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Abstract—In this paper, we are interested principally in 

dynamic modelling of an autonomous underwater vehicle (X4-

AUV) while taking into account the high order nonholonomic 

constraints in order to develop a new control scheme as well as 

the various physical phenomena, which can influence the 

dynamic of a swimming structure. We deal with the design of 

two controllers, based on backstepping and sliding-mode control 

techniques to stabilize altitude and attitude of an underactuated 

X4-AUV. The designed controllers are: full backstepping 

control for attitude and altitude control, and partially sliding-

mode control for attitude combine with altitude backstepping 

control. Some numerical simulations are conducted to 

demonstrate the effectiveness of the proposed controllers. 

 

Index Terms—Underactuated System; X4-AUV; 

Backstepping Control, Sliding-Mode Control. 

 

I. INTRODUCTION 

 

Systems having less number of control inputs than the 

degrees of freedom available are known as underactuated 

systems. Underactuated systems exist in a wide range of real 

time applications such as aerospace [1], robotics [2][3], 

underwater vehicles [4][5] and flexible systems [6]. A system 

can become underactuated due to its inherent dynamics [7], 

induced by the actual design method [8], malfunctioning of 

actuators, artificially induced for experimentation and 

research purpose or the mathematical model used for the 

design process [9]. As underactuated systems require few 

number of actuators, their cost and complexity are low and 

consume less energy. Research involving study, analysis and 

control of underactuated systems has been continuing since 

long [10–15]. For fully actuated systems, a good number of 

control techniques are available which can be applied to the 

entire class of the system. However, for underactuated 

systems, except for only a few methods [15], the control 

techniques vary from system to system and cannot be applied 

in general to an entire class of the system. Also most of the 

underactuated systems are nonholonomic due to the presence 

of non-integrable differential constraints. Hence controlling 

an underactuated system is a challenging problem. 

The autonomous underwater vehicle (X4-AUV) is an 

example of a nonlinear and unstable underactuated system. 

The X4-AUV with an ellipsoid hull shape was studied by 

Zain [16], in which it makes only use of four thrusters to 

control the vehicle without using any steering rudders. This 

vehicle falls into the class of underactuated AUVs since it has 

6-DOFs (position (x, y, z), pitch, roll and yaw).  

Various researches about the control technique of 

underactuated systems have been achieved up to now. Among 

them, it is very often to use canonical models such as a 

chained form, a power form, a double integrator model, etc. 

Astolfi [17] made a canonical model discontinuous, and then 

he proposed the technique of performing continuous feedback 

control. Khennouf et al. [18] carried out well use of the 

structure of a chained form, and proposed the switching 

control that performs two steps of control by an invariant 

manifold. Furthermore, Khennouf et al. [19] also proposed 

the technique called quasi-continuous exponential 

stabilization control. As an approach for robust control, 

sliding mode control has been applied to the trajectory control 

of robot manipulators [20]. The advantages of using sliding 

mode control include fast response, good transient 

performance and robustness with regard to parameter 

variations.  

The combination of sliding mode control and the 

backstepping procedure is an attractive approach for 

developing robust controllers for nonlinear systems. The 

most common approach is only to use sliding mode control in 

the last step of the backstepping [21]. However, a new robust 

control technique which uses backstepping to design virtual 

sliding mode controllers at each recursive step has been 

developed by Zinober and Liu [22] for a class of SISO 

systems only with unstructured uncertainty. For MIMO 

system, Bouabdallah and Siegwart [23] combined 

backstepping and sliding-mode control  to stabilize a 

quadrotor system. 

Note however that among them major research in 

underactuated area is for controlled object with two-inputs 

and therefore there is restricted research for controlled object 

with three or more inputs. One of causes is that there is no 

definite method of transforming the original model into a 

canonical model to the case of the controlled system with 

three or more inputs.  

In this paper, we will present backstepping and combined 

backstepping and sliding mode control approach for 

stabilizing an X4-AUV, a class of MIMO nonlinear systems.  

The controllers are devised to stabilize the X4-AUV, and 

simulation results demonstrate their effectiveness. 

Chapters are organized as follows. In section 2, the 

coordinate system of an AUV is presented. The dynamic 

system of an X4-AUV is discussed in Section 3. Sections 4 

and 5, we present the control strategy to stabilize the X4-

AUV with the simulation results for backstepping controller 

and combined backstepping and sliding-mode controller. 

Section 6 concludes the paper. 
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II. DEFINITION OF COORDINATE SYSTEM 

 

In order to describe the underwater vehicle's motion, a 

special reference frame must be established. There have two 

coordinate systems: i.e., inertial coordinate system (or fixed 

coordinate system) and motion coordinate system (or body-

fixed coordinate system). The coordinate frame {E} is 

composed of the orthogonal axes {Ex Ey Ez} and is called as 

an inertial frame. This frame is commonly placed at a fixed 

place on Earth. The axes Ex and Ey form a horizontal plane 

and Ez has the direction of the gravity field. The body fixed 

frame {B} is composed of the orthonormal axes {X, Y, Z} and 

attached to the vehicle. The body axes, two of which coincide 

with principle axes of inertia of the vehicles, are defined in 

Fossen [13] as follows:  

X is the longitudinal axis (directed from aft to fore)       

Y is the transverse axis (directed to starboard)   

Z is the normal axis (directed from top to bottom) 

 

Figure 1 shows the coordinate systems of AUV, which 

consist of a right-hand inertial frame {E} in which the 

downward vertical direction is to be positive and right-hand 

body frame {B}. 
 

 
 

Figure 1: Coordinate systems of AUV 

 

Letting  Tzyx  denote the mass center of the body 

in the inertial frame, defining the rotational angles of X-, Y- 

and Z-axis as  T , the rotational matrix R from 

the body frame {B} to the inertial frame {E} can be reduced 

to: 
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where c denotes cos  and s is sin . 

 

III. SYSTEM DESCRIPTION 

 

Defining  T    T q , the dynamical model of an X4-AUV 

is described in the following matrix form: 

 

)()()()( qq qqqqq BGVM m        ,  (2) 

where 66)( qM  is the symmetric, positive definite inertia 

matrix, 66)( qq   ,mV  is the centrifugal and Coriolis 

matrix, 6)( qG  is the gravitational vector, 46)( qB  is 

the input transformation matrix, and 4  is a generalized 

force vector consisting of force or torque components.  

Note also that each matrix in the dynamical model can be 

reduced to: 
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Here, m1, m2 and m3 is a total mass in the x-, y- and z-

direction, Ix, Iy  and Iz is a total inertia in the  x-, y- and z- 

direction, Jt is a total thruster inertia, l is a horizontal distance 

from the propeller center to the center of gravity, mb is a mass 

of the vehicle, Jb is an inertia matrix of the vehicle, I denotes 

the unit matrix, Mf is an added mass matrix, and Jf  is an added 

moment of inertia matrix. Assuming that the fluid density is 

 and the present AUV form is ellipsoid, it is found that 

suitable Mf and Jf are obtained [24][25]. Furthermore assume 

that the X4-AUV is in the state of neutral buoyancy to neglect 

the potential energy, so that 0)( qG . From the rotational 

matrix (1), the kinematic equation for X4-AUV. 

                                                                    

vqq )(S  (3) 
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can be reduced to: 
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because the lateral type X4-AUV has only the total thrust 

in the X-direction, where  
 Tbxv  

, where bx

denotes the X-directional translational velocity and 

 T 
 is the rotational angular velocity vector in the 

body frame. 

Therefore, the dynamic equations of motion for an X4-

AUV in Equation (2) can be written as: 
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IV. BACKSTEPPING CONTROL OF AN X4-AUV 

 

The model (5), can be rewritten in a state-space form 

),( UXfX  by introducing  𝑋 = (𝑥1⋯𝑥12)
𝑇 𝜖 ℜ12 as 

state vector of the system as follows: 

 

𝓍1 = 𝓍 
𝓍2 = 𝓍̇1 = 𝓍̇ 
𝓍3 = 𝑦 
𝓍4 = 𝓍̇3 = 𝑦̇ 
𝓍5 = 𝑧 
𝓍6 = 𝓍̇5 = 𝑧̇ 

𝓍7 = ∅ 

𝓍8 = 𝓍̇7 = 𝜙̇ 
𝓍9 = 𝜃 

𝓍10 = 𝓍̇9 = 𝜃̇                     
𝓍11 = 𝜓 

𝓍12 = 𝓍̇11 = 𝜓̇ 

(6) 

 

where the inputs  𝑈 = ( 𝑢1⋯𝑢2)
𝑇 𝜖 ℜ4.  

From (5) and (6), we obtain: 
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 (7) 

with: 

 

 𝒶1 = (Iy  − Iz)/Ix 

 𝒶2 = (Iz  − Ix)/Iy 

 𝒶3 =  Jt/Iy 

 𝒶4 = Jt/Iz 

 𝒶5 = (Ix  − Iy)/Iz 

𝑏1 = 1/ Ix 

𝑏2 = 𝑙/ Iy  

𝑏3 = 𝑙/ Iz 
  

𝑢𝑦 = cos 𝑥9 sin 𝑥11 

𝑢𝑧 = sin 𝑥11 

 

            

        It is worthwhile to note in the latter system that the 

angles and their time derivatives do not depend on translation 

components. On the other hand, the translations depend on 

the angles. We can ideally imagine the overall system 

described by (7) as constituted of two subsystems, the angular 

rotations and the linear translations, see Figure 2. 
 

 
 

Figure 2: Connection of rotational and translational subsystems 

 

A. Backstepping Control of the Rotations Subsystem 

Using the backstepping approach, one can synthesize the 

control law forcing the system to follow the desired 

trajectory. For the first step, we consider the tracking-error: 

 
𝓏1 = 𝓍7𝑑 − 𝓍7 (8) 

 

And we use the Lyapunov theorem by considering the 

Lyapunov function 𝓏1 positive definite and it’s time 

derivative negative semi-definite: 

 

V (𝓏1) =
1

2
𝓏1
2 (9) 

V̇(𝓏1) = 𝓏1(𝓍̇7𝑑 − 𝓍8) (10) 

 

The stabilization of  𝓏1 can be obtained by introducing a 

virtual control input 𝓍8: 

 

𝓍8 = 𝓍̇7𝑑 + α1𝓏1    with  : α1 > 0 (11) 

 

The equation (6) is then: 

 

 V̇(𝓏1) = −α1𝓏1
2 (12) 

 

Let us proceed to a variable change by making: 

 

𝓏2 = 𝓍8 − 𝓍̇7𝑑  − α1𝓏1 (13) 

 

For the second step we consider the augmented Lyapunov 

function: 

 

V(𝓏1, 𝓏2) =
1

2
 𝓏1

2  +
1

2
𝓏2
2 (14) 
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And it’s time derivative is then: 

 
V̇ (𝓏1, 𝓏2) = 𝓏2( 𝒶1𝓍10𝓍12 + 𝑏1𝑢2)

− 𝓏2(𝓍̈7d − α1(𝓏2 + α1𝓏1 ) ) − 𝓏1𝓏2
− α1𝓏1

2 
(15) 

                                                                                    

The control input 𝑢2 is then extracted (𝓍̈1,2,3d = 0), 

satisfying V̇ (𝓏1𝓏2)  < 0: 
 

𝑢2 =
1

𝑏1
(𝓏1 −  𝒶1𝓍10𝓍12 − α1(𝓏2 + α1𝓏1 )– α2𝓏2) (16) 

 

The term α2𝓏2  with α2 > 0 is added to stabilize 𝓏1. the 

same steps are followed to extract 𝑢3 and 𝑢4 

 

𝑢3 =
1

𝑏2
((𝓏3 −  𝒶2𝓍8𝓍12 −  𝒶3𝓍12Ω)

− α3(𝓏4 + α3𝓏3 )– α4𝓏4) 
(17) 

𝑢4 =
1

𝑏3
((𝓏5 −  𝒶5𝓍8𝓍10 −  𝒶4𝓍10Ω)

− α5(𝓏6 + α5𝓏5)– α6𝓏6) 
(18) 

 

with: 

 

{

𝓏3 = 𝓍9d − 𝓍9
𝓏4 = 𝓍10  − ẋ9d– α3𝓏3
𝓏5 = 𝓍11d − 𝓍11 
𝓏6 = 𝓍12 − ẋ11d − α5𝓏5

 (19) 

  

Note that this technique also used for a Quadrotor studied 

in [5]. 

 

B. Backstepping Control of the Linear Subsystem 

The second part of the application is highlighting the 

regions, which have the same HSV value as the centre.  

 

a. Altitude Control 

The altitude control u1 is obtained using the same approach 

described in the backstepping control of the rotational 

subsystem. 

 

𝑢1 =
𝑚1

cos 𝓍9  cos 𝓍11  
[𝑧7 − 𝛼7(𝑧8 + 𝛼7𝑧7) − 𝛼8𝑧8] (20) 

 

with: 

 

{
𝑧7 = 𝑥1d − 𝑥1
𝑧8 = 𝑥2  − 𝑥̇1d– α7𝑧7

 (21) 

 

b. Linear y and z Motion Control:  

From the model (5) one can see that the motion through the 

axes y and z depends on u1. In fact u1 is the total thrust vector 

oriented to obtain the desired linear motion. If we consider uy 

and uz the orientations of u1 responsible for the motion 

through y and z axis respectively, we can then extract from 

(7) the roll and pitch angles necessary to compute the controls 

uy and uz satisfying V̇(𝑧1𝑧2) < 0. The yaw control is then 

given as a desired angle. 

 

𝑢𝑦 = (
𝑚2
𝑢1
) (𝑧9 − α9(𝑧10 + α9𝑧9)– α10𝑧10) (22) 

𝑢𝑧 = (−
𝑚3
𝑢1
) (𝑧11 − α9(𝑧12 + α11𝑧11)– α12𝑧12) (23) 

 

 

C. Backstepping Controller Simulation 

The controllers have been implemented on MATLAB and 

the simulation results for stabilizing an X4-AUV are shown 

in Figure 3. The system started with an initial state 

T
X )0,

4
,0,

4
,0,

4
,0,0,0,0,0,0(

0




and we wanted the 

final x-positions, at 3 m with all zero orientation angles. As 

shown in Figure 3, it is seen that all orientation angles, and x-

positions converge to the targets, where α1 = 8, α2 = 2, α3 = 8, 

α4 = 2, α5 = 4, α6 = 2, α7 = 3, α8 = 1. The physical parameters 

for X4-AUV that has been used for simulating the dynamic 

model presented in Table 1. Note that the simulations for 

stabilizing the X4-AUV in x-, y- and z-positions were 

implemented independently. The other results for y- and z-

position are not included in this paper. 
 

Table 1 
Physical parameters for X4-AUV 

 

Parameter Description Value Unit 

mb 

ρ 
Mass 

Fluid density 
21.43 

1023.0 
Kg 

kg/m3 

l 

r 

Distance 

Radius 

0.1 

0.1 

M 
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b 

d 

Thrust factor 

Drag factor 

0.068 

3.617e4 

Ns2 

Nms2 

Jbx 

Jby 

Jbz 

Jt 

Roll inertia 

Pitch inertia 
Yaw inertia 

Thrust inertia 

0.0857 

1.1143 

1.1143 

1.1941e4 

kgm2 

kgm2 

kgm2 

Nms2 

  
(a) Attitude and attitude rate control for x-position 

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

Time  t [s]

A
tt

it
u
d
e 

[r
ad

]

Attitude ,  and 

 

 







0 5 10 15

-0.4

-0.2

0

0.2

0.4

0.6

Time  t [s]

A
tt

it
u

d
e
 r

a
te

 [
ra

d
/s

]

Attitude rate of ,  and 

 

 

Rate of 

Rate of 

Rate of 



Backstepping and Sliding-Mode Methods for Stabilizing an Underactuated X4-AUV 

 e-ISSN: 2289-8131   Vol. 9 No. 2-3 5 

  
(b) A Position and position rate control for x-position 

  
(c)A control inputs and control inputs in rotation 

 
Figure 3: Backstepping controller: A case for stabilizing the orientation angles and x-axis position 

 

V. SLIDING-MODE CONTROL OF AN X4-AUV 

 

A. Sliding-mode Control of the Angular Rotation 

The mapping (7) is partially used to design the sliding-

mode controller for the rotations subsystem of the X4-AUV. 

The first step in this design is similar to the one for the 

backstepping approach, except for the Equation (11) were S2 

(Surface) is used instead of z2 for more clearance. 

 

𝑠2 = 𝑥8  − 𝑥̇7d– α1𝑧1 (24) 

 

For the second step we consider tha augmented Lyapunov 

function: 

 

V(𝑧1, 𝑠2) =
1

2
(𝑧1
2 + 𝑠2

2) (25) 

 

The chosen law for the attractive surface is the time 

derivative of (24) satisfying   )0ss : 

 
𝑠̇2 =  −𝑘𝑠𝑖𝑔𝑛(𝑠2) − 𝑘2𝑠2 

= 𝑥̇2 − 𝑥1𝑑̈ − 𝛼1𝑧1̇ 

= 𝛼1𝑥4𝑥6 + 𝛼2𝑥4𝛺 +  𝑏1𝑈2 − 𝑥1𝑑̈ + 𝛼1(𝑧2+𝛼1𝑧1) 
(26) 

 

As for the backstepping approach, the control U2 is 

extracted: 

 

𝑢2 =
1

𝑏1
(− 𝑎1𝑥10𝑥12 − α1

2𝑧2– 𝑘1𝑠𝑖𝑔𝑛(𝑠2) − k2𝑠2) (27) 

 

The same steps are followed to extract U3 and U4. 

 

𝑢3 =
1

𝑏2
(− 𝑎2𝑥8𝑥12 −  𝒶3𝑥12Ω− α2

2𝑧3–𝑘3𝑠𝑖𝑔𝑛(𝑠3) − k4𝑠3) (28) 

𝑢4 =
1

𝑏3
(− 𝑎5𝑥8𝑥10 −  𝒶4𝑥10Ω− α3

2𝑧5–𝑘5𝑠𝑖𝑔𝑛(𝑠4) − k6𝑠4)     (29) 

 

with: 

 

{

𝑧3 = 𝑥9d − 𝑥9
𝑠3 = 𝑥10  − 𝑥̇9d– α2𝑧3
𝑧5 = 𝑥11d − 𝑥11 
𝑠6 = 𝑥12 − 𝑥̇11d − α3𝑧5

 

 

where α2, α3, 𝑘1, 𝑘3, 𝑘5  is a positive constant. 

 

B. Sliding-mode Controller Simulation 

For these simulations, we considered only the angular 

rotations subsystem in sliding-mode control. As shown in 

Figure 4, it is seen that all orientation angles, and x-positions 

converge to the targets, where α1 = 1, α2 = 1, α3 = 3, α7 = 1, 

α8 = 2, k1 = 1, k2 = 1, k3 = 1.0, k4 = 3, k5 = 1 k6 = 2. The same 

physical parameters for X4-AUV that has been used for 

simulating the dynamic model presented in Table 1. 
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(a) Attitude and attitude rate control for x-position 

  
(b) A Position and position rate control for x-position 

  
(c) A control inputs and control inputs in rotation 

 

Figure 4: Partially sliding-mode controller: A case for stabilizing the orientation angles and x-axis position. 
 

VI. CONCLUSION 

 

In this paper, we presented two different control techniques 

“Backstepping” and “Sliding-mode” to stabilize an X4-AUV. 

As it can be seen from the simulations, partially sliding-mode 

method gives better performance compared to fully 

backstepping method in stabilizing an X4-AUV dynamic 

model. Our future work is to develop a fully sliding-mode 

controller for an X4-AUV. 
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