

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 33

Simulation Studies of Diffserv Policies for the

Internet Traffic

L. Audah1, N. Jusoh1, A. Jamil1, J. Abdullah1, S.A. Hamzah1, N.A.M. Alduais1, M.A.A. Razak2
1Optical Communications and Network Research Group (OpCoN), Faculty of Electrical and Electronic Engineering,

Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400 Batu Pahat, Johor, Malaysia.
2Biomedical Instrumentation and Electronics Research Group (BMIE), Faculty of Electrical Engineering,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

hanif@uthm.edu.my

Abstract—Differentiated Services (Diffserv) is the Internet

architecture that uses the queuing management schemes to

provision the traffic flows in the Internet backbone system. It

discriminates traffic flows to a finite aggregate of classes and

provides scalability solution by simplifying the complexity

functions at the edge routers. In this paper, we study the end-to-

end (e2e) Quality of Service (QoS) performance of File Transfer

Protocol (FTP) and Constant Bit Rate (CBR) traffics

transmitted over a Diffserv network. The Diffserv system

applied the Token Bucket, Time Sliding Window Three Color

Marker (TSW3CM) and Single Rate Three Color Marker

(SRTCM) traffic provisioning policies. The e2e QoS parameters

include delay, jitter, loss ratio and throughput are analyzed and

compared among the policy types against the increment of

traffic connections in the network system. We conclude that the

FTP traffic could achieved the best overall delay performance

using SRTCM policy and the best jitter performance using

TSW3CM. The lowest overall loss ratio and the best throughput

for FTP could be achieved using Token Bucket. Besides that, the

CBR traffic has achieved the best overall delay performance

using TSW3CM policy while the SRTCM policy provides the

best jitter, loss ratio and throughput performances. The future

works aims to design the combination of QoS aware routing,

scheduling, and Diffserv queuing schemes that can adaptively

maintain QoS for each type of traffic at optimum level.

Index Terms—Diffserv; Token Bucket; TSW3CM, SRTCM;

QoS; NS-2.

I. INTRODUCTION

The advent of Diffserv architecture has been initiated by the

Internet Engineering Task Force (IETF) a long time ago as a

better solution to provide QoS guarantees in the Internet

protocol (IP) networks. Compared to its predecessor like the

Integrated Services (Intsev) which provides services based on

per micro flow state, Diffserv outsmarts Intserv in providing

better e2e QoS and preferential treatment for large

heterogeneous networks system [1]. Diffserv discriminates

different traffic flows which have the same commonalities to

finite aggregate of classes and provides a more scalable

solution for e2e QoS in IP networks by simplifying the

complexity functions such as traffic classification and traffic

conditioning within the edge routers [2] [3].

Previous related studies by Kaur et al in [4] have analyzed

the QoS parameters for the Internet traffic using Token

Bucket, Round Robin and Priority based Diffserv algorithms.

The study focus on the queue buffer occupancy for each node

in order to calculate the number of packet sent, number of

received packets and number of lost packets. Besides that, the

study in [5] has proposed a Modified an Adaptive Factor

Provision Aware Proportional Fair Sharing Three Color

Marker (MAFPAPTCM) to improve the existing PAPTCM

algorithm in term of fairness in bandwidth utilization. The

study compares the new algorithm with SRTCM, TSW3CM

and Two Rate Three Color Marker (TRTCM) and concludes

that the new algorithm is better in term of fairness in

bandwidth utilization.

In addition, the study in [6] has proposed a framework that

provides an enhanced utilization of network resources

through adaptive routing path selection process. The

framework uses interior getaway protocol (IGP) for path

discovery mechanism and QoS-aware policies for

configuring the network elements. Moreover, the study in [7]

has proposed a mathematical model for multi-flows QoS

configurations that facilitates efficient property based

verification over a large network. The study has analyzed the

efficiency and scalability of the model for per-hop behavior

(PHB) by varying the number of nodes used in network

system configurations. Therefore, we summarize that none of

the previous related studies have compared the e2e QoS

performances of multi-flow FTP and CBR traffics using

various Diffserv policies.

This paper aims to analyze and compare the e2e QoS

performance parameters of FTP and CBR traffics (i.e. delay,

jitter, loss ratio and throughput) using different types of

Diffserv policies (i.e. Token Bucket, TSW3CM and

SRTCM). Simulations analyses have been done from the

network layer perspective using multiple Internet protocol

(IP) connections of FTP and CBR traffics. The simulation

results provide insight on the e2e performance comparison of

each Diffserv policy which is used for IP communication over

the Internet system. The remainder of this paper is organized

as follows: Section 2 explains the NS-2 simulation

configuration. The results and analysis are discussed on

Section 3. Finally, Section 4 concludes the findings and

suggests future research works.

II. SIMULATION SETUP

The simulation setup characterizes a simple ubiquitous e2e

Internet system as depicted in Figure 1. The network

simulations are done using NS-2.35 [8] and AWK

programming tools [9]. The next subsections explain the

details of network elements parameters involved in the

simulations.

Journal of Telecommunication, Electronic and Computer Engineering

34 e-ISSN: 2289-8131 Vol. 9 No. 2-3

Figure 1: QoE versus Brightness (%) level in MOS

A. Network Configuration

The network configuration consists of 2 remote source

nodes and a destination node connected via the Diffserv

network as shown in Figure 1. Each remote source node is

connected to the Diffserv Edge node via 10 Mbps full-duplex

link with 5 ms of link delay. The Diffserv network is

represented by 2 Edge nodes (i.e. ingress and egress) and a

core node. The ingress (i.e. e1 node) is connected to the code

node via 10 Mbps full duplex link and 5 ms link delay while

the egress node (i.e. e2 node) is connected to the code via 5

Mbps full duplex link and 5 ms of link delay. The lower link

bandwidth configuration is to reflect the bottleneck of a

network system. The S1 node is connected to the FTP traffic

while the S2 node is connected to the CBR traffic

applications. Both traffics used 1000 bytes of packet size. The

CBR traffic used constant bit rate of 100 kbps per connection.

The transmission rate of FTP traffic depends on the maximum

congestion window size which is approximately 50 packets.

Simulations are done by incrementing each traffic

connections from 2 until 12 for each Diffserv policy.

B. Diffserv Queues Configurations

The Diffserv used random early detection (RED) queue in

edge and core routers. The RED queue consists of a single

physical queue and 3 virtual queues to represent 3 per-hop-

behavior (PHB) code precedences. The first level of virtual

queue precedence (i.e. PHB code point 10) has the minimum

and maximum buffer size thresholds of 20 and 40 packets

respectively with 0.02 packet dropped probability. The

second level of virtual queue (i.e. PHB codepoint 11) has the

minimum and maximum buffer size thresholds of 10 and 20

packets respectively with 0.1 probability of packets drop. The

lowest level of virtual queue precedence (i.e. PHB codepoint

12) has the minimum and maximum buffer size thresholds of

5 and 10 packets respectively with 0.4 probability of packets

drop. The threshold and drop probability configurations are

set in such a way to enforce strict transmission rate

regulations within the Diffserv network.

Table 1 shows the parameter values used in the simulations

for each Diffserv policy. The TSW3CM uses committed

information rate (CIR) and peak information rate (PIR) with

3 drop precedences. Packet will be marked as ‘green’ if the

rate is below than CIR, ‘yellow’ if the rate is between CIR

and PIR, and ‘red’ if above PIR values [10]. Token Bucket

policy uses CIR and committed burst size (CBS) with 2 drop

precedences. Similarly with TSW3CM, packets will be

marked as ‘green’ if the rate is lower than CIR, ‘yellow’ if

between CIR and CBS, and ‘red’ if above CBS [11]. The

SRTCM policy uses CIR, CBS and excess burst size (EBS)

with 3 drop precedences. Packets will be marked as ‘green’ if

the rate is below CIR, ‘yelow’ if between CBS and EBS, and

‘red’ if above EBS [12].

Table 1

Diffserv network parameters

Parameters
Source 1 (Node

S1)
Source 2 (Node

S2)

CIR (bps) 1000000 2000000

CBS (bytes) 5000 10000
EBS (bytes) 3000 6000

PIR (bps) 5000 10000

Traffic Type FTP CBR
Traffic Rate

(bps)
100000 100000

The RED queue will start dropping packets randomly based

on the probability of error (i.e. early drop) when the traffic’s

data rate exceeds CIR or when the the burst size more than

CBS and the virtual queue buffer size exceeds the previously

mentioned threshold. If the traffic’s rate exceeds PIR or the

burst size exceeds EBS and the virtual queue buffer size

exceeds threshold, the RED queue will drop the packets

excessively according to the random drop probability. The

main purpose of early drop by Diffserv queues is to signal the

traffic source to follow the predetermine service level

requirement and to reduce the transmission rate when the

network status is closer to congestion.

III. RESULTS AND DISCUSSION

The simulation results and analysis have been divided into

4 QoS categories which are the average e2e delay, jitter,

packet loss ratio and throughput. The QoS parameters are

calculated as the average values based on each simulation

output trace file using AWK programming script and then

presented in the form of graphs as shown in the next sub-

sections.

A. Average End-to-End Delay

Average e2e delay is the QoS parameter often used to

describe the level of service interactivity and smooth data

transmission. The average e2e delays for all connections of a

traffic type in a simulation, D, is calculated by summing up

all of the one way connection delay, Dc, and then divided

with the total number of established active connections (i.e. n

parameter) during the simulation time as in (1).

n

D

D

ni

i
it∑

=

1=

)(

=
(1)

Figure 2, 3 and 4 show the average e2e for FTP and CBR

traffics over Diffserv network using Token Bucket,

TSW3CM and SRTCM policies respectively. The graphs

show the delay variation for each traffic type between 2 and

12 active connections. The time for each simulation round is

85 seconds.

Simulation Studies of Diffserv Policies for the Internet Traffic

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 35

Figure 2: Average end-to-end delay using Token Bucket

Figure 3: Average end-to-end delay using TSW3CM

Figure 4: Average end-to-end delay using SRTCM

Figure 2 shows that the FTP traffic contributes the most

delays compared to the CBR with the highest average e2e

delays of 49.7009 ms when 12 active connections are created

within the network. Besides that, the CBR traffic shows the

lowest average e2e delay which is 39.0055 ms. Figure 3 and

4 show that the CBR traffic achieved the highest average e2e

delay for 12 active connections which are about 45.6508 ms

and 40.5742 ms respectively. The minimum delays achieved

by CBR traffic which are 32.6654 ms and 33.1172 ms

respectively.

Figure 5 shows the average accumulative delays for all

policy type. The accumulative delay is calculated by

averaging the one-way delays in all simulations rounds using

different policy types. The TSW3CM policy provides the

lowest delay for CBR traffic which is about 37.2197ms and

this has made it the most suitable Diffserv policy type for

delay-sensitive traffic in this network configuration

Figure 5: Average accumulative delay for all Diffserv policies

B. Average End-to-End Jitter

Jitter is the e2e one way delay variation between packets

transmitted from source to destination by ignoring any lost

packets [13]. Jitter causes the packets to arrive at different

timing and possibility in different order. Equation (2) is the

general equation used to calculate jitter per connection.

() ())()()1+()1+(+)(=)1+(iSiRiSiRiJiJ (2)

where:

S(i) – Time at which packet ‘I’ is transmitted from the

caller.

R(i) – Time at which packet ‘I’ is received at the receiver.

The average e2e jitter for all traffic connections in a

simulation, J, is then calculated by summing up all of the one

way connection jitter and then divided with the total number

of established active connections (i.e. n parameter) during the

simulation time as shown in (3).

n

xJ

J

ni

i
i∑

=

1=

)(

=

)(

(3)

The average e2e jitters shown in Figure 6, 7 and 8 are

steadily increased between 2 and 8 connections. After that the

values slightly decrease for 10 and 12 active connections for

TSW3CM and SRTCM. The declining trend maybe because

of too many packets have been dropped in the congested links

as the network moves towards saturation point and the jitter

counted in the simulations ignored the lost packets. The jitter

variation could severely degrade the e2e performance of

delay-sensitive traffic compared to the throughput-sensitive

traffic. The ITU standard recommendation for jitter depends

on the application type but it is better to keep the value to the

minimum for better performance. Based on Figure 6, 7 and 8,

the maximum jitters are produced by CBR traffic which are

approximately 9.6852 ms, 7.0357 ms and 6.1882 ms

respectively.

Figure 9 shows the average accumulative jitter for all

policy types. The accumulative jitter is calculated by

averaging the one-way jitters in all simulations rounds using

different policy types. The minimum accumulative jitters for

FTP and CBR traffics are 2.5944 ms and 5.2252 ms

respectively. For this network scenario, the SRTCM policy

shows the best jitter performance for CBR traffic while

TSW3CM policy shows the best performance for FTP traffic.

0

10

20

30

40

50

60

2 4 6 8 10 12

D
e

la
y

 (
m

s)

Number of Connections

Average Delay Using Token Bucket

FTP

CBR

0

10

20

30

40

50

2 4 6 8 10 12

D
e

la
y

 (
m

s)

Number of Connections

Average Delay Using TSW3CM

FTP

CBR

0

10

20

30

40

50

2 4 6 8 10 12

D
e

la
y

 (
m

s)

Number of Connections

Average Delay Using SRTCM

FTP

CBR

0

10

20

30

40

50

SRTCM Token Bucket TSW3CM

D
e

la
y

 (
m

s)

Policy Type

Average Accumulative Delay For All Policies

FTP

CBR

Journal of Telecommunication, Electronic and Computer Engineering

36 e-ISSN: 2289-8131 Vol. 9 No. 2-3

Figure 6: Average end-to-end jitter using Token Bucket

Figure 7: Average end-to-end jitter using TSW3CM

Figure 8: Average end-to-end jitter using SRTCM

Figure 9: Average accumulative jitter for all Diffserv policies

C. Average End-to-End Loss Ratio

Packet loss ratio is the ratio of total packet loss over packet

sent from the traffic source. The packet loss ratio for a traffic

connection in a simulation is measured as in (4).

∑

∑

=

1=

=

1=

)(

)(

=)(
zk

k
ks

yj

j
jl

P

P

iL (4)

where ∑Pl is the total packets loss and ∑Ps is the total sending

packets from the source during a connection session. By

considering all generated connections (i.e. n parameter) in a

simulation run time, the average e2e packet loss ratio is

calculated as in (5).

n

iL

L

ni

i

∑
=

1=

)(

=
(5)

Figure 10, 11 and 12 show the average e2e packet loss ratio

using Token Bucket, TSW3CM and SRTCM policies

respectively. The average e2e packet loss ratio is proportional

to the increment of average generated traffic connections in

the netwok system. The lower the loss ratio, the better would

be the e2e service quality. The maximum average e2e loss

ratio for FTP traffic using Token Bucket, TSW3CM and

SRTCM policies are 11.51%, 12.79% and 12.55% while for

CBR traffic the values are 0.38%, 11.88% and 0.08%

respectively. The maximum loss ratio occurs when the

maximum number of active connections generated between

source and destination. In addition, the minimum average e2e

loss ratio for FTP traffic using Token Bucket, TSW3CM and

SRTCM policies are 0.35%, 1.41% and 1.46% respectively

while for CBR traffic the values are 0%, 1.88% and 0%

respectively during 2 active connections.

Figure 10: Average end-to-end loss ratio using Token Bucket

Figure 13 shows the average accumulative e2e loss ratio for

all Diffserv policies. The values are calculated by averaging

the loss ratio values in all simulation rounds for each Diffserv

policy configuration. The minimum average accumulative

loss ratio for FTP traffic is 6.63% using Token Bucket policy

while the value for CBR traffic is 0.03% using SRTCM

policy.

The packet loss occurs when the queue buffer on a link

element becomes overflow as the results of network

congestion. In a Diffserv network, the loss is also due to the

early packet dropped by the Diffserv buffer either at the edge

or core node if the transmitted rate exceeds either one of the

CIR, PIR, EBS and CBS parameters. The packet loss is a

critical factor for the throughput-sensitive traffic like FTP and

the value must be kept at minimum. For this network

0

2

4

6

8

10

12

2 4 6 8 10 12

J
it
te

r
(m

s)

Number of Connections

Average Jitter Using Token Bucket

FTP

CBR

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12

J
it
te

r
(m

s)

Number of Connections

Average Jitter Using TSW3CM

FTP

CBR

0

1

2

3

4

5

6

7

2 4 6 8 10 12

J
it
te

r
(m

s)

Number of Connections

Average Jitter Using SRTCM Policy

FTP

CBR

0

2

4

6

8

10

SRTCM Token Bucket TSW3CM

J
it
te

r
(m

s)

Policy Type

Average Accumulative Jitter For All Policies

FTP

CBR

0

2

4

6

8

10

12

14

2 4 6 8 10 12

Lo
ss

 R
a

ti
o

 %

Number of Connections

Average Loss Ratio Using Token Bucket

FTP

CBR

Simulation Studies of Diffserv Policies for the Internet Traffic

 e-ISSN: 2289-8131 Vol. 9 No. 2-3 37

scenario, the best Diffserv policy for throughput-sensitive

traffic is Token Bucket.

Figure 11: Average end-to-end loss ratio using TSW3CM

Figure 12: Average end-to-end loss ratio using SRTCM

Figure 13: Average accumulative loss ratio for all Diffserv policies

D. Average End-to-End Throughput

The average e2e throughput summarize the previous QoS

performance parameters as it measures the rate of

successfully received packets at the receiver. The throughput

is the critical parameter for throughput-sensitive traffic like

FTP. The average e2e throughput in bit per second (bps) for

all traffic connections (i.e. n parameter) in a simulation is

calculated as in (6).

n

tt

P

T

ni

i icr

b∑
=

1=

×

=

8

(6)

where Pb is the total received packets at the receiver in bytes,

tr is the packet received time and tc is the packet sending time

from the source of a traffic connection.

Figure 14, 15 and 16 show the average e2e throughput for

traffic connections between 2 and 12. The average e2e

throughput patterns are inversely proportional to the

increment of average active connections. The higher the

throughput the better would be the QoS. The average

throughput for FTP traffic varies between 2133.43 kbps and

273.47 kbps using Token Bucket policy, 1831.14 kbps and

259.06 kbps using TSW3CM and also between 1876.28 kbps

and 258.35 kbps using SRTCM policy.

Figure 14: Average end-to-end throughput using Token Bucket

Figure 15: Average end-to-end throughput using TSW3CM

Figure 16: Average end-to-end throughput using SRTCM

Figure 17 shows the average accumulative e2e throughput

for all traffic types. The average accumulative throughput is

calculated by averaging the one-way throughputs in all

simulation rounds using different policy types. The best

average accumulative throughput that FTP could achieve is

791.46 kbps while the CBR achieved 100 kbps using

SRTCM. There are 2 main factors that affecting the

throughput which are the delay and packet losses. Unlike

CBR, the FTP traffic uses reliable data transmission which

waits for acknowledgement prior to sending the subsequent

packets. This causes additional round-trip delays and

retransmission if any packet loss occurs from source to

destination. For this network system configuration, the Token

bucket policy shown the best throughput performance for

0

2

4

6

8

10

12

14

2 4 6 8 10 12

Lo
ss

 R
a

ti
o

 (
%

)

Number of Connections

Average Loss Ratio Using TSW3CM

FTP

CBR

0

2

4

6

8

10

12

14

2 4 6 8 10 12

Lo
ss

 R
a

ti
o

 (
%

)

Number of Connections

Average Loss Ratio Using SRTCM

FTP

CBR

0

5

10

SRTCM Token Bucket TSW3CM

Lo
ss

 R
a

ti
o

 (
%

)

Policy Type

Average Accumulative Loss Ratio For All

Policies

FTP

CBR

0

500

1000

1500

2000

2500

2 4 6 8 10 12

Th
ro

u
g

h
p

u
t

(K
b

p
s)

Number of Connections

Average Throughput Using Token Bucket

FTP

CBR

0

500

1000

1500

2000

2 4 6 8 10 12

Th
ro

u
g

h
p

u
t

(K
b

p
s)

Number of Connections

Average Throughput Using TSW3CM

FTP

CBR

0

500

1000

1500

2000

2 4 6 8 10 12

Th
ro

u
g

h
p

u
t

(K
b

p
s)

Number of Connections

Average Throughput Using SRTCM

FTP

CBR

Journal of Telecommunication, Electronic and Computer Engineering

38 e-ISSN: 2289-8131 Vol. 9 No. 2-3

FTP traffic while SRTCM policy shows the best performance

for CBR traffic.

Figure 17: Average accumulative throughput for all Diffserv policies

IV. CONCLUSIONS AND FUTURE WORKS

This paper shows the simulation studies of e2e QoS

performance for FTP and CBR traffics over a Diffserv

network system. The studies compare the e2e QoS

performance of both traffics using 3 different Diffserv

policies which are the Token Bucket, TSW3CM and

SRTCM. The network scenario is designed with the standard

parameters without specific QoS improvement modification

in order to make the general performance comparison.

The FTP traffic achieves the best overall delay

performance using SRTCM policy which is approximately

37.5811 ms and the best jitter performance using TSW3CM

which is approximately 2.5944 ms. In addition, the Token

Bucket policy shows the best loss ratio and Throughput

performances which are approximately 6.63% and 791.4592

kbps respectively.

Meanwhile, the CBR traffic achieved the best overall delay

performance using TSW3CM which is approximately

37.2197 ms. In addition, the SRTCM policy shows the best

jitter, loss ratio and throughput performances which are

approximately 5.2252 ms, 0.03% and 100kbps respectively.

This paper does not dictate the best Diffserv policy for all

types of applications but rather to provide a guideline for

future researchers to design better Diffserv network system

configurations. The future works aims at designing the

combination of QoS aware routing, scheduling and Diffserv

queuing schemes that can adaptively maintain each traffic

type QoS requirements at optimum level.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Education

Malaysia for the generous financial support under Research

Acculturation Grant Scheme (R054).

REFERENCES

[1] Audah, L., Sun, Z. and Cruickshank, H. 2010. End-to-End QoS of IP-

Diffserv Network over LEO Satellite Constellation. Proceedings of 2nd
International ICST Conference on Personal Satellite Services (PSAT).

Rome, Italy. 99-113.

[2] Nichols, K., Blake, S., Baker, F., Black, D. 1998. Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.

IETF Network Working Group, RFC 2474.

[3] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W. D.
1998. Architecture for Differentiated Services. IETF Network Working

Group, RFC 2475.

[4] Kaur, S. and Singh, G. 2015. Implementation of Differential Services
Based on Priority, Token Bucket, and Round Robin Algorithms.

International Journal of Computer Science and Mobile Computing.

4(5): 810-818.
[5] Marzuki, A.N.A., Othman, M., Sembiyev, O. and Selamat, H. 2014.

Enhancement of Adaptive Factor Provision Aware Proportional Three

Color Marker in Diffserv Network. Proceedings of International
Conference of Industrial Technologies and Engineering (ICITE).

Kazakhstan. 86-92.

[6] Katsikogiannis, G., Mitropoulos, S. and Douligeris, C. 2013. Policy-
Based QoS Management for SLA-Driven Adaptive Routing. Journal

of Communications and Networks. 15(3): 301-311.

[7] El-Atawy, A. and Samak, T. 2012. End-to-End Verification of QoS

Policies. IEEE Network Operations and Management Symposium

(NOMS). 426-434.

[8] Fall, K. and Varadhan, V. 2011. The ns Manual (Formerly ns Notes and
Documentation). The VINT Project (Researchers Collaboration).

California: University California Berkeley.

[9] Altman, E. and Jimenez, T. 2003. NS Simulator for Beginners. Lecture
Notes. Merida: University de Los Andes.

[10] Fang, W., Seddigh, N. and Nandy, B. 2000. A Time Sliding Window

Three Color Marker (TSW3CM). IETF Network Working Group, RFC
2859.

[11] Stallings, W. 2007. Data and Computer Communications. 8th edition.

Upper Saddle River, New Jersey: Pearson Prentice Hall.
[12] Heinanen, J., Finland, T. and Guerin, R. 1999. A Single Rate Three

Color Marker (SRTCM). IETF Network Working Group, RFC 2697.

[13] Szigeti, T. and Hattingh, C. 2014. QoS Design Overview. End-to-End
QoS Network Design: Quality of Service in LANs, WANs and VPNs.

1st edition. Indianapolis: Cisco Press.

0

200

400

600

800

1000

SRTCM Token Bucket TSW3CM

Th
ro

u
g

h
p

u
t

(K
b

p
s)

Policy Type

Average Accumulative Throughput For All

Policies

FTP

CBR

