
 e-ISSN: 2289-8131 Vol. 9 No. 2-2 115

Path Coverage Test Case Generation Using Genetic

Algorithms

Nuntanee Chuaychoo1, Supaporn Kansomkeat2

1Department of Management of Information Technology, Faculty of Engineering,

Prince of Songkla University, Hat Yai, Songkhla, Thailand.
2Department of Computer Science, Faculty of Science,

Prince of Songkla University, Hat Yai, Songkhla, Thailand.

supaporn.k@psu.ac.th

Abstract—Software testing is an important step in the

software process. It makes the developed software more

accurate and reliable. Generating test cases is a key element in

the process of software testing. The quality of testing depends on

the test effectiveness. This paper presents a method for

generating test cases using genetic algorithms. A test case

generation tool is developed with Visual Basic .NET for

supporting our method. The proposed method was applied on

case studies and mutation testing was used in our experiment for

performance evaluation. The results show that the generated

test cases are appropriate for software testing.

Index Terms—Software Testing; Genetic Algorithms; Test

Case Generation.

I. INTRODUCTION

Software testing is a key step in the software development

process. The test is an activity designed to improve software

quality. One important step in software testing is the test case

selection process. A good test selection contributes to an

effective testing. To enable effective testing, the test cases in

the set must cover all features that should be tested and the

number of test cases should not be too high

Genetic Algorithm (GA) is an optimization algorithm

based on evolutionary processes in nature. GA is used to find

the right answer with the principle of natural selection to

simulate the evolution of life. The GA process finds the

answer by exchanging parameters between chromosomes,

which will give an improved answer until finally the right

answer. There are many methods proposed for generating test

cases by applying GA. For example, Jones et al. [1] presented

automatic structural software testing using a fitness function

of GA based on the Hamming distance. Their structural

testing was applied for testing a variety of programs of

varying complexity. Pargas et al. [2] presented a technique

for automatic test-data generation using GA. They used

control dependencies in the program to guide the search for

test data to satisfy test requirements. NIE [3] proposed the

PSO test case generation algorithm with enhanced

exploration ability (EEA-PSO) to restrain the prematurity and

reduce the test case generation costs. Mohi-Aldeen et al. [4]

used NSA (Negative Selection Algorithm) to automatically

generate test cases to satisfy the path coverage of software.

Along with the principles of GA that are consistent with the

test cases refinement, the abstract test cases are modified until

they meet the targets. In this study, we present a method for

generating test cases by using genetic algorithm. In the

proposed method, the abstract test cases are generated

randomly. Then, they are refined by genetic algorithm for

improving the test parameters. In addition, a test case

generation tool is developed according to our method for

automatically generating test cases. Mutation testing is used

to evaluate generated test cases.

II. SOFTWARE TESTING

Software testing [5] is an important activity in software

quality assurance that shows software reliability. The purpose

of software testing is to find errors that may occurred during

the software development.

There are two techniques widely used in software testing.

1. Black-Box Testing: This technique is used to test for

verify the performance of the duties under the

requirements specification, and ignores the internal

structure of the program.

Figure 1: Black-Box Testing

2. White-Box Testing: The testing focuses on the internal

program structure. The basic idea of this test is that a

crash of the software will be detected. This technique

will help to analyze the program to find bugs that may

arise from the work of the various commands in the

program.

Figure 2: White-Box Testing

III. GENETIC ALGORITHM

Genetic algorithm [6] is a process that relies on the theory

of evolution of nature offered by John Holland. Genetic

algorithm can be used to find better and more affordable

solutions through learning by itself.

Figure 3 shows the process of the genetic algorithm [6].

Journal of Telecommunication, Electronic and Computer Engineering

116 e-ISSN: 2289-8131 Vol. 9 No. 2-2

Figure 3: Genetic Algorithm [6]

The main steps of the genetic algorithm can be listed as

follows:

1. Initial Population: In this step, initial population of

solutions (chromosomes) are randomly produced or

manually created from their data type domain.

2. Fitness Evaluation: All chromosomes are evaluated

and assigned fitness values. The fitness evaluation is a

process used to determine the execute condition in the

genetic algorithm process. This process is repeated

until a termination condition has been reached.

3. Selection: New population will be selected from the

parent population. There are many methods how to

select the best chromosome for use in next generation

of genetic process such as roulette wheel selection,

Boltzman selection, rank selection and some others.

4. Crossover: An importance process of the genetic

algorithm is the crossover. The parent population has

to switch genes on each chromosome with a switching

rate called the probability of crossover. This

probability is a real number from 0 to 1 that is

randomly generated. In this process, we get a new

population that is different from the parent population.

5. Mutation: Mutation is a process of genetic algorithm.

Genes in a chromosome will be changed after

crossover. This principle helps to create a new answer.

The percentage of change is determined by the

mutation rate called the probability of mutation.

6. Replacement: The new population after crossover and

mutation will be taken to replace the parent population

and will become the new parent population.

7. Parameters: The key parameters of genetic algorithm

are as following:

a. Population size

b. Probability of crossover

c. Probability of mutation

IV. CONTROL FLOW GRAPH

Control Flow Graph, CFG [7] is a directed graph used to

analyze the function of a computer program. This graph

demonstrates the functionality of the software under various

conditions. Therefore, the control flow graph analysis can

help to test the functionality of the software. A CFG can be

built from the program source code. It consists of nodes and

edges. A node represents a statement or a basic block of

statements. An edge represents the flow of control between

nodes. Notations for representing control flow are shown in

Figure 4.

Figure 4: Notions for Representing Control Flow [7]

V. TEST CASE GENERATION

In this section, the proposed test cases generating process

using genetic algorithm will be described. Our approach

consists of two main stages as shown in Figure 5.

Figure 5: Framework of the proposed approach

A. Generating Control Flow Graph and Specifying

Target Paths

This procedure consists of two sub-stages:

1. Generating a control flow graph: A control flow graph

is generated from a program code. The generated

graph consists of nodes connected by edges. Figure 6

shows the control flow graph of Max-Min program

that consists of 10 nodes and 12 edges.

2. Specifying Target Paths: The target paths are specified

by using the control flow graph generated from the

previous step. In this research, the path coverage (PC)

is used to specify target paths. The PC requires every

path in the tested program has to be executed at least

once. Figure 7 shows all target paths of the Max-Min

control flow graph in Figure 6.

Termination?

Initial Population

No

Yes

Fitness Evaluation

Selection

Crossover

Mutation

Replacement

Stop

Program Generating Control Flow Graph

and Specifying Target Paths

GA Execution

Coveraged all paths

Selecting the target path

No

Yes

Generating Test Cases

Begin

End

Test Case

Sequence

If – Then -Else
If – Then

Post – test -Loop Pre – test -Loop

Case

Path Coverage Test Case Generation Using Genetic Algorithms

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 117

Figure 6: Control Flow Graph of Max-Min Program

Path 1 S 1 2T 3 7T 8 10T 11 E

Path 2 S 1 2T 3 7T 8 10F E

Path 3 S 1 2T 3 7F 10T 11 E

Path 4 S 1 2T 3 7F 10F E

Path 5 S 1 2F 5 7T 8 10T 11 E

Path 6 S 1 2F 5 7T 8 10F E

Path 7 S 1 2F 5 7F 10T 11 E

Path 8 S 1 2F 5 7F 10F E

Figure 7: All Paths of Max-Min CFG

B. Generating Control Flow Graph and Specifying

Target Paths

In this process, test cases are created by using the genetic

algorithm. The generation process starts by selecting a target

path. This target path is set to be the considering path for

finding a test case by using the Genetic Algorithm Execution

(GA Execution). The generation process is repeated until all

target paths are considered.

Figure 8 shows the steps of GA Execution as following:

Step 1: Initial Test Cases

The input space partitioning approach proposed by

Ammann and Offutt [8] is used to generate initial test cases

(chromosomes). We consider the data type of each parameter

in the program. The number of partition depends on the data

type of the parameter. For example, considering integer or

double parameters, the range can be partitioned into three

blocks: less than zero, zero, and greater than zero. The initial

test cases contain all possible test cases of the considered

target path. After all parameters are partitioned into blocks,

one block from each parameter is combined to be a test case.

We apply the Each Choice (EC) criterion [8] for the

combination blocks. The EC requires that each block of

parameters must be used in at least one test case.

 For example, the Max–Min program has three input

parameters (a, b, and c) that are double data types. Each

parameter can be partitioned into three blocks ([a<0.0, a=0.0,

a>0.0], [b<0.0, b=0.0, b>0.0], and [c<0.0, c=0.0, c>0.0]), so

we can combine them into three sets: {a < 0.0 , b < 0.0 , c <

0.0}, {a = 0.0 , b = 0.0 , c = 0.0}, and {a > 0.0 , b > 0.0 , c >

0.0}. A set represents a test case. Then, the test data for each

partition of each set are generated randomly. Table 1 shows

the initial test data for the Max–Min program.

Figure 8: Genetic Algorithm Execution

Table 1

Initial Test Data for Max-Min Program

Set a B c

1 -2.2 -1.4 -4.5

2 0.0 0.0 0.0
3 3.7 2.4 5.3

Step 2: Coverage Evaluation

In this research, we use the branch distance calculation

proposed by Korel [9] for fitness evaluation. Branch distance

is calculated based on the type of branch predicate. Branch

predicate and branch distance of the Korel's distance function

are shown in Table 2. Table 3 shows all branch predicates of

the Max-Min Program.

Table 2

Korel’s Distance Function [9]

Branch Predicate Branch Distance

a < b a - b

a <= b a - b
a > b b - a

a >= b b - a

a == b abs(a-b)
a <> b abs(a-b)

a && b a + b

a || b min(a , b)

Table 3

Decision for Max-Min Program

Branch Predicate Branch Distance

a > b b - a

max < c max - c
max > c c - max

Korel’s distance function is used to compute the distance

between the target path and the considering path. In this

study, the selected target path and an execution paths that

traversed by test data of a test case are compared; if they are

different then the all branch distances of this execution path

are calculated to be the fitness value of the test case. In case

S

1

2

3 5

7

10

11

E

8

T F

T

F

T

F

Found

Test Case ?

Initial Test Cases

Yes

Coverage

Evaluation

Stop

GA Execution

Selection

Replacement

Crossover

Mutation

Coverage

Evaluation

Found

Test Case ?

Selection

Yes

No

No

Journal of Telecommunication, Electronic and Computer Engineering

118 e-ISSN: 2289-8131 Vol. 9 No. 2-2

they are same then the GA execution process for the target

path is finished and the test case is set for the selected target

path.

For example, the selected target path is the first path in

Figure 7. We found that every execution path of test data sets

in Table I is different; therefore all branch distances of every

execution paths are calculated as shown in Table 4.

Table 4

Branch Distance for Test Sets

Set A b c Branch Distances

1 -2.2 -1.4 -4.5 0.8

2 0.0 0.0 0.0 0.0

3 3.7 2.4 5.3 -1.6

Step 3: Selection

The selection step is done to select test cases for the

evolution process, crossover, and mutation. The sets of test

are sorted by descending order of branch distance values. The

data sets with small distance values will be selected for the

evolution process. For example, the test data sets in Table IV

are sorted to be the new sequence sets 3, 2, and 1.

Step 4: Crossover

After sorting in the selection process, the first two data sets

are chosen for crossover operation. In this research, we use

single-point crossover. Parameters of the chosen two data sets

(parent) are exchanged at a random position to produce two

new test data sets (child). Figure 9 shows an example for a

single point crossover at the first position.

Figure 9: Single Point Crossover

Step 5: Mutation

After sorting in the selection process, mutation is applied

to the first data set using single point mutation. In our method,

the position for mutation is selected randomly. The value of

this position is replaced by another value that is generated

randomly based on the range of its data type. Figure 10 shows

an example for the single point mutation at first position that

changes the value from -2.2 to 4.

Figute 10: Single Point Mutation

To support our idea, we implemented the application that

provides GUI for generating test data. The application is

developed by Visual Basic .NET works on Windows base.

User can set parameters of the genetic algorithm to find the

best solution in generating test sets. The user interface is

shown in Figure 11.

Figure 11: Test Cases Generation GUI

The application contains five parts. Part  is used to upload

a program file written in Visual Basic .NET. Part  is used

to set parameters for genetic algorithm which are the numbers

of the parameters, population size, probability of crossover,

probability of mutation and chromosome type. Part  is used

to define target paths. Part  is used to specify branch

predicates. After execution, the results are shows in part .

VI. CASE STUDY

In this section, three small programs are used to evaluate

our approach. The case study programs are as follows:

1. Calculate Maximum–Minimum

This program receives three numbers that are double

types and finds the maximum and minimum numbers.

There are three branch predicates in the source code.

2. Triangle Problem

This program receives three sides of triangle that are

integer numbers and classifies type of triangle (Not a

Triangle, Equilateral, Scalene, and Isosceles). There

are four branch predicates in this source code.

3. Calculate Middle Data

This program gets three characters and identifies the

character that has the middle value. For example the

characters are ‘a’, ‘c’ and ‘b’ then the result is

character ‘b’. There are three branch predicates in this

source code.

Test cases of these three programs are generated by our

tool. As stated before, there are three key parameters in the

genetic algorithm: population size, probability of crossover,

and probability of mutation are set to be 100, 1, and 1,

respectively. Probabilities of crossover and mutation are set

to be 1 for the execution crossover and mutation operations

in every generation which increase the probability to find the

appropriate test cases. The results are shown in Table 5.

Parent 1 :

Parent 2 :

0.0

3.7

0.0 0.0

2.4 5.3

Child 1 :

Child 2 :

0.0

3.7

2.4 5.3

0.0 0.0

Crossover

Population : -2.2 -1.4 -4.5

New Population : 4

Mutation

-1.4 -4.5

Path Coverage Test Case Generation Using Genetic Algorithms

 e-ISSN: 2289-8131 Vol. 9 No. 2-2 119

Table 5

Test Cases for Case Studies Programs

Program
Total Branch

Predicates'

Total

Target
Paths

Found

Test
cases

Not found

Test cases

Calculate

Maximum –

Minimum

3 8 6 2

Triangle

Problem
4 8 4 4

Find Middle
Character

3 6 6 0

As shown in Table 5, some target paths of the Calculate

Maximum-Minimum and Triangle Problem programs cannot

generate test cases. Because these target paths are infeasible

paths that cannot be traversed by any test cases. Possible

causes of infeasible paths are source codes that contain

logically inconsistent predicates or some data that produce an

infinity loop in program, and others.

Mutation testing [10] is used to evaluate the effectiveness

of the test cases created by our method. Mutation testing starts

by making small syntactic changes into the original program.

The mutated programs are called mutants. Mutants are

obtained by applying mutation operators. For example, an

arithmetic operator may be changed from addition to

subtraction. Mutation analysis is based on the number of

killed mutants. The behavior of the original program is

different from the mutant called killed mutant. There are

cases where it is not possible to find a test case that could kill

this mutant called equivalent mutant. The ratio of killed

mutants to the total mutants minus the number of equivalent

mutants is called mutation score.

The test cases evaluation process is carried out as follows:

1. Test cases of case study programs are generated by

using our algorithm.

2. Mutants for each case study are created by applying

the mutation operators designed by Offutt et al. [11].

As shown in Table VI, there are 21 mutants for

calculating the maximum and minimum program, 38

mutants for the triangle problem program, and 21

mutants for the calculation of the middle data program.

3. Test cases are executed with the original program and

the mutant programs to calculate mutation scores. If a

mutation score is one or near to one, it indicates the

effectiveness of the test cases. The evaluation results

are shown in Table 6.

Table 6

Test Cases Evaluation for Case Studies Programs

Program
Total
Test

cases

Total

Mutants

Killed

mutants

Mutation

Score

Calculate
Maximum –

Minimum

6 21 19 0.9

Triangle
Problem

4 38 25 0.86

Find Middle

Character
6 21 21 1

VII. CONCLUSIONS

This paper presents a method for generating test cases using

genetic algorithm. First, a flow graph is created from the

program source code and the paths of the graph are specified

by following path coverage criteria. Then, the genetic

algorithm is used for generating test cases. Finally, we use

mutation testing to evaluate the effectiveness of the test cases.

Experimental data show that tests generated by our method

have a strong ability to detect faults. In addition, this research

has also developed a test case generation tool based on the

proposed method. In the future, we intend to improve the tool

to automate the whole test process and find solutions for

infeasible paths. Moreover, more complex programs are

needed for evaluating our method and we need more studies

on the optimization algorithms for test case generation, such

as hybrid GA and PSO [12,13], which have a higher

efficiency than GA algorithms.

ACKNOWLEDGEMENT

The authors would like to thank for the support given to

this research by the Faculty of Engineering and Faculty of

Science, Prince of Songkla University, Thailand.

REFERENCES

[1] Jones B.F, Sthamer H.-H and Eyres D.E. 1996. Automatic structural

testing using genetic algorithms. Software Engineering Journal: 299-
306.

[2] Pargas R. P., Harrold M. J. and Peck R. R.. 1999. Test-Data

Generation Using Genetic Algorithms. Journal of Software Testing,
Verification and Reliability I: 1-19.

[3] P. NIE. 2012. A PSO Test Case Generation Algorithm with Enhances

Exploration Ability. Journal of Computational Information System:
5785-5793.

[4] Mohi-Aldeen S. M., Mohamad R. and Deris S.. 2014. Automatic Test

Case Generation for Structural Testing Using Negative Selection
Algorithm. International Conference of Recent Trends in Information

and Communication Technologies: 270-280.

[5] Ghezzi C., Jazayeri M., and Mandrioli D. 2002. Fundamentals of
Software Engineering 2nd. USA: Prentice Hall PTR Upper Saddle

River.

[6] Winter G., Periaux J., Galan M.and Cuesta P. 1996. Genetic
Algorithms in Engineering and Computer Science. USA: Wiley

Publisher.

[7] Jorgensen P. C. 2007. Software Testing A Craftsman’s Approach 3rd.

USA: AuerbachPiblictions.

[8] Ammann P. and Offutt J. 2008. Introduction to Software Testing. UK:

Cambridge University Press.
[9] Korel B. 1996. Automated test data generation for programs with

procedures. Proceedings of International Symposium on Software

Testing and Analysis: 209-215.
[10] Guti´errez-Madro˜nal L., Jos´e J. Dom´ınguez-Jim´enez and I.

Medina-Bulo. 2014. Mutation Testing: Guideline and Mutation

Operator Classification. The Ninth International Multi-Conference on
Computing in the Global Information Technology: 171-179.

[11] Offutt, A.J. Lee, A. Rothermel, G. Untch R., and Zapf C. 1996. An

Experimental Determination of Sufficient Mutant Operators. ACM
Transaction on Software Engineering Methodology. 99-118.

[12] Singh A., Garg N. and Saini T. 2014. A hybrid Approach of Genetic

Algorithm and Particle Swarm Technique to Software Test Case
Generation. International Journal of Innovations in Engineering and

Technology: 208-214.

[13] Singla S., Kumar D., Rai H M and Singla P. 2011. A hybrid PSO

Approach to Automate Test Data Generation for Data Flow Coverage

with Dominance Concepts. International Journal of Advanced Science

and Technology: 15-25.

