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Abstract—Differentiated Services (Diffserv) is the Internet 

architecture that uses the queuing management schemes to 

provision the traffic flows in the Internet backbone system. It 

discriminates traffic flows to a finite aggregate of classes and 

provides scalability solution by simplifying the complexity 

functions at the edge routers. In this paper, we study the end-to-

end (e2e) Quality of Service (QoS) performance of File Transfer 

Protocol (FTP) and Constant Bit Rate (CBR) traffics 

transmitted over a Diffserv network. The Diffserv system 

applied the Token Bucket, Time Sliding Window Three Color 

Marker (TSW3CM) and Single Rate Three Color Marker 

(SRTCM) traffic provisioning policies. The e2e QoS parameters 

include delay, jitter, loss ratio and throughput are analyzed and 

compared among the policy types against the increment of 

traffic connections in the network system. We conclude that the 

FTP traffic could achieved the best overall delay performance 

using SRTCM policy and the best jitter performance using 

TSW3CM. The lowest overall loss ratio and the best throughput 

for FTP could be achieved using Token Bucket. Besides that, the 

CBR traffic has achieved the best overall delay performance 

using TSW3CM policy while the SRTCM policy provides the 

best jitter, loss ratio and throughput performances. The future 

works aims to design the combination of QoS aware routing, 

scheduling, and Diffserv queuing schemes that can adaptively 

maintain QoS for each type of traffic at optimum level. 

 

Index Terms—Diffserv; Token Bucket; TSW3CM, SRTCM; 

QoS; NS-2. 

 

I. INTRODUCTION 

 

The advent of Diffserv architecture has been initiated by the 

Internet Engineering Task Force (IETF) a long time ago as a 

better solution to provide QoS guarantees in the Internet 

protocol (IP) networks. Compared to its predecessor like the 

Integrated Services (Intsev) which provides services based on 

per micro flow state, Diffserv outsmarts Intserv in providing 

better e2e QoS and preferential treatment for large 

heterogeneous networks system [1]. Diffserv discriminates 

different traffic flows which have the same commonalities to 

finite aggregate of classes and provides a more scalable 

solution for e2e QoS in IP networks by simplifying the 

complexity functions such as traffic classification and traffic 

conditioning within the edge routers [2] [3]. 

Previous related studies by Kaur et al in [4] have analyzed 

the QoS parameters for the Internet traffic using Token 

Bucket, Round Robin and Priority based Diffserv algorithms. 

The study focus on the queue buffer occupancy for each node 

in order to calculate the number of packet sent, number of 

received packets and number of lost packets. Besides that, the 

study in [5] has proposed a Modified an Adaptive Factor 

Provision Aware Proportional Fair Sharing Three Color 

Marker (MAFPAPTCM) to improve the existing PAPTCM 

algorithm in term of fairness in bandwidth utilization. The 

study compares the new algorithm with SRTCM, TSW3CM 

and Two Rate Three Color Marker (TRTCM) and concludes 

that the new algorithm is better in term of fairness in 

bandwidth utilization.  

In addition, the study in [6] has proposed a framework that 

provides an enhanced utilization of network resources 

through adaptive routing path selection process. The 

framework uses interior getaway protocol (IGP) for path 

discovery mechanism and QoS-aware policies for 

configuring the network elements. Moreover, the study in [7] 

has proposed a mathematical model for multi-flows QoS 

configurations that facilitates efficient property based 

verification over a large network. The study has analyzed the 

efficiency and scalability of the model for per-hop behavior 

(PHB) by varying the number of nodes used in network 

system configurations. Therefore, we summarize that none of 

the previous related studies have compared the e2e QoS 

performances of multi-flow FTP and CBR traffics using 

various Diffserv policies. 

This paper aims to analyze and compare the e2e QoS 

performance parameters of FTP and CBR traffics (i.e. delay, 

jitter, loss ratio and throughput) using different types of 

Diffserv policies (i.e. Token Bucket, TSW3CM and 

SRTCM). Simulations analyses have been done from the 

network layer perspective using multiple Internet protocol 

(IP) connections of FTP and CBR traffics. The simulation 

results provide insight on the e2e performance comparison of 

each Diffserv policy which is used for IP communication over 

the Internet system. The remainder of this paper is organized 

as follows: Section 2 explains the NS-2 simulation 

configuration. The results and analysis are discussed on 

Section 3. Finally, Section 4 concludes the findings and 

suggests future research works. 

 

II. SIMULATION SETUP 

 

The simulation setup characterizes a simple ubiquitous e2e 

Internet system as depicted in Figure 1. The network 

simulations are done using NS-2.35 [8] and AWK 

programming tools [9]. The next subsections explain the 

details of network elements parameters involved in the 

simulations.  
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Figure 1: QoE versus Brightness (%) level in MOS 
 

A. Network Configuration 

The network configuration consists of 2 remote source 

nodes and a destination node connected via the Diffserv 

network as shown in Figure 1. Each remote source node is 

connected to the Diffserv Edge node via 10 Mbps full-duplex 

link with 5 ms of link delay. The Diffserv network is 

represented by 2 Edge nodes (i.e. ingress and egress) and a 

core node. The ingress (i.e. e1 node) is connected to the code 

node via 10 Mbps full duplex link and 5 ms link delay while 

the egress node (i.e. e2 node) is connected to the code via 5 

Mbps full duplex link and 5 ms of link delay. The lower link 

bandwidth configuration is to reflect the bottleneck of a 

network system. The S1 node is connected to the FTP traffic 

while the S2 node is connected to the CBR traffic 

applications. Both traffics used 1000 bytes of packet size. The 

CBR traffic used constant bit rate of 100 kbps per connection. 

The transmission rate of FTP traffic depends on the maximum 

congestion window size which is approximately 50 packets. 

Simulations are done by incrementing each traffic 

connections from 2 until 12 for each Diffserv policy. 

 

B. Diffserv Queues Configurations 

The Diffserv used random early detection (RED) queue in 

edge and core routers. The RED queue consists of a single 

physical queue and 3 virtual queues to represent 3 per-hop-

behavior (PHB) code precedences. The first level of virtual 

queue precedence (i.e. PHB code point 10) has the minimum 

and maximum buffer size thresholds  of 20 and 40 packets 

respectively with 0.02 packet dropped probability. The 

second level of virtual queue (i.e. PHB codepoint 11) has the 

minimum and maximum buffer size thresholds of 10 and 20 

packets respectively with 0.1 probability of packets drop. The 

lowest level of virtual queue precedence (i.e. PHB codepoint 

12) has the minimum and maximum buffer size thresholds of 

5 and 10 packets respectively with 0.4 probability of packets 

drop. The threshold and drop probability configurations are 

set in such a way to enforce strict transmission rate 

regulations within the Diffserv network.  

Table 1 shows the parameter values used in the simulations 

for each Diffserv policy. The TSW3CM uses committed 

information rate (CIR) and peak information rate (PIR) with 

3 drop precedences. Packet will be marked as ‘green’ if the 

rate is below than CIR, ‘yellow’ if the rate is between CIR 

and PIR, and ‘red’ if above PIR values [10]. Token Bucket 

policy uses CIR and committed burst size (CBS) with 2 drop 

precedences. Similarly with TSW3CM, packets will be 

marked as ‘green’ if the rate is lower than CIR, ‘yellow’ if 

between CIR and CBS, and ‘red’ if above CBS [11]. The 

SRTCM policy uses CIR, CBS and excess burst size (EBS) 

with 3 drop precedences. Packets will be marked as ‘green’ if 

the rate is below CIR, ‘yelow’ if between CBS and EBS, and 

‘red’ if above EBS [12]. 
 

Table 1 

Diffserv network parameters 

 

Parameters 
Source 1 (Node 

S1) 
Source 2 (Node 

S2) 

CIR (bps) 1000000 2000000 

CBS (bytes) 5000 10000 
EBS (bytes) 3000 6000 

PIR (bps) 5000 10000 

Traffic Type FTP CBR 
Traffic Rate 

(bps) 
100000 100000 

 

The RED queue will start dropping packets randomly based 

on the probability of error (i.e. early drop) when the traffic’s 

data rate exceeds CIR or when the the burst size more than 

CBS and the virtual queue buffer size exceeds the previously 

mentioned threshold. If the traffic’s rate exceeds PIR or the 

burst size exceeds EBS and the virtual queue buffer size 

exceeds threshold, the RED queue will drop the packets 

excessively according to the random drop probability. The 

main purpose of early drop by Diffserv queues is to signal the 

traffic source to follow the predetermine service level 

requirement and to reduce the transmission rate when the 

network status is closer to congestion. 

 

III. RESULTS AND DISCUSSION 

 

The simulation results and analysis have been divided into 

4 QoS categories which are the average e2e delay, jitter, 

packet loss ratio and throughput. The QoS parameters are 

calculated as the average values based on each simulation 

output trace file using AWK programming script and then 

presented in the form of graphs as shown in the next sub-

sections. 

 

A. Average End-to-End Delay 

Average e2e delay is the QoS parameter often used to 

describe the level of service interactivity and smooth data 

transmission. The average e2e delays for all connections of a 

traffic type in a simulation, D, is calculated by summing up 

all of the one way connection delay, Dc, and then divided 

with the total number of established active connections (i.e. n 

parameter) during the simulation time as in (1). 

 

n

D

D

ni

i
it∑

=

1=

)(

=  
(1) 

 

Figure 2, 3 and 4 show the average e2e for FTP and CBR 

traffics over Diffserv network using Token Bucket,  

TSW3CM and SRTCM policies respectively. The graphs 

show the delay variation for each traffic type between 2 and 

12 active connections. The time for each simulation round is 

85 seconds. 
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Figure 2: Average end-to-end delay using Token Bucket 

 

 

 
Figure 3: Average end-to-end delay using TSW3CM 

 

 
Figure 4: Average end-to-end delay using SRTCM 

 

Figure 2 shows that the FTP traffic contributes the most 

delays compared to the CBR with the highest average e2e 

delays of 49.7009 ms when 12 active connections are created 

within the network. Besides that, the CBR traffic shows the 

lowest average e2e delay which is 39.0055 ms. Figure 3 and 

4 show that the CBR traffic achieved the highest average e2e 

delay for 12 active connections which are about 45.6508 ms 

and 40.5742 ms respectively. The minimum delays achieved 

by CBR traffic which are 32.6654 ms and 33.1172 ms 

respectively. 

Figure 5 shows the average accumulative delays for all 

policy type. The accumulative delay is calculated by 

averaging the one-way delays in all simulations rounds using 

different policy types. The TSW3CM policy provides the 

lowest delay for CBR traffic which is about 37.2197ms and 

this has made it the most suitable Diffserv policy type for 

delay-sensitive traffic in this network configuration 

 

 
Figure 5: Average accumulative delay for all Diffserv policies 

 

B. Average End-to-End Jitter 

Jitter is the e2e one way delay variation between packets 

transmitted from source to destination by ignoring any lost 

packets [13]. Jitter causes the packets to arrive at different 

timing and possibility in different order. Equation (2) is the 

general equation used to calculate jitter per connection. 

 

( ) ( ))()()1+()1+(+)(=)1+( iSiRiSiRiJiJ  (2) 

 

where: 

S(i) – Time at which packet ‘I’ is transmitted from the 

caller. 

R(i) – Time at which packet ‘I’ is received at the receiver. 

  

The average e2e jitter for all traffic connections in a 

simulation, J, is then calculated by summing up all of the one 

way connection jitter and then divided with the total number 

of established active connections (i.e. n parameter) during the 

simulation time as shown in (3). 
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The average e2e jitters shown in Figure 6, 7 and 8 are 

steadily increased between 2 and 8 connections. After that the 

values slightly decrease for 10 and 12 active connections for 

TSW3CM and SRTCM. The declining trend maybe because 

of too many packets have been dropped in the congested links 

as the network moves towards saturation point and the jitter 

counted in the simulations ignored the lost packets. The jitter 

variation could severely degrade the e2e performance of 

delay-sensitive traffic compared to the throughput-sensitive 

traffic. The ITU standard recommendation for jitter depends 

on the application type but it is better to keep the value to the 

minimum for better performance. Based on Figure 6, 7 and 8, 

the maximum jitters are produced by CBR traffic which are 

approximately 9.6852 ms, 7.0357 ms and 6.1882 ms 

respectively.  

Figure 9 shows the average accumulative jitter for all 

policy types. The accumulative jitter is calculated by 

averaging the one-way jitters in all simulations rounds using 

different policy types. The minimum accumulative jitters for 

FTP and CBR traffics are 2.5944 ms and 5.2252 ms 

respectively. For this network scenario, the SRTCM policy 

shows the best jitter performance for CBR traffic while 

TSW3CM policy shows the best performance for FTP traffic. 
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Figure 6: Average end-to-end jitter using Token Bucket 

 

 
Figure 7: Average end-to-end jitter using TSW3CM 

 

 
Figure 8: Average end-to-end jitter using SRTCM 

 

 
Figure 9: Average accumulative jitter for all Diffserv policies 

 
C. Average End-to-End Loss Ratio 

Packet loss ratio is the ratio of total packet loss over packet 

sent from the traffic source. The packet loss ratio for a traffic 

connection in a simulation is measured as in (4). 
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where ∑Pl is the total packets loss and ∑Ps is the total sending 

packets from the source during a connection session. By 

considering all generated connections (i.e. n parameter) in a 

simulation run time, the average e2e packet loss ratio is 

calculated as in (5). 
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Figure 10, 11 and 12 show the average e2e packet loss ratio 

using Token Bucket, TSW3CM and SRTCM policies 

respectively. The average e2e packet loss ratio is proportional 

to the increment of average generated traffic connections in 

the netwok system. The lower the loss ratio, the better would 

be the e2e service quality. The maximum average e2e loss 

ratio for FTP traffic using Token Bucket, TSW3CM and 

SRTCM policies are 11.51%, 12.79% and 12.55% while for 

CBR traffic the values are 0.38%, 11.88% and 0.08% 

respectively. The maximum loss ratio occurs when the 

maximum number of active connections generated between 

source and destination. In addition, the minimum average e2e 

loss ratio for FTP traffic using Token Bucket, TSW3CM and 

SRTCM policies are 0.35%, 1.41% and 1.46% respectively 

while for CBR traffic the values are 0%, 1.88% and 0% 

respectively during 2 active connections. 

 

 
Figure 10: Average end-to-end loss ratio using Token Bucket 

 

Figure 13 shows the average accumulative e2e loss ratio for 

all Diffserv policies. The values are calculated by averaging 

the loss ratio values in all simulation rounds for each Diffserv 

policy configuration. The minimum average accumulative 

loss ratio for FTP traffic is 6.63% using Token Bucket policy 

while the value for CBR traffic is 0.03% using SRTCM 

policy. 

The packet loss occurs when the queue buffer on a link 

element becomes overflow as the results of network 

congestion. In a Diffserv network, the loss is also due to the 

early packet dropped by the Diffserv buffer either at the edge 

or core node if the transmitted rate exceeds either one of the 

CIR, PIR, EBS and CBS parameters. The packet loss is a 

critical factor for the throughput-sensitive traffic like FTP and 

the value must be kept at minimum. For this network 
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scenario, the best Diffserv policy for throughput-sensitive 

traffic is Token Bucket. 

 

 
Figure 11: Average end-to-end loss ratio using TSW3CM 

 

 
Figure 12: Average end-to-end loss ratio using SRTCM 

 
Figure 13: Average accumulative loss ratio for all Diffserv policies 

 

D. Average End-to-End Throughput 

The average e2e throughput summarize the previous QoS 

performance parameters as it measures the rate of 

successfully received packets at the receiver. The throughput 

is the critical parameter for throughput-sensitive traffic like 

FTP. The average e2e throughput in bit per second (bps) for 

all traffic connections (i.e. n parameter) in a simulation is 

calculated as in (6). 

 

n

tt

P

T

ni

i icr

b∑
=

1=

×

=

8

 
(6) 

 

where Pb is the total received packets at the receiver in bytes, 

tr is the packet received time and tc is the packet sending time 

from the source of a traffic connection. 

Figure 14, 15 and 16 show the average e2e throughput for 

traffic connections between 2 and 12. The average e2e 

throughput patterns are inversely proportional to the 

increment of average active connections. The higher the 

throughput the better would be the QoS. The average 

throughput for FTP traffic varies between 2133.43 kbps and 

273.47 kbps using Token Bucket policy, 1831.14 kbps and 

259.06 kbps using TSW3CM and also between 1876.28 kbps 

and 258.35 kbps using SRTCM policy. 

 

 
Figure 14: Average end-to-end throughput using Token Bucket 

 

 
Figure 15: Average end-to-end throughput using TSW3CM 

 

 
Figure 16: Average end-to-end throughput using SRTCM 

 

Figure 17 shows the average accumulative e2e throughput 

for all traffic types. The average accumulative throughput is 

calculated by averaging the one-way throughputs in all 

simulation rounds using different policy types.  The best 

average accumulative throughput that FTP could achieve is 

791.46 kbps while the CBR achieved 100 kbps using 

SRTCM. There are 2 main factors that affecting the 

throughput which are the delay and packet losses. Unlike 

CBR, the FTP traffic uses reliable data transmission which 

waits for acknowledgement prior to sending the subsequent 

packets. This causes additional round-trip delays and 

retransmission if any packet loss occurs from source to 

destination. For this network system configuration, the Token 

bucket policy shown the best throughput performance for 
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FTP traffic while SRTCM policy shows the best performance 

for CBR traffic. 

 

 
Figure 17: Average accumulative throughput for all Diffserv policies 

 

IV. CONCLUSIONS AND FUTURE WORKS 

 

This paper shows the simulation studies of e2e QoS 

performance for FTP and CBR traffics over a Diffserv 

network system. The studies compare the e2e QoS 

performance of both traffics using 3 different Diffserv 

policies which are the Token Bucket, TSW3CM and 

SRTCM. The network scenario is designed with the standard 

parameters without specific QoS improvement modification 

in order to make the general performance comparison. 

The FTP traffic achieves the best overall delay 

performance using SRTCM policy which is approximately 

37.5811 ms and the best jitter performance using TSW3CM 

which is approximately 2.5944 ms. In addition, the Token 

Bucket policy shows the best loss ratio and Throughput 

performances which are approximately 6.63% and 791.4592 

kbps respectively.  

Meanwhile, the CBR traffic achieved the best overall delay 

performance using TSW3CM which is approximately 

37.2197 ms. In addition, the SRTCM policy shows the best 

jitter, loss ratio and throughput performances which are 

approximately 5.2252 ms, 0.03% and 100kbps respectively. 

This paper does not dictate the best Diffserv policy for all 

types of applications but rather to provide a guideline for 

future researchers to design better Diffserv network system 

configurations. The future works aims at designing the 

combination of QoS aware routing, scheduling and Diffserv 

queuing schemes that can adaptively maintain each traffic 

type QoS requirements at optimum level. 
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