processes will be performed.

The first one is to protect a user from the malicious script

by redirecting the user to a safe page and the second one is to

prevent execution of the malicious script by stopping the

JavaScript on the corresponding web page.

Obfuscated Malicious Script Response Technique Deployed at Host Level

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 95

B. Analysis Agent Program

In the analysis agent, the received script information is

analyzed and whether the information has a malicious code is

determined. First, the analysis agent determines which target

analysis scripts are obfuscated. Functions frequently used for

obfuscation are the criteria for the determination. Functions,

such as Eval(), Document.write(), etc. capable of execution

JavaScript, are often used for obfuscation [3] and the analysis

agent consider there is obfuscation when those functions are

found. The corresponding script performs a routine for

deobfuscation. To deobfuscate the script, the agent extracts

the original script by inputting the corresponding script into

the customized JavaScript engine called V8 which is being

used on a Chrome browser and by executing the script. As

shown in Figure 6, the extracted original script is determined

whether it has a malicious code through pattern matching

with a YARA RULE-type signature [8] recording pattern

information of malicious scripts.

Figure 6: YARA RULE signature of malicious script

If the extracted original script is determined to be

malicious, detection information such as detection time and

type of malicious script as shown in Figure 7 is provided to

the user in real time using a pop-up notification.

Figure 7: Real time detection notification

Also, the user’s terminal can be protected by transmitting

the analyzed result to the script security program and making

the script security program perform post-process. Finally, the

corresponding module periodically or upon request updates

the signature and stores a detection log which includes

information such as the detection time, type of malicious

script, etc. Figure 8 shows the entire flow of malicious script

detection described above.

IV. CONCLUSIONS AND FUTURE WORKS

Compared to functions using the existing HTML,

JavaScript functions have been remarkably enhanced due to

the emergence of HTML5 as presented by W3C. As a result,

the functions that can replace non-standard technologies such

as Active X have drawn closer to daily life, but the threats

that can result in damage have, too.

This paper proposed a technique for responding to

malicious attack threats occurring by using JavaScript at the

host level. Since JavaScript operates on a browser, the

analysis targets were collected by stopping the loading of the

browser before the corresponding script was executed

through browser extension. We determined whether the

analysis targets were obfuscated by checking the functions

often used for obfuscation among the collected analysis

targets, and proposed a measure for detecting and blocking

malicious scripts based on signature. This technique has

several limitations, however, since it responds to such attacks

at the host level using browser extensions. Another problem

is dependence on a web browser on the type and version due

to the features of a browser plugin known as a development

type of script security program. Furthermore, the technique

could detect known obfuscation methods such as base62 and

base64, but had difficulty detecting new obfuscation

methods. So, we can improve performance by minimizing

dependence on an operating system and browser on the type

and version, and research an algorithm for detecting

obfuscation.

Figure 8: Malicious script detection flow

ACKNOWLEDGEMENT

This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded

by the Korea government(MSIP) [B0101-15-0230,

Development of Script-based Cyber Attack Protection

Technology]

REFERENCES

[1] Seokchul Kang, 2013.Security issues in a HTML5 service environment

Internet & Security Focus
[2] JScrambler. https://blog.jscrambler.com/protecting- JavaScript-

source-code-using-obfuscation-facts-and-fiction/

[3] ASEC Jihun Kim, Understanding JavaScript Obfuscation
[4] SiteAdvisor. McAfee. Available: http://www.siteadvisor.com

[5] Long Lu, Vinod Yegneswaran, Phillip a. Porras. 2010. BLADE:An

attack-agnostic approach for preventing drive by malware infections.
[6] Young-Wook Lee, Dong-Jae Jung, Sang-Hun Jeon and Chae-Ho Lim,

2012. Design and Implementation of Web-browser based Malicious

behavior Detection System (WMDS) Journal of the Korea Institute of

Information Security and Cryptology, 22(3).

[7] DWebBrowserEvents2 interface, MSDN, Microsoft. Available:

http://msdn.microsoft.com/en-us/library/aa768283(v=vs.85).aspx
[8] YARA Documentation, http://yara.readthedocs.org/en/latest/

index.html.

