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Abstract—Software testing is an important step in the 

software process. It makes the developed software more 

accurate and reliable. Generating test cases is a key element in 

the process of software testing. The quality of testing depends on 

the test effectiveness. This paper presents a method for 

generating test cases using genetic algorithms. A test case 

generation tool is developed with Visual Basic .NET for 

supporting our method. The proposed method was applied on 

case studies and mutation testing was used in our experiment for 

performance evaluation. The results show that the generated 

test cases are appropriate for software testing. 

 

Index Terms—Software Testing; Genetic Algorithms; Test 

Case Generation. 

 

I. INTRODUCTION 

 

Software testing is a key step in the software development 

process. The test is an activity designed to improve software 

quality. One important step in software testing is the test case 

selection process. A good test selection contributes to an 

effective testing. To enable effective testing, the test cases in 

the set must cover all features that should be tested and the 

number of test cases should not be too high 

Genetic Algorithm (GA) is an optimization algorithm 

based on evolutionary processes in nature. GA is used to find 

the right answer with the principle of natural selection to 

simulate the evolution of life. The GA process finds the 

answer by exchanging parameters between chromosomes, 

which will give an improved answer until finally the right 

answer. There are many methods proposed for generating test 

cases by applying GA. For example, Jones et al. [1] presented 

automatic structural software testing using a fitness function 

of GA based on the Hamming distance. Their structural 

testing was applied for testing a variety of programs of 

varying complexity. Pargas et al. [2] presented a technique 

for automatic test-data generation using GA. They used 

control dependencies in the program to guide the search for 

test data to satisfy test requirements. NIE [3] proposed the 

PSO test case generation algorithm with enhanced 

exploration ability (EEA-PSO) to restrain the prematurity and 

reduce the test case generation costs. Mohi-Aldeen et al. [4] 

used NSA (Negative Selection Algorithm) to automatically 

generate test cases to satisfy the path coverage of software. 

Along with the principles of GA that are consistent with the 

test cases refinement, the abstract test cases are modified until 

they meet the targets. In this study, we present a method for 

generating test cases by using genetic algorithm. In the 

proposed method, the abstract test cases are generated 

randomly. Then, they are refined by genetic algorithm for 

improving the test parameters. In addition, a test case 

generation tool is developed according to our method for 

automatically generating test cases. Mutation testing is used 

to evaluate generated test cases. 

 

II. SOFTWARE TESTING 

 

Software testing [5] is an important activity in software 

quality assurance that shows software reliability. The purpose 

of software testing is to find errors that may occurred during 

the software development.  

There are two techniques widely used in software testing. 

1. Black-Box Testing: This technique is used to test for 

verify the performance of the duties under the 

requirements specification, and ignores the internal 

structure of the program. 

 

 
 

Figure 1: Black-Box Testing 

 

2. White-Box Testing: The testing focuses on the internal 

program structure. The basic idea of this test is that a 

crash of the software will be detected. This technique 

will help to analyze the program to find bugs that may 

arise from the work of the various commands in the 

program. 

 

 
 

Figure 2: White-Box Testing 

 

III. GENETIC ALGORITHM 

 

Genetic algorithm [6] is a process that relies on the theory 

of evolution of nature offered by John Holland. Genetic 

algorithm can be used to find better and more affordable 

solutions through learning by itself.  

Figure 3 shows the process of the genetic algorithm [6]. 
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Figure 3: Genetic Algorithm [6] 

 

The main steps of the genetic algorithm can be listed as 

follows: 

1. Initial Population: In this step, initial population of 

solutions (chromosomes) are randomly produced or 

manually created from their data type domain. 

2. Fitness Evaluation: All chromosomes are evaluated 

and assigned fitness values. The fitness evaluation is a 

process used to determine the execute condition in the 

genetic algorithm process. This process is repeated 

until a termination condition has been reached. 

3. Selection: New population will be selected from the 

parent population. There are many methods how to 

select the best chromosome for use in next generation 

of genetic process such as roulette wheel selection, 

Boltzman selection, rank selection and some others. 

4. Crossover: An importance process of the genetic 

algorithm is the crossover. The parent population has 

to switch genes on each chromosome with a switching 

rate called the probability of crossover. This 

probability is a real number from 0 to 1 that is 

randomly generated. In this process, we get a new 

population that is different from the parent population. 

5. Mutation: Mutation is a process of genetic algorithm. 

Genes in a chromosome will be changed after 

crossover. This principle helps to create a new answer. 

The percentage of change is determined by the 

mutation rate called the probability of mutation. 

6. Replacement: The new population after crossover and 

mutation will be taken to replace the parent population 

and will become the new parent population.  

7. Parameters: The key parameters of genetic algorithm 

are as following: 

a. Population size  

b. Probability of crossover 

c. Probability of mutation 

 

IV. CONTROL FLOW GRAPH 

 

Control Flow Graph, CFG [7] is a directed graph used to 

analyze the function of a computer program. This graph 

demonstrates the functionality of the software under various 

conditions. Therefore, the control flow graph analysis can 

help to test the functionality of the software. A CFG can be 

built from the program source code. It consists of nodes and 

edges. A node represents a statement or a basic block of 

statements. An edge represents the flow of control between 

nodes. Notations for representing control flow are shown in 

Figure 4. 

 

 
 

Figure 4: Notions for Representing Control Flow [7] 

 

V. TEST CASE GENERATION 

 

In this section, the proposed test cases generating process 

using genetic algorithm will be described. Our approach 

consists of two main stages as shown in Figure 5. 
 

 
 

Figure 5: Framework of the proposed approach 

 

A. Generating Control Flow Graph and Specifying 

Target Paths 

This procedure consists of two sub-stages:  

1. Generating a control flow graph: A control flow graph 

is generated from a program code. The generated 

graph consists of nodes connected by edges. Figure 6 

shows the control flow graph of Max-Min program 

that consists of 10 nodes and 12 edges. 

2. Specifying Target Paths: The target paths are specified 

by using the control flow graph generated from the 

previous step. In this research, the path coverage (PC) 

is used to specify target paths. The PC requires every 

path in the tested program has to be executed at least 

once. Figure 7 shows all target paths of the Max-Min 

control flow graph in Figure 6. 
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Figure 6: Control Flow Graph of Max-Min Program 
 

Path 1 S 1 2T 3 7T 8 10T 11 E 

Path 2 S 1 2T 3 7T 8 10F E  

Path 3 S 1 2T 3 7F 10T 11 E  

Path 4 S 1 2T 3 7F 10F E   

Path 5 S 1 2F 5 7T 8 10T 11 E 

Path 6 S 1 2F 5 7T 8 10F E  

Path 7 S 1 2F 5 7F 10T 11 E  

Path 8 S 1 2F 5 7F 10F E   

 
Figure 7: All Paths of Max-Min CFG 

 

 

B. Generating Control Flow Graph and Specifying 

Target Paths 

In this process, test cases are created by using the genetic 

algorithm. The generation process starts by selecting a target 

path. This target path is set to be the considering path for 

finding a test case by using the Genetic Algorithm Execution 

(GA Execution). The generation process is repeated until all 

target paths are considered. 

Figure 8 shows the steps of GA Execution as following:  

 

Step 1: Initial Test Cases 

The input space partitioning approach proposed by 

Ammann and Offutt [8] is used to generate initial test cases 

(chromosomes). We consider the data type of each parameter 

in the program. The number of partition depends on the data 

type of the parameter. For example, considering integer or 

double parameters, the range can be partitioned into three 

blocks: less than zero, zero, and greater than zero. The initial 

test cases contain all possible test cases of the considered 

target path. After all parameters are partitioned into blocks, 

one block from each parameter is combined to be a test case. 

We apply the Each Choice (EC) criterion [8] for the 

combination blocks. The EC requires that each block of 

parameters must be used in at least one test case. 

 For example, the Max–Min program has three input 

parameters (a, b, and c) that are double data types. Each 

parameter can be partitioned into three blocks ([a<0.0, a=0.0, 

a>0.0], [b<0.0, b=0.0, b>0.0], and [c<0.0, c=0.0, c>0.0]), so 

we can combine them into three sets: {a < 0.0 , b < 0.0 , c < 

0.0}, {a = 0.0 , b = 0.0 , c = 0.0}, and {a > 0.0 , b > 0.0 , c > 

0.0}. A set represents a test case. Then, the test data for each 

partition of each set are generated randomly. Table 1 shows 

the initial test data for the Max–Min program. 
 

 

 
 

Figure 8: Genetic Algorithm Execution 
 

Table 1 

Initial Test Data for Max-Min Program 
 

Set a B c 

1 -2.2 -1.4 -4.5 

2 0.0 0.0 0.0 
3 3.7 2.4 5.3 

 

 

Step 2: Coverage Evaluation 

In this research, we use the branch distance calculation 

proposed by Korel [9] for fitness evaluation. Branch distance 

is calculated based on the type of branch predicate. Branch 

predicate and branch distance of the Korel's distance function 

are shown in Table 2. Table 3 shows all branch predicates of 

the Max-Min Program. 
 

Table 2 

Korel’s Distance Function [9] 
 

Branch Predicate Branch Distance 

a < b a - b 

a <= b a - b 
a > b b - a 

a >= b b - a 

a == b abs(a-b) 
a <> b abs(a-b) 

a && b a + b 

a || b min(a , b) 

 

Table 3 

Decision for Max-Min Program 
 

Branch Predicate Branch Distance 

a > b b - a 

max < c max - c 
max > c c - max 

 

Korel’s distance function is used to compute the distance 

between the target path and the considering path. In this 

study, the selected target path and an execution paths that 

traversed by test data of a test case are compared; if they are 

different then the all branch distances of this execution path 

are calculated to be the fitness value of the test case. In case 
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they are same then the GA execution process for the target 

path is finished and the test case is set for the selected target 

path. 

For example, the selected target path is the first path in 

Figure 7. We found that every execution path of test data sets 

in Table I is different; therefore all branch distances of every 

execution paths are calculated as shown in Table 4. 
 

Table 4 

Branch Distance for Test Sets 

 

Set A b c Branch Distances 

1 -2.2 -1.4 -4.5 0.8 

2 0.0 0.0 0.0 0.0 

3 3.7 2.4 5.3 -1.6 

 

Step 3: Selection  

The selection step is done to select test cases for the 

evolution process, crossover, and mutation. The sets of test 

are sorted by descending order of branch distance values. The 

data sets with small distance values will be selected for the 

evolution process. For example, the test data sets in Table IV 

are sorted to be the new sequence sets 3, 2, and 1. 

 

Step 4: Crossover  

After sorting in the selection process, the first two data sets 

are chosen for crossover operation. In this research, we use 

single-point crossover. Parameters of the chosen two data sets 

(parent) are exchanged at a random position to produce two 

new test data sets (child). Figure 9 shows an example for a 

single point crossover at the first position. 
 

 
 

Figure 9: Single Point Crossover 

 

Step 5: Mutation 

After sorting in the selection process, mutation is applied 

to the first data set using single point mutation. In our method, 

the position for mutation is selected randomly. The value of 

this position is replaced by another value that is generated 

randomly based on the range of its data type. Figure 10 shows 

an example for the single point mutation at first position that 

changes the value from -2.2 to 4. 
 

 
 

Figute 10: Single Point Mutation 

 

To support our idea, we implemented the application that 

provides GUI for generating test data. The application is 

developed by Visual Basic .NET works on Windows base. 

User can set parameters of the genetic algorithm to find the 

best solution in generating test sets. The user interface is 

shown in Figure 11. 

 

 
Figure 11: Test Cases Generation GUI 

 

The application contains five parts. Part  is used to upload 

a program file written in Visual Basic .NET. Part  is used 

to set parameters for genetic algorithm which are the numbers 

of the parameters, population size, probability of crossover, 

probability of mutation and chromosome type. Part  is used 

to define target paths. Part  is used to specify branch 

predicates. After execution, the results are shows in part . 

 

VI. CASE STUDY 

 

In this section, three small programs are used to evaluate 

our approach. The case study programs are as follows: 

 

1. Calculate Maximum–Minimum  

This program receives three numbers that are double 

types and finds the maximum and minimum numbers. 

There are three branch predicates in the source code. 

2. Triangle Problem  

This program receives three sides of triangle that are 

integer numbers and classifies type of triangle (Not a 

Triangle, Equilateral, Scalene, and Isosceles). There 

are four branch predicates in this source code. 

3. Calculate Middle Data 

This program gets three characters and identifies the 

character that has the middle value. For example the 

characters are ‘a’, ‘c’ and ‘b’ then the result is 

character ‘b’. There are three branch predicates in this 

source code. 

 

Test cases of these three programs are generated by our 

tool. As stated before, there are three key parameters in the 

genetic algorithm: population size, probability of crossover, 

and probability of mutation are set to be 100, 1, and 1, 

respectively. Probabilities of crossover and mutation are set 

to be 1 for the execution crossover and mutation operations 

in every generation which increase the probability to find the 

appropriate test cases. The results are shown in Table 5. 

 

 

 

Parent 1 :

Parent 2 :

0.0

3.7

0.0 0.0

2.4 5.3

Child 1 :

Child 2 :

0.0

3.7

2.4 5.3

0.0 0.0

Crossover

Population : -2.2 -1.4 -4.5

New Population : 4

Mutation

-1.4 -4.5
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Table 5 

Test Cases for Case Studies Programs 
 

Program 
Total Branch 

Predicates' 

Total 

Target 
Paths 

Found 

Test 
cases 

Not found 

Test cases 

Calculate 

Maximum – 

Minimum 

3 8 6 2 

Triangle 

Problem 
4 8 4 4 

Find Middle 
Character 

3 6 6 0 

 

As shown in Table 5, some target paths of the Calculate 

Maximum-Minimum and Triangle Problem programs cannot 

generate test cases. Because these target paths are infeasible 

paths that cannot be traversed by any test cases. Possible 

causes of infeasible paths are source codes that contain 

logically inconsistent predicates or some data that produce an 

infinity loop in program, and others. 

Mutation testing [10] is used to evaluate the effectiveness 

of the test cases created by our method. Mutation testing starts 

by making small syntactic changes into the original program. 

The mutated programs are called mutants. Mutants are 

obtained by applying mutation operators. For example, an 

arithmetic operator may be changed from addition to 

subtraction. Mutation analysis is based on the number of 

killed mutants. The behavior of the original program is 

different from the mutant called killed mutant. There are 

cases where it is not possible to find a test case that could kill 

this mutant called equivalent mutant. The ratio of killed 

mutants to the total mutants minus the number of equivalent 

mutants is called mutation score. 

The test cases evaluation process is carried out as follows:   

1. Test cases of case study programs are generated by 

using our algorithm.   

2. Mutants for each case study are created by applying 

the mutation operators designed by Offutt et al. [11]. 

As shown in Table VI, there are 21 mutants for 

calculating the maximum and minimum program, 38 

mutants for the triangle problem program, and 21 

mutants for the calculation of the middle data program.  

3. Test cases are executed with the original program and 

the mutant programs to calculate mutation scores. If a 

mutation score is one or near to one, it indicates the 

effectiveness of the test cases. The evaluation results 

are shown in Table 6. 
 

Table 6 

Test Cases Evaluation for Case Studies Programs 

 

Program 
Total 
Test 

cases 

Total 

Mutants 

Killed 

mutants 

Mutation 

Score 

Calculate 
Maximum – 

Minimum 

6 21 19 0.9 

Triangle 
Problem 

4 38 25 0.86 

Find Middle 

Character 
6 21 21 1 

 

 

VII. CONCLUSIONS 

 

This paper presents a method for generating test cases using 

genetic algorithm. First, a flow graph is created from the 

program source code and the paths of the graph are specified 

by following path coverage criteria. Then, the genetic 

algorithm is used for generating test cases. Finally, we use 

mutation testing to evaluate the effectiveness of the test cases. 

Experimental data show that tests generated by our method 

have a strong ability to detect faults. In addition, this research 

has also developed a test case generation tool based on the 

proposed method. In the future, we intend to improve the tool 

to automate the whole test process and find solutions for 

infeasible paths. Moreover, more complex programs are 

needed for evaluating our method and we need more studies 

on the optimization algorithms for test case generation, such 

as hybrid GA and PSO [12,13], which have a higher 

efficiency than GA algorithms. 
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